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Abstract

Object detection typically assumes that training and test

data are drawn from an identical distribution, which, how-

ever, does not always hold in practice. Such a distribution

mismatch will lead to a significant performance drop. In

this work, we aim to improve the cross-domain robustness of

object detection. We tackle the domain shift on two levels:

1) the image-level shift, such as image style, illumination,

etc., and 2) the instance-level shift, such as object appear-

ance, size, etc. We build our approach based on the recent

state-of-the-art Faster R-CNN model, and design two do-

main adaptation components, on image level and instance

level, to reduce the domain discrepancy. The two domain

adaptation components are based on H-divergence theory,

and are implemented by learning a domain classifier in ad-

versarial training manner. The domain classifiers on dif-

ferent levels are further reinforced with a consistency regu-

larization to learn a domain-invariant region proposal net-

work (RPN) in the Faster R-CNN model. We evaluate our

newly proposed approach using multiple datasets including

Cityscapes, KITTI, SIM10K, etc. The results demonstrate

the effectiveness of our proposed approach for robust ob-

ject detection in various domain shift scenarios.

1. Introduction

Object detection is a fundamental problem in computer

vision. It aims at identifying and localizing all object in-

stances of certain categories in an image. Driven by the

surge of deep convolutional networks (CNN) [32], many

CNN-based object detection approaches have been pro-

posed, drastically improving performance [21, 51, 20, 8, 19,

39].

While excellent performance has been achieved on the

benchmark datasets [12, 37], object detection in the real

world still faces challenges from the large variance in view-

points, object appearance, backgrounds, illumination, im-

age quality, etc., which may cause a considerable domain

shift between the training and test data. Taking autonomous

Figure 1. Illustration of different datasets for autonomous driv-

ing: From top to bottom-right, example images are taken from:

KITTI[17], Cityscapes[5], Foggy Cityscapes[49], SIM10K[30].

Though all datasets cover urban scenes, images in those dataset

vary in style, resolution, illumination, object size, etc. The visual

difference between those datasets presents a challenge for apply-

ing an object detection model learned from one domain to another

domain.

driving as an example, the camera type and setup used in a

particular car might differ from those used to collect train-

ing data, and the car might be in a different city where

the appearance of objects is different. Moreover, the au-

tonomous driving system is expected to work reliably under

different weather conditions (e.g. in rain and fog), while the

training data is usually collected in dry weather with better

visibility. The recent trend of using synthetic data for train-

ing deep CNN models presents a similar challenge due to

the visual mismatch with reality. Several datasets focusing

on autonomous driving are illustrated in Figure 1, where we

can observe a considerable domain shift.

Such domain shifts have been observed to cause sig-

nificant performance drop [23]. Although collecting more

training data could possibly alleviate the impact of domain

shift, it is non-trivial because annotating bounding boxes is

an expensive and time-consuming process. Therefore, it is

highly desirable to develop algorithms to adapt object de-

tection models to a new domain that is visually different

from the training domain.

In this paper, we address this cross-domain object detec-

tion problem. We consider the unsupervised domain adap-

tation scenario: full supervision is given in the source do-

main while no supervision is available in the target domain.
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Thus, the improved object detection in the target domain

should be achieved at no additional annotation cost.

We build an end-to-end deep learning model based on

the state-of-the-art Faster R-CNN model [48], referred to

as Domain Adaptive Faster R-CNN. Based on the covari-

ate shift assumption, the domain shift could occur on im-

age level (e.g, image scale, image style, illumination, etc.)

and instance level (e.g, object appearance, size, etc.), which

motivates us to minimize the domain discrepancy on both

levels. To address the domain shift, we incorporate two do-

main adaptation components on image level and instance

level into the Faster R-CNN model to minimize the H-

divergence between two domains. In each component, we

train a domain classifier and employ the adversarial training

strategy to learn robust features that are domain-invariant.

We further incorporate a consistency regularization between

the domain classifiers on different levels to learn a domain-

invariant region proposal network (RPN) in the Faster R-

CNN model.

