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Abstract

Given a natural language query, a phrase grounding sys-

tem aims to localize mentioned objects in an image. In

weakly supervised scenario, mapping between image re-

gions (i.e., proposals) and language is not available in

the training set. Previous methods address this deficiency

by training a grounding system via learning to recon-

struct language information contained in input queries from

predicted proposals. However, the optimization is solely

guided by the reconstruction loss from the language modal-

ity, and ignores rich visual information contained in pro-

posals and useful cues from external knowledge. In this

paper, we explore the consistency contained in both visual

and language modalities, and leverage complementary ex-

ternal knowledge to facilitate weakly supervised grounding.

We propose a novel Knowledge Aided Consistency Network

(KAC Net) which is optimized by reconstructing input query

and proposal’s information. To leverage complementary

knowledge contained in the visual features, we introduce

a Knowledge Based Pooling (KBP) gate to focus on query-

related proposals. Experiments show that KAC Net provides

a significant improvement on two popular datasets.

1. Introduction

Given an image and a natural language query, phrase

grounding aims to localize objects mentioned by the query.

It is a fundamental building block for many high-level

computer vision tasks such as image retrieval [3], image

QA [6, 11, 12] and video QA [13, 14]. Traditionally, train-

ing a good phrase grounding system requires large amounts

of manual annotations indicating the mapping between in-

put queries and mentioned objects in images; these are time-

consuming to acquire and suffer from potential human er-

rors. This motivates us to address the problem of training a

grounding system by weakly supervised training data where

objects of interest are mentioned in language queries but are

not delineated in images.

Phrase grounding is difficult as both visual and language
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Figure 1. (a) supervised grounding systems, (b) state-of-the-art

weakly supervised grounding systems guided by language consis-

tency, (c) KAC Net applies both visual and language consistency

and leverages complementary knowledge from the visual feature

extractor to facilitate weakly supervised grounding.

modalities are ambiguous and we need to reason about both

to find their correspondences. To address this problem, typ-

ically a proposal generation system is applied to the input

image to produce a set of candidate regions (i.e., proposals).

Phrase grounding task is then treated as a retrieval problem

to search the most query-related proposals. Based on this,

attention mechanisms [4, 5, 34, 37] are learned to adaptively

attend to mentioned objects for input queries.

Training a phrase grounding system with weakly super-

vised data brings additional challenge as no direct mappings

between the two modalities are provided. Consider Fig. 1(c)

where we encode the query as an embedding vector and ex-

tract visual features for a set of object proposals from the

image. To find correct mappings between the query and the

proposals, [34] proposes to associate the query with succes-

sive proposals; once a proposal is selected, a phrase is re-

constructed from it and evaluated for language consistency

with the input query. [37] adopts continuous attention maps

and explores to reconstruct the structure of input query as

well as its context.

We introduce two new concepts to overcome challenges

of weakly supervised training. First is that pre-trained, fixed
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category detectors can provide useful knowledge in select-

ing the proposals that should be attended to. Second is that

the detector knowledge enables us to evaluate visual consis-

tency, in addition to language consistency. This knowledge

also helps improve language consistency analysis.

We observe that if a pre-trained Convolutional Neural

Network (CNN) (e.g., VGG [35]) is applied to extract vi-

sual features for proposals, it can also naturally produce

a probability distribution of the categories of the propos-

als, as this is the task that the network was trained on (e.g.

MSCOCO [25] classification). This free distribution can be

treated as complementary external knowledge to filter out,

or downweight, proposals that are unrelated to the query.

For example, in Fig. 1(c), given a query “a man playing

football”, a pre-trained VGG network can provide useful

hints for candidate proposals by predicting whether a pro-

posal corresponds to a high probability “people” detection.

Use of external knowledge in language consistency is

straight-forward; features for reconstruction can be modi-

fied by the detection probabilities. Task of evaluating visual

consistency is more difficult; a direct analogy to language

consistency would be to convert visual proposal to words

and reconstruct image patches. Instead, we propose to pre-

dict object locations from query and visual features to match

the goal of phrase grounding. This process would be not

possible without the aid of external knowledge that helps

focus on the possible related proposals for prediction.