The contribution of this work can be summarized as

follows: 1) We provide a theoretical analysis of the do-

main shift problem for cross-domain object detection from

a probabilistic perspective. 2) We design two domain adap-

tation components to alleviate the domain discrepancy at

the image and instance levels, resp. 3) We further propose

a consistency regularization to encourage the RPN to be

domain-invariant. 4) We integrate the proposed components

into the Faster R-CNN model, and the resulting system can

be trained in an end-to-end manner.

We conduct extensive experiments to evaluate our Do-

main Adaptive Faster R-CNN using multiple datasets in-

cluding Cityscapes [5], KITTI [17], SIM 10k [30], etc. The

experimental results clearly demonstrate the effectiveness

of our proposed approach for addressing the domain shift

of object detection in multiple scenarios with domain dis-

crepancies.

2. Related Work

Object Detection: Object detection dates back a long

time, resulting in a plentitude of approaches. Classical

work [9, 13, 56] usually formulated object detection as a

sliding window classification problem. The rise of deep

convolutional networks(CNNs) [32] finds its origin in ob-

ject detection, where its successes have led to a swift

paradigm shift. Among the large number of approaches

proposed [21, 51, 20, 19, 39, 8], region-based CNNs (R-

CNN) [21, 20, 60] have received significant attention due

to their effectiveness. This line of work was pioneered by

R-CNN [21], which extracts region proposals from the im-

age and a network is trained to classify each region of in-

terest (ROI) independently. The idea has been extended

by [20, 26] to share the convolution feature map among

all ROIs. Faster R-CNN [21] produces object proposals

with a Region Proposal Network (RPN). It achieved state-

of-the-art results and laid the foundation for many follow-

up works [19, 39, 8, 36, 60]. Faster R-CNN is also highly

flexible and can be extended to other tasks, e.g. instance

segmentation [7]. However, those works focused on the

conventional setting without considering the domain adap-

tation issue for object detection in the wild. In this paper,

we choose Faster R-CNN as our base detector, and improve

its generalization ability for object detection in a new target

domain.

Domain Adaptation: Domain adaptation has been

widely studied for image classification in computer vi-

sion [10, 11, 33, 23, 22, 14, 52, 40, 15, 18, 50, 45, 43, 35].

Conventional methods include domain transfer multiple

kernel learning [10, 11], asymmetric metric learning [33],

subspace interpolation [23], geodesic flow kernel [22], sub-

space alignment [14], covariance matrix alignment [52, 57],

etc. Recent works aim to improve the domain adaptability

of deep neural networks, including [40, 15, 18, 50, 45, 43,

34, 24, 41, 42]. Different from those works, we focus on

the object detection problem, which is more challenging as

both object location and category need to be predicted.

A few recent works have also been proposed to perform

unpaired image translation between two sets of data, which

can be seen as pixel-level domain adaptation [62, 31, 59,

38]. However, it is still a challenging issue to produce re-

alistic images in high resolution as required by real-world

applications like autonomous driving.

Domain Adaptation Beyond Classification: Compared

to the research in domain adaptation for classification, much

less attention has been paid to domain adaptation for other

computer vision tasks. Recently there are some works con-

cerning tasks such as semantic segmentation [4, 27, 61],

fine-grained recognition [16] etc. For the task of detec-

tion, [58] proposed to mitigate the domain shift problem

of the deformable part-based model (DPM) by introducing

an adaptive SVM. In a recent work [47], they use R-CNN

model as feature extractor, then the features are aligned with

the subspace alignment method. There also exists work to

learn detectors from alternative sources, such as from im-

ages to videos [54], from 3D models [46, 53], or from syn-

thetic models [25]. Previous works either cannot be trained

in an end-to-end fashion, or focus on a specific case. In this

work, we build an end-to-end trainable model for object de-

tection, which is, to the best of our knowledge, the first of

its kind.

3. Preliminaries

3.1. Faster R­CNN

We briefly review the Faster R-CNN [60] model, which

is the baseline model used in this work. Faster R-CNN is

a two-stage detector mainly consisting of three major com-

3340



ponents: shared bottom convolutional layers, a region pro-

posal network (RPN) and a region-of-interest (ROI) based

classifier. The architecture is illustrated in the left part of

Figure 2.

First an input image is represented as a convolutional

feature map produced by the shared bottom convolutional

layers. Based on that feature map, RPN generates candi-

date object proposals, whereafter the ROI-wise classifier

predicts the category label from a feature vector obtained

using ROI-pooling. The training loss is composed of the

loss of the RPN and the loss of the ROI classifiers:

Ldet = Lrpn + Lroi (1)

Both training loss of the RPN and ROI classifiers have

two loss terms: one for classification as how accurate the

predicted probability is, and the other is a regression loss

on the box coordinates for better localization. Readers are

referred to [60] for more details about the architecture and

the training procedure.

3.2. Distribution Alignment with H­divergence

The H-divergence [1] is designed to measure the diver-

gence between two sets of samples with different distribu-

tions. Let us denote by x a feature vector. A source domain

sample can be denoted as xS and a target domain sample

as xT . We also denote by h : x → {0, 1} a domain clas-

sifier, which aims to predict the source samples xS to be 0,

and target domain sample xT to be 1. Suppose H is the set

of possible domain classifiers, the H-divergence defines the

distance between two domains as follows:

dH(S, T ) = 2

(

1−min
h∈H

(

errS(h(x)) + errT (h(x))
)

)

.

where errS and errT are the prediction errors of h(x) on

source and target domain samples, resp. The above defini-

tion implies that the domain distance dH(S, T ) is inversely

proportional to the error rate of the domain classifier h. In

other words, if the error is high for the best domain clas-

sifier, the two domains are hard to distinguish, so they are

close to each other, and v.v.

In deep neural networks, the feature vector x usually

comprises the activations after a certain layer. Let us de-

note by f the network that produces x. To align the two

domains, we therefore need to enforce the networks f to

output feature vectors that minimize the domain distance

dH(S, T ) [15], which leads to:

min
f

dH(S, T ) ⇔ max
f

min
h∈H

{errS(h(x)) + errT (h(x))}.

This can be optimized in an adversarial training manner.

Ganin and Lempitsky [15] implemented a gradient reverse

layer (GRL), and integrated it into a CNN for image classi-

fication in the unsupervised domain adaptation scenario.

4. Domain Adaptation for Object Detection

Following the common terminology in domain adapta-

tion, we refer to the domain of the training data as source

domain, denoted by S , and to the domain of the test data

as target domain, denoted by T . For instance, when using

the Cityscapes dataset for training and the KITTI dataset

for testing, S is the Cityscapes dataset and T represents the

KITTI dataset.

We also follow the classic setting of unsupervised do-

main adaptation, where we have access to images and full

supervision in the source domain (i.e., bounding box and

object categories), but only unlabeled images are available

for the target domain. Our task is to learn an object detec-

tion model adapted to the unlabeled target domain.

4.1. A Probabilistic Perspective

The object detection problem can be viewed as learn-

ing the posterior P (C,B|I), where I is the image repre-

sentation, B is the bounding-box of an object and C ∈
{1, . . . ,K} the category of the object (K being the total

number of categories).

Let us denote the joint distribution of training samples

for object detection as P (C,B, I), and use PS(C,B, I) and

PT (C,B, I) to denote the source domain joint distribution

and the target domain joint distribution, resp. Note that here

we use PT (C,B, I) to analyze the domain shift problem,

although the bounding box and category annotations (i.e.,

B and C) are unknown during training. When there is a

domain shift, PS(C,B, I) 6= PT (C,B, I).
Image-Level Adaptation: Using the Bayes’s Formula,

the joint distribution can be decomposed as:

P (C,B, I) = P (C,B|I)P (I). (2)

Similar to the classification problem, we make the covariate

shift assumption for objection detection, i.e., the conditional

probability P (C,B|I) is the same for the two domains, and

the domain distribution shift is caused by the difference on

the marginal distribution P (I). In other words, the detec-

tor is consistent between two domains: given an image, the

detection results should be the same regardless of which do-

main the image belongs. In the Faster R-CNN model, the

image representation I is actually the feature map output

of the base convolutional layers. Therefore, to handle the

domain shift problem, we should enforce the distribution

of image representation from two domains to be the same

(i.e., PS(I) = PT (I)), which is referred to as image-level

adaptation.