In implementation, we construct a novel Knowledge

Aided Consistency Network (KAC Net) which consists of

two branches: a visual consistency branch and a language

consistency branch. These two branches are joined by a

shared multimodal subspace where the attention model is

applied. To leverage complementary knowledge from vi-

sual feature extractor, we propose a novel Knowledge Based

Pooling (KBP) gate to focus on query-related proposals for

visual and language reconstruction.

We evaluate KAC Net on two grounding datasets:

Flickr30K Entities [32] and Referit Game [23]. Flickr30K

Entities contains more than 30K images and 170K query

phrases, while Referit Game has 19K images referred by

130K query phrases. We ignore bounding box annotations

during training in weakly supervised scenario. Experiments

show KAC Net outperforms state-of-the-art methods by a

large margin on both two datasets, with more than 9% in-

crease on Flickr30K Entities and 5% increase on Referit

Game in accuracy.

Our contributions are twofold: First, we leverage com-

plementary knowledge to filter out unrelated proposals and

provide direct guidance. Second, we propose a visual con-

sistency to boost grounding performance. In the following

paper, we first discuss related work in Sec. 2. More details

of KAC Net are provided in Sec. 3. Finally we analyze and

compare KAC Net with other approaches in Sec. 4.

2. Related Work

Phrase grounding requires learning similarity between

visual and language modalities. Karpathy et al. [22] first

align sentence fragments and image regions in a subspace,

and later apply a bi-directional RNN for multimodal align-

ment in [1]. Hu et al. [21] employ a 2-layer LSTM to

rank proposals based on encoded query and visual features.

Rohrbach et al. [34] employ a latent attention network con-

ditioned on query which ranks proposals in weakly super-

vised scenario. Recently, Plummer et al. [32] augment the

CCA model [31] to leverage extensive linguistic cues in

the phrases. Chen et al. [4] introduce regression mech-

anism in phrase grounding to improve proposals’ quality.

Xiao et al. [37] leverage query’s language structural infor-

mation to guide the learning of phrase grounding model in

weakly supervised scenario. Chen et al. [5] apply reinforce-

ment learning techniques to leverage context information.

In this paper, we explore consistency in visual and language

modalities and leverage complementary knowledge to fur-

ther boost performance of weakly supervised grounding.

Weakly supervised learning is a method aims at learn-

ing a model without heavy manual labeling work. It is

widely used in different computer vision tasks. Crandall

et al. [7] leverage the class labeling to learn a part-based

spatial model without detailed annotation of object location

and spatial relationship. Maxime et al. [29] propose to learn

the interaction between human and objects purely from ac-

tion labeling for still images. Recently, Prest et al. [33] ap-

ply a deep convolutional neural network and its score maps

to address object localization with image level class labels.

For phrase grounding task, Rohrbach et al. [34] propose to

adopt an attention model which is optimized by learning to

reconstruct query’s information, and avoids human label-

ing for object locations for each query in the training set.

Based on this, Xiao et al. [37] leverage a continuous atten-

tion map and explore detailed structural reconstruction of

language modality. Inspired by the success of weakly su-

pervised learning, we propose to apply another visual con-

sistency to further boost performance.

Knowledge transfer is a technique widely used for tasks

in different domains. Hinton et al. [19] propose to com-

press knowledge learned from one model into another one

which is too computationally expensive to train. Inspired

by this, Aytar et al. [2] apply visual knowledge to train a

sound classification network. Owens et al. [30] use ambi-

ent sound information to train an object detection network.

Lin et al. [26] leverage knowledge learned in Visual Ques-

tion Answering (VQA) task in image retrieval. Zhang et

al. [38] apply knowledge learned in image captioning and

VQA to train a network detecting visual relation in images.

For phrase grounding, we propose to leverage knowledge

learned from pre-trained deep neural network to filter out

unrelated proposals for visual consistency.
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Figure 2. Knowledge Aided Consistency Network (KAC Net) consists of a visual consistency branch and a language consistency branch.

Visual consistency branch aims at predicting and aligning query-related proposals’ location parameters conditioned on the input query.

Language consistency branch attempts to reconstruct input query from query-related proposals. To provide guidance in training and

testing, a Knowledge Based Pooling (KBP) gate is applied to filter out unrelated proposals for both branches.