Instance-Level Adaptation: On the other hand, the

joint distribution can also be decomposed as:

P (C,B, I) = P (C|B, I)P (B, I). (3)

With the covariate shift assumption, i.e., the conditional

probability P (C|B, I) is the same for the two domains, we
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Figure 2. An overview of our Domain Adaptive Faster R-CNN model: we tackle the domain shift on two levels, the image level and the

instance level. A domain classifier is built on each level, trained in an adversarial training manner. A consistency regularizer is incorporated

within these two classifiers to learn a domain-invariant RPN for the Faster R-CNN model.

have that the domain distribution shift is from the difference

in the marginal distribution P (B, I). Intuitively, this im-

plies the semantic consistency between two domains: given

the same image region containing an object, its category

labels should be the same regardless of which domain it

comes from. Therefore, we can also enforce the distribution

of instance representation from two domains to be the same

(i.e., PS(B, I) = PT (B, I)). We refer to it as instance-level

alignment.

Here the instance representation (B, I) refers to the fea-

tures extracted from the image region in the ground truth

bounding box for each instance. Although the bounding-

box annotation is unavailable for the target domain, we can

obtain it via P (B, I) = P (B|I)P (I), where P (B|I) is a

bounding box predictor (e.g, RPN in Faster R-CNN). This

holds only when P (B|I) is domain-invariant, for which we

provide a solution below.

Joint Adaptation: Ideally, one can perform domain

alignment on either the image or instance level. Consider-

ing that P (B, I) = P (B|I)P (I) and the conditional distri-

bution P (B|I) is assumed to be the same and non-zero for

two domains, thus we have:

PS(I) = PT (I) ⇔ PS(B, I) = PT (B, I). (4)

In other words, if the distributions of the image-level rep-

resentations are identical for two domains, the distributions

of the instance-level representations are also identical, and

v.v. Yet, it is generally non-trivial to perfectly estimate the

conditional distribution P (B|I). The reasons are two-fold:

1) in practice it may be hard to perfectly align the marginal

distributions P (I), which means the input for estimating

P (B|I) is somehow biased, and 2) the bounding box an-

notation is only available for source domain training data,

therefore P (B|I) is learned using the source domain data

only, which is easily biased toward the source domain.

To this end, we propose to perform domain distribution

alignment on both the image and instance levels, and to ap-

ply a consistency regularization to alleviate the bias in esti-

mating P (B|I). As introduced in Section 3.2, to align the

distributions of two domains, one needs to train a domain

classifier h(x). In the context of object detection, x can be

the image-level representation I or the instance-level repre-

sentation (B, I). From a probabilistic perspective, h(x) can

be seen as estimating a sample x’s probability belonging to

the target domain.

Thus, by denoting the domain label as D, the image-level

domain classifier can be viewed as estimating P (D|I), and

the instance-level domain classifier can be seen as estimat-

ing P (D|B, I). By using the Bayes’ theorem, we obtain:

P (D|B, I)P (B|I) = P (B|D, I)P (D|I). (5)

In particular, P (B|I) is a domain-invariant bounding box

predictor, and P (B|D, I) a domain-dependent bounding

box predictor. Recall that in practice we can only learn

a domain-dependent bounding box predictor P (B|D, I),
since we have no bounding box annotations for the target

domain. Thus, by enforcing the consistency between two

domain classifiers, i.e., P (D|B, I) = P (D|I), we could

learn P (B|D, I) to approach P (B|I).

4.2. Domain Adaptation Components

This section introduces two domain adaptation compo-

nents for the image and instance levels, used to align the

feature representation distributions on those two levels.

Image-Level Adaptation: In the Faster R-CNN model,

the image-level representation refers to the feature map out-

puts of the base convolutional layers (see the green paral-

lelogram in Figure 2). To eliminate the domain distribution

mismatch on the image level, we employ a patch-based do-

main classifier as shown in the lower right part of Figure 2.

In particular, we train a domain classifier on each activa-

tion from the feature map. Since the receptive field of each
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activation corresponds to an image patch of the input image

Ii, the domain classifier actually predicts the domain label

for each image patch.

The benefits of this choice are twofold: 1) aligning

image-level representations generally helps to reduce the

shift caused by the global image difference such as image

style, image scale, illumination, etc. A similar patch-based

loss has shown to be effective in recent work on style trans-

fer [29], which also deals with the global transformation,

and 2) the batch size is usually very small for training an

object detection network, due to the use of high-resolution

input. This patch-based design is helpful to increase the

number of training samples for training the domain classi-

fier.

Let us denote by Di the domain label of the i-th training

image, with Di = 0 for the source domain and Di = 1
for the target domain. We denote as φu,v(Ii) the activation

located at (u, v) of the feature map of the i-th image after

the base convolutional layers. By denoting the output of the

domain classifier as p
(u,v)
i and using the cross entropy loss,

the image-level adaptation loss can be written as:

Limg = −
∑

i,u,v

[

Di log p
(u,v)
i + (1−Di) log(1− p

(u,v)
i )

]

.

(6)

As discussed in Section 3.2, to align the domain distri-

butions, we should simultaneously optimize the parameters

of the domain classifier to minimize the above domain clas-

sification loss, and also optimize the parameters of the base

network to maximize this loss. For the implementation we

use the gradient reverse layer (GRL) [15], whereas the or-

dinary gradient descent is applied for training the domain

classifier. The sign of the gradient is reversed when passing

through the GRL layer to optimize the base network.

Instance-Level Adaptation: The instance-level rep-

resentation refers to the ROI-based feature vectors before

feeding into the final category classifiers (i.e., the rectangles

after the “FC” layer in Figure 2). Aligning the instance-

level representations helps to reduce the local instance dif-

ference such as object appearance, size, viewpoint etc. Sim-

ilar to the image-level adaptation, we train a domain classi-

fier for the feature vectors to align the instance-level distri-

bution. Let us denote the output of the instance-level do-

main classifier for the j-th region proposal in the i-th image

as pi,j . The instance-level adaptation loss can now be writ-

ten as:

Lins = −
∑

i,j

[

Di log pi,j + (1−Di) log(1− pi,j)
]

. (7)

We also add a gradient reverse layer before the domain clas-

sifier to apply the adversarial training strategy.

Consistency Regularization: As analyzed in Sec-

tion 4.1, enforcing consistency between the domain clas-

sifier on different levels helps to learn the cross-domain ro-

bustness of bounding box predictor (i.e., RPN in the Faster

R-CNN model). Therefore, we further impose a consis-

tency regularizer. Since the image-level domain classifier

produces an output for each activation of the image-level

representation I , we take the average over all activations in

the image as its image-level probability. The consistency

regularizer can be written as:

Lcst =
∑

i,j

‖
1

|I|

∑

u,v

p
(u,v)
i − pi,j‖2, (8)

where |I| denotes the total number of activations in a feature

map, and ‖ · ‖ is the ℓ2 distance.

4.3. Network Overview

An overview of our network is shown in Figure 2. We

augment the Faster R-CNN base architecture with our do-

main adaptation components, which leads to our Domain

Adaptive Faster R-CNN model.

The left part of Figure 2 is the original Faster R-CNN

model. The bottom convolutional layers are shared between

all components. Then the RPN and ROI pooling layers are

built on top, followed by two fully connected layers to ex-

tract the instance-level features.

Three novel components are introduced in our Domain

Adaptive Faster R-CNN. The image-level domain classifier

is added after the last convolution layer and the instance-

level domain classifier is added to the end of the ROI-wise

features. The two classifiers are linked with a consistency

loss to encourage the RPN to be domain-invariant. The fi-

nal training loss of the proposed network is a summation of

each individual part, which can be written as:

L = Ldet + λ(Limg + Lins + Lcst) (9)

where λ is a trade-off parameter to balance the Faster R-

CNN loss and our newly added domain adaptation compo-

nents. The network can be trained in an end-to-end manner

using a standard SGD algorithm. Note that the adversar-

ial training for domain adaptation components is achieved

by using the GRL layer, which automatically reverses the

gradient during propagation. The overall network in Fig-

ure 2 is used in the training phase. During inference, one

can remove the domain adaptation components, and sim-

ply use the original Faster R-CNN architecture with adapted

weights.

5. Experiments

5.1. Experiment Setup

We adopt the unsupervised domain adaptation protocol

in our experiments. The training data consists of two parts:
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the source training data for which images and their annota-

tions (bounding boxes and object categories) are provided,

and the target training data for which only unlabeled im-

ages are available.