3. KAC Network

KAC Net consists of two branches: a visual consistency

branch and a language consistency branch which recon-

structs visual and language information respectively. The

two branches are joined in a shared multimodal subspace,

where an attention model is applied to attend on mentioned

objects based on query’s semantics. To leverage exter-

nal knowledge from pre-trained CNN feature extractor, a

Knowledge Based Pooling (KBP) gate is proposed to se-

lect query-related proposals. KAC Net is trained end-to-

end, with both visual and language consistency restriction

to guide the training.

We first introduce the framework of KAC Net, followed

by the details of KBP gate. Then we illustrate how KBP is

applied to facilitate the optimization of visual and language

consistency branches. Finally, more details of training and

inference are provided.

3.1. Framework

The goal of KAC Net is to localize the mentioned object

y given a query phrase q and an image x. To address the

problem, a set of N proposals {ri} are generated via an

object proposal generation system. An attention model is

then applied to attend on the proposal rq which contains the

mentioned object y based on the semantics of query q.

In weakly supervised scenario, the mapping between

query q and the location of mentioned object y is not pro-

vided. To learn the attention model, we adopt visual and

language consistency and construct two branches respec-

tively. For language consistency, a reconstruction model is

applied to reconstruct input query q given the query-related

proposals predicted by the attention model. According to

the language consistency, the reconstructed query should be

consistent with the input. A language consistency loss Llc

is generated by comparing the reconstructed and original

queries.

For visual consistency, we propose to reconstruct visual

information for query-related proposals. Since the goal of

phrase grounding is to predict mentioned object’s location,

we choose to predict candidate proposals’ location param-

eters conditioned on the input query. Similar to language

consistency, visual consistency requires that the predicted

parameters should recover each proposal’s location. Based

on this, a visual consistency loss Lvc is produced by cal-

culating the difference between the predicted and original

proposals’ location parameters.

To leverage rich image features and available fixed cat-

egory classifiers, we apply KBP to encode knowledge pro-

vided by CNN and weight each proposal’s importance in

visual and language consistency. The objective of KAC Net

can be written as

argmin
θ

∑

q

(Lk
lc + λLk

vc) + µLreg (1)

where θ denotes the parameters to be optimized. Lk
lc is

the reconstruction loss from language consistency branch

and Lk
vc is the reconstruction loss from visual consistency

branch (superscript “k” refers to KBP). Lreg is a weight

regularization term. λ, µ are hyperparameters.

3.2. Knowledge Based Pooling (KBP)

We apply a pre-trained CNN to extract visual feature vi

for a proposal ri, and predict a probability distribution pi

for its own task, which provides useful cues to filter out

unrelated proposals.

To encode this knowledge, we first parse the language

query and retrieve all the noun words via a Natural Lan-

guage Processing (NLP) parser. For each proposal’s distri-

bution pi, we select the most probable class with the highest
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bution for its own task. We leverage the most probable category

predicted by CNN and calculate the word similarity between noun

words in the query as knowledge k
q

i

probability. The knowledge kqi for proposal ri is then calcu-

lated as the word similarity between the name of this class

and noun words in the query (Fig. 3). If a query contains

multiple noun words, we average all the calculated similar-

ities as the knowledge kqi , which can be written as

kqi =
1

Nq

Nq
∑

j=1

sim(C∗

i , w
q
j ) (2)

where C∗

i is the predicted class name for proposal ri, w
q
j is

the j-th word of all the Nq noun words in the query q. sim

is a function measuring the similarity between two words.

In the training stage, knowledge kqi functions as a

“pooling” gate which helps visual (Sec. 3.3) and language

(Sec. 3.4) consistency branches select and reconstruct re-

liable candidate proposals. In the test stage, knowledge

kqi filters out unrelated proposals and increases the chance

of finding the proposal containing the mentioned object

(Sec. 3.5).

3.3. Visual Consistency

The goal of visual consistency is to optimize the atten-

tion model via learning to predict location information con-

tained in query-related proposals. Through predicting lo-

cation information conditioned on the input query, we ex-

pect to learn a better correlation between language and vi-

sual modalities. In weakly supervised scenario, no annota-

tions are available to indicate the identity of query-related

proposal. Instead, we use KBP’s knowledge kqi to provide

guidance during training. We expect that knowledge kqi pro-

vides a higher score when a proposal ri is query related.

Thus, KBP can be applied to adaptively weight each pro-

posal’s visual consistency loss conditioned on query q.

In implementation, we first apply a Long Short-Term

Memory (LSTM) [20] model to encode input query q into

an embedding vector q ∈ R
dq . A pre-trained CNN is em-

ployed to extract visual feature vi ∈ R
dv for each proposal

ri, and global visual feature v ∈ R
dv for input image x. The

attention model then concatenates the embedding vector q,

image global feature v with each of the proposal’s feature

vi and projects them into an m-dimensional subspace. A

multimodal feature v
q
i is calculated as

v
q
i = ϕ(Wm(q||v||vi) + bm) (3)

where Wm ∈ R
m×(dq+2dv), bm ∈ R

m are projection pa-

rameters. ϕ(.) is a non-linear activation function. “||” de-

notes a concatenation operator.

After projecting into the multimodal subspace, the atten-

tion model predicts a 5D vector sp ∈ R
5 via a fully con-

nected (fc) layer (superscript “p” denotes prediction).

s
p
i = Wsv

q
i + bs (4)

where Ws ∈ R
5×m and bs ∈ R

5 are projection param-

eters. The first element in s
p
i estimates the confidence of

ri being relevant to input query q, and the next four ele-

ments represent the predicted location parameters for each

proposal.

We compare the predicted location parameters with orig-

inal proposal’s parameters ti ∈ R
4 and calculate the regres-

sion loss

di =
1

4

3
∑

j=0

f(|ti[j]− s
p
i [j + 1]|) (5)

where f(.) is the smooth L1 loss function: f(x) = 0.5x2

(|x| < 1), and f(x) = |x| − 0.5(|x| ≥ 1). The location pa-

rameters ti are in the form [xi1/w, yi1/h, xi2/w, yi2/h] −
0.5, where xi1, xi2 is the minimum and maximum x-axis

location of proposal ri, and yi1, yi2 is the minimum and

maximum y-axis location.

Aided by KBP gate, we weight each proposal’s regres-

sion loss di based on the predicted confidence s
p
i [0] and

knowledge kqi . The visual consistency loss Lk
vc is calcu-

lated as

Lk
vc =

N
∑

i=1

σ(kqi )φ(s
p
i [0])di (6)

where φ(.), σ(.) denotes a softmax function and a sigmoid

function respectively.

3.4. Language Consistency

The goal of language consistency is to optimize the at-

tention model via learning to reconstruct input query q with

a language consistency constraint.

In implementation, after the attention model predicting

each proposal’s confidence of being relevant to query q
(s

p
i [0] in Eq. 4), we adopt a similar structure in [34] to

weight each proposal’s visual feature vi and project them

into a reconstruction subspace. Different from [34], we in-

troduce KBP gate into the language consistency branch to

further down-weight unrelated visual features’ contribution.
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Thus, the knowledge conditioned reconstruction feature is

calculated as

vk
att = Wa

(

N
∑

i=1

σ(kqi )φ(s
p
i [0])vi

)

+ ba (7)

where Wa ∈ R
dr×dv , ba ∈ R

dr are projections parameters

to be optimized. Other notations are the same as Eq. 6.

The reconstruction visual feature vk
att is then treated as

the initial state of a decoding LSTM, which predicts a se-

quence of probability {pt
q̂} indicating the selection of words

in each time step t of reconstructed query q̂. With the

ground truth of input query q (selection of words wt in each

time step t), the language reconstruction loss Lk
lc is the av-

erage of cross entropy for the sequence {pt
q̂}.

Lk
lc = −

1

T

T
∑

t=1

log(pt
q̂[wt]) (8)

where T is the length of input query q.

3.5. Training & Inference

In training stage, the parameters to be optimized include

parameters in encoding and decoding LSTM and the projec-

tion parameters in Eq. 3, 4, 7. We regularize the weights of

projection parameters, which is the sum of ℓ2 norm of these

parameters (Lreg). Same as [34], we select 100 proposals

produced by proposal generation systems (N = 100). The

rectified linear unit (ReLU) is selected as the non-linear ac-

tivation function ϕ. KAC Net is trained end-to-end using

the Adam [24] algorithm.