To validate the proposed approach, for all domain shift

scenarios, we report the final results of our model as well as

the results by combining different components (i.e., image-

level adaptation, instance-level adaptation, and the consis-

tency regularization). To our best knowledge, this is the

first work proposed to improve Faster R-CNN for cross-

domain object detection. We include the original Faster R-

CNN model as a baseline, which is trained using the source

domain training data, without considering domain adapta-

tion. For all experiments, we report mean average preci-

sions (mAP) with a threshold of 0.5 for evaluation.

Unless otherwise stated, all training and test images are

resized such that the shorter side has a length of 500 pixels

to fit in GPU memory, and we set λ = 0.1 for all experi-

ments. We follow [48] to set the hyper-parameters. Specifi-

cally, the models are initialized using weights pretrained on

ImageNet. We finetune the network with a learning rate of

0.001 for 50k iterations and then reduce the learning rate to

0.0001 for another 20k iterations. Each batch is composed

of 2 images, one from the source domain and one from the

target domain. A momentum of 0.9 and a weight decay of

0.0005 is used in our experiments.

5.2. Experimental Results

In this section we evaluate our proposed Domain Adap-

tive Faster R-CNN model for object detection in three dif-

ferent domain shift scenarios: 1) learning from synthetic

data, where the training data is captured from video games,

while the test data comes from the real world; 2) driving in

adverse weather, where the training data is taken in good

weather conditions, while the test data in foggy weather; 3)

cross camera adaptation, where the training data and test

data are captured with different camera setups.

5.2.1 Learning from Synthetic Data

As computer graphics technique advances, using synthetic

data to train CNNs becomes increasingly popular. Nonethe-

less, synthetic data still exhibits a clear visual difference

with real world images, and usually there is a performance

gap with models trained on real data. Our first experiment

is to investigate the effectiveness of the proposed method in

this scenario. We use the SIM 10k [30] dataset as the source

domain, and the Cityscapes dataset as the target domain.

Datasets: SIM 10k [30] consists of 10, 000 images

which are rendered by the gaming engine Grand Theft

Auto(GTAV). In SIM 10k , bounding boxes of 58, 701 cars

are provided in the 10, 000 training images. All images are

used in the training. The Cityscapes [5] dataset is an urban

img ins cons car AP

Faster R-CNN 30.12

Ours

X 33.03

X 35.79

X X 37.86

X X X 38.97

Table 1. The average precision (AP) of Car on the Cityscapes val-

idation set. The models are trained using the SIM 10k dataset as

the source domain and the Cityscapes training set as the target do-

main. img is short for image-level alignment, ins for instance-level

alignment and cons is short for our consistency loss

scene dataset for driving scenarios. The images are cap-

tured by a car-mounted video camera. It has 2, 975 images

in the training set, and 500 images in the validation set. We

use the unlabeled images from the training set as the target

domain to adapt our detector, and the results are reported

on the validation set. There are 8 categories with instance

labels in Cityscapes , but only car is used in this experi-

ment since only car is annotated in SIM 10k . Note that

the Cityscapes dataset is not dedicated to detection, thus we

take the tightest rectangles of its instance masks as ground-

truth bounding boxes.

Results: The results of the different methods are sum-

marized in Table 1. Specifically, compared with Faster

R-CNN, we achieve +2.9% performance gain using the

image-level adaptation component only, and +5.6% using

instance-level alignment only. This proves that our pro-

posed image-level adaptation and instance-level adaptation

components can reduce the domain shift on each level ef-

fectively. Combining those two components yields an im-

provement of 7.7%, which validates our conjecture on the

necessity of reducing domain shifts on both levels. By fur-

ther applying the consistency regularization, our Domain

Adaptive Faster R-CNN model improves the Faster R-CNN

model by +8.8%, which achieves 38.97% in terms of AP.

5.2.2 Driving in Adverse Weather

We proceed with our evaluation by studying domain shift

between weather conditions. Weather condition is an im-

portant source of domain discrepancy, as scenes are visu-

ally different as weather conditions change. Whether a de-

tection system can perform faithfully in different weather

conditions is critical for a safe autonomous driving sys-

tem [44, 49]. In this section, we investigate the ability to

detect objects when we adapt a model from normal to foggy

weather.

Datasets: Cityscapes is used as our source domain, with

images dominantly obtained in clear weather. In this ex-

periment we report our results on categories with instance

annotations: person, rider, car, truck, bus, train, motorcycle

and bicycle.

For the target domain, we use the Foggy Cityscapes
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img ins cons person rider car truck bus train mcycle bicycle mAP

Faster R-CNN 17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8

Ours

X 22.9 30.7 39.0 20.1 27.5 17.7 21.4 25.9 25.7

X 23.6 30.6 38.6 20.8 40.5 12.8 17.1 26.1 26.3

X X 24.2 31.2 39.1 19.1 36.2 19.2 17.1 27.0 26.6

X X X 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

Table 2. Quantitative results on the Foggy Cityscapes validation set, models are trained on the Cityscapes training set.

img ins cons K → C C → K

Faster R-CNN 30.2 53.5

Ours

X 36.6 60.9

X 34.6 57.6

X X 37.3 62.7

X X X 38.5 64.1

Table 3. Quantitative analysis of adaptation result between KITTI

and Cityscapes . We report AP of Car on both directions. e.g. K

→ C and C → K.

dataset that was recently presented in [49]. Foggy

Cityscapes is a synthetic foggy dataset in that it simulates

fog on real scenes. The images are rendered using the im-

ages and depth maps from Cityscapes . Examples can be

found at Figure 1 and also in the original paper [49]. The

semantic annotations and data split of Foggy Cityscapes are

inherited from Cityscapes , making it ideal to study the do-

main shift caused by weather condition.

Result: Table 2 presents our results and those of other

baselines. Similar observations apply as in the learning

from synthetic data scenario. Combining all components,

our adaptive Faster R-CNN improves the baseline Faster

R-CNN model by +8.6%. Besides, we can see that the

improvement generalizes well across different categories,

which suggests that the proposed technique can also reduce

domain discrepancy across different object classes.

5.2.3 Cross Camera Adaptation

Domain shift commonly exists even between real datasets

taken under similar weather conditions, as different dataset

are captured using different setups, with different image

quality/resolution, and usually exhibit some data bias when

collecting the dataset [55]. For detection, different datasets

also vary drastically in scale, size and class distribution,

sometimes it is difficult to determine the source of a domain

shift. In this part, we focus on studying adaptation between

two real datasets, as we take KITTI and Cityscapes as our

datasets.

Datasets: We use KITTI training set which contains

7, 481 images. The dataset is used in both adaptation and

evaluation. Images have original resolution of 1250× 375,

and are resized so that shorter length is 500 pixels long.

Correct Mislocalization Background

Cor:

29.6%

Misloc:

29.3%

BG:

41.1%

(a) Faster RCNN

Cor:

44.3%

Misloc:

38.2%

BG:

17.4%

(b) Ours (Ins. Only)

Cor:

58.5%

Misloc:

36.2%

BG:

5.2%

(c) Ours (Img Only)

Figure 3. Error Analysis of Top Ranked Detections

Cityscapes is used as the other domain. Consistent with the

first experiment, we evaluate our method using AP of car,

Results: We apply the proposed method in both adapta-

tion directions, we denote KITTI to Cityscapes as K → C

and vice versa. Table 3 compares our method to other base-

lines. A clear performance improvement is achieved by our

proposed Adaptive Faster R-CNN model over other base-

lines. And our method is useful for both adaptation direc-

tions K → C and C → K.

5.3. Error Analysis on Top Ranked Detections

In the previous sections, we have shown that both image-

level and instance-level alignment help to decrease domain

discrepancy. To further validate the individual effect of

image-level adaptation and instance-level adaptation, we

analyze the accuracies caused by most confident detections

for models using adaptation components on different levels.

We use KITTI → Cityscapes as a study case. We select

20, 000 predictions with highest confidence for the vanilla

Faster R-CNN model, our model with only image-level

adaptation, and our model with only instance-level adap-

tation, respectively. Inspired by [28], we categorize the de-

tections into 3 error types: correct: The detection has an

overlap greater than 0.5 with ground-truth. mis-localized:

The detection has a overlap with ground-truth of 0.3 to 0.5,

and background: the detection has an overlap smaller than

0.3, which means it takes a background as a false positive.