In test stage, we feed the query q into the trained KAC

Net, and select the most related proposal based on the confi-

dence {spi [0]} generated by the attention model (Eq. 4) and

external knowledge kqi . The final prediction is given as (no-

tations are the same in Eq. 6):

rj∗ , s.t. j∗ = argmax
i

{φ(spi [0])σ(k
q
i )} (9)

4. Experiment

We evaluate KAC Net on Flickr30K Entities [32] and

Referit Game [23] datasets in weakly supervised grounding

scenario.

4.1. Datasets

Flickr30K Entities [32]: There are 29783, 1000, 1000

images in this dataset for training, validation and testing re-

spectively. Each image is associated with 5 captions, with

3.52 query phrases in each caption on average (360K query

phrases in total). The vocabulary size for all these queries

is 17150. We ignore the bounding box annotations of these

two datasets in weakly supervised scenario.

Referit Game [23]: There are 19,894 images of natural

scenes in this dataset, with 96,654 distinct objects in these

images. Each object is referred to by 1-3 query phrases

(130,525 in total). There are 8800 unique words among all

the phrases, with a maximum length of 19 words.

4.2. Experiment Setup

Proposal generation. We adopt Selective Search [36]

for Flickr30K Entities [32] and EdgeBoxes [39] for Referit

Game [23] to generate proposals as grounding candidates

for fair comparison with [34] on these two datasets.

Visual feature representation. Same as [34], we choose

a VGG Network [35] finetuned by Fast-RCNN [15] on

PASCAL VOC 2007 [10] to extract visual features for

Flickr30K Entities, which are denoted as “VGGdet”. Be-

sides, we follow [34] and apply a VGG Network pre-

trained on ImageNet [8] to extract visual features for both

Flickr30K Entities and Referit Game datasets, which are de-

noted as “VGGcls”. Both “VGGcls” and “VGGdet” features

are 4096D vectors (dv = 4096).

Knowledge representation. To parse different queries,

we use the Stanford NLP parser [27] to extract noun words

in each query. We then extract probability distributions of

“VGGdet” features in MSCOCO [25] image classification

task for all proposals (#classes=90). The similarity between

noun words in queries and class names are calculated as the

cosine distance via a word2vec program [28]. We extract

probability distributions in PASCAL VOC 2007 classifica-

tion task [10] (#classes=20). Results of different knowledge

facilitation is provided in Sec. 4.3 and 4.4.

KBP gate. For KBP gate, we adopt a soft version and

a hard version. Soft KBP applies the sigmoid function to

transform external knowledge kqi into probability to directly

weight each proposal, while hard KBP applies thresholding

to force probability being either 0 or 1 for each proposal

(i.e., kqih = δ(kqis ≥ t), δ is an indicator function, subscripts

“h”, “s” denote hard KBP and soft KBP respectively).

In experiments, we set the threshold t as 0.3 for

Flickr30K Entities and 0.1 for Referit Game. For hard KBP,

if a query’s knowledge scores are 0 for all proposals (i.e.

kqih = 0, ∀i), we set them to be all 1 for language recon-

struction in Eq. 7; otherwise, reconstruction features vk
att

provides no information to reconstruct the input query.

Model initialization. Following same settings as in [34],

input queries are encoded through an LSTM model, and

the query embedding vector q is the last hidden state from

LSTM (dq = 512). All fc layers are initialized by Xavier

method [16] and all convolutional layers are initialized by

MSRA method [18]. We introduce batch normalization lay-

ers after projecting visual and language features in Eq. 3.

During training, we set the batch size as 40. The dimen-

sion of multimodal features v
q
i is set to m = 128 (Eq. 3).

Hyperparameter µ for weight regularization is 0.005 and λ
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Approach Accuracy (%)

Compared approaches

GroundeR (LC) (VGGcls) [34] 24.66

GroundeR (LC) (VGGdet) [34] 28.93

Our approaches

VC + Hard KBP (VGGdet) 28.58

VC + Soft KBP (VGGdet) 30.60

LC + Hard KBP (VGGdet) 32.17

LC + Soft KBP (VGGdet) 34.31

KAC Net + Hard KBP (VGGdet) 37.41

KAC Net + Soft KBP (VGGdet) 38.71

Table 1. Different models’ performance on Flickr30K Entities. We

explicitly evaluate performance of visual consistency (VC), lan-

guage consistency (LC) branches with Hard and Soft KBP Gates.

We leverage knowledge from MSCOCO [25] classification task.

Knowledge PASCAL VOC [10] MSCOCO [25]

Hard KBP 35.24 37.41

Soft KBP 36.14 38.71

Table 2. Comparison of KAC Net using different KBP gates and

external knowledge on Flickr30k Entities. Accuracy is in %.

for visual reconstruction loss is 10.0 in Eq. 1. Analysis of

hyperparameters is provided in the supplemental file.

Metric. Same as [34], we adopt accuracy as the eval-

uation metric, which is defined as the ratio of phrases for

which the regressed box overlaps with the mentioned object

by more than 50% Intersection over Union (IoU).

Compared approach. We choose GroundeR [34] as

the compared approach, which achieves state-of-the-art per-

formance on both Flickr30K Entities and Referit Game

datasets.

4.3. Performance on Flickr30K Entities

Comparison in accuracy. We first evaluate pure vi-

sual consistency branch’s performance for weakly super-

vised grounding task. In Table 1, with a hard KBP gate,

visual consistency achieves grounding accuracy as 28.53%,

which is very close to GroundeR model. Then we introduce

soft KBP gate into visual consistency branch, which brings

2.03% increase in accuracy. This indicates that visual con-

sistency, even alone, is capable of providing good perfor-

mance in weakly supervised scenario. According to [34],

GroundeR model is actually a basic case of language consis-

tency branch without a KBP gate. We first introduce a hard

KBP gate into language consistency branch, which brings

3.42% increase in grounding performance. We then replace

the hard KBP gate with a soft KBP gate, which brings an

additional 1.14% increase in performance. This further val-

idates the effectiveness of external knowledge in weakly su-

pervised grounding problem. Finally, we combine visual

and language consistency, which is the full KAC Net. By

applying a hard KBP gate, KAC Net achieves 37.41% in ac-

curacy. We then replace the hard KBP gate with a soft KBP

gate. The KAC Net reaches 38.71% in accuracy, which is

a 9.78% increase over the performance of GroundeR [34].

From Table 1, we also find soft KBP gate achieves consis-

tently better performance over hard KBP gate.

Detailed comparison. Table 3 provides detailed weakly

supervised grounding results based on the phrase type in-

formation for each query in Flickr30K Entities. We can ob-

serve that KAC Net provides superior results in most cate-

gories. However, different models have different strength.

Language consistency with a soft KBP gate (LC+Soft KBP)

is good at localizing “people”, “animal” and “vehicles”,

with 10.91%, 20.27% and 8.5% increase in accuracy com-

pared to GroundeR model. Compared to language consis-

tency, visual consistency (VC+Soft KBP) is better at lo-

calizing “clothing”, “body parts” and “instruments”, with

1.12%, 0.38% and 8.28% increase. However, for other cat-

egories, visual consistency branch achieves inferior perfor-

mances. By incorporating both visual and language con-

sistency, KAC Net observes consistent improvement in all

categories except for the category “clothing”. With a soft

KBP gate, KAC Net achieves 14.10%, 23.00% and 30.89%

increase in localizing “people”, “vehicles” and “animals”.

However, KAC Net also has 1.39% drop in accuracy of lo-

calizing “clothing”. This may be because “clothing” is usu-

ally on “people”. In this case, there is high chance for a

grounding system to classify “clothing” into “people” by

mistake. Besides, “clothing” does not have corresponding

categories in the external knowledge.

Knowledge representation. To validate the effective-

ness of external knowledge, we also evaluate KAC Net’s

performance using distributions predicted by VGG Net-

work pre-trained on PASCAL VOC 2007 [10] image clas-

sification. In Table 2, we observe that applying external

knowledge achieves consistent improvement in grounding

performance compared to GroundeR [34] model. How-

ever, knowledge from MSCOCO [25] image classification

achieves a slight increase in accuracy compared to that from

PASCAL VOC 2007 [10] image classification. This may be

because MSCOCO contains more categories of objects, and

so may be more accurate in describing the proposal’s rela-

tiveness to the query.

4.4. Performance on Referit Game

Comparison in accuracy. Following [34], we adopt

EdgeBoxes [39] as a proposal generator. As shown in Ta