The results are shown in Figure 3. From the figure we

can observe that each individual component (image-level

or instance-level adaptation) improves the number of cor-

rect detections (green color), and dramatically reduces the
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Figure 4. AP at different scales: Source images from KITTI are

fixed at a scale of 500 pixels, and we resize the target images from

Cityscapes to different scales.

number of false positives (other colors). Moreover, we also

observe that the model using instance-level alignment gives

higher background error than the model using image-level

alignment. The reason might be the image-level alignment

improves RPN more directly, which produces region pro-

posals with better localization performance.

5.4. Image­level v.s. Instance­level Alignment

Image scale has shown to play a vital role in many com-

puter vision tasks [3, 2, 6]. To further analyze the impact

of image-level and instance-level adaptation, we conduct

experiment on KITTI → Cityscapes by varying the image

scales. Because different cameras are used in two datasets,

the different camera parameters might lead to a scale drift

between two domains.

In particular, we refer to the shorter length of an image as

its scale. To study how image scale affects our two domain

adaptation components, we vary the size of images in the

target domain to see how this affects the behavior of the two

components while the scale in the source domain is fixed to

500 pixels. For efficiency, we use a smaller VGG-M model

as the backbone, and all other settings remain identical.

We plot the performance of different models in Figure 4.

By varying the scale of target images, we observe that the

performance of the vanilla Faster R-CNN (i.e., non-adapt)

drops significantly when the scales are mismatched. Com-

paring the two adaptation models, the image-level adapta-

tion model is more robust to scale change than the instance-

level adaptation model.

The reason behind this is that the scale change is a global

transformation, which affects all instances and background.

And in our design, global domain shift is mainly tackled

by image-level alignment, and instance-level alignment is

used to minimize instance-level discrepancy. When there

is a serious global domain shift, the localization error of

instance proposals goes up, thus the accuracy of instance-

level alignment is damaged by deviating proposals. Never-

theless, using both always yields the best results across all

Faster R-CNN Ours(w/o) Ours

mIoU 18.8 28.5 30.3

Table 4. Mean best Overlap between with groundtruth bounding

boxes by top 300 proposals from RPN in different models, in

which Ours(w/o) denotes our model without using consistency

regularization.

scales. Contrary to the vanilla Faster R-CNN, our model can

benefit from high resolution of target images, and performs

increasingly better as the scale rises from 200 to 1, 000 pix-

els.

5.5. Consistency Regularization

As discussed in Section 4.2, we impose a consistency

regularization on domain classifiers at two different levels

for learning a robust RPN. To show the benefit of using con-

sistency regularization, we take KITTI → Cityscapes as an

example to study the performance of RPN before and after

using the consistency regularization in Table 4. The max-

imum achievable mean overlap between the top 300 pro-

posals from RPN and the ground-truth is used for measure-

ment. The vanilla Faster R-CNN model is also included as

a baseline. As shown in the table, without using consistency

regularizer, our model improves Faster R-CNN from 18.8%
to 28.5% in terms of mIoU, due to the use of image-level

and instance-level adaptation. By further imposing the con-

sistency regularizer, the performance of RPN can be further

improved to 30.3%, which indicates the consistency regu-

larizer encourages the RPN to be more robust.

6. Conclusion

In this paper, we have introduced the Domain Adap-

tive Faster R-CNN model, an effective approach for cross-

domain object detection. With our approach, one can ob-

tain a robust object detector for a new domain without us-

ing any additional labeled data. Our approach is built on the

state-of-the-art Faster R-CNN model. Based on our theoret-

ical analysis for cross-domain object detection, we propose

an image-level adaptation component and an instance-level

component to alleviate the performance drop caused by do-

main shift. The adaptation components are based on adver-

sarial training of H-divergence. A consistency regularizer is

further applied to learn a domain-invariant RPN. Our model

can be trained end-to-end using the standard SGD optimiza-

tion technique. Our approach is validated on various do-

main shift scenarios, and the adaptive method outperforms

baseline Faster R-CNN by a clear margin, thus demonstrat-

ing its effectiveness for cross-domain object detection.
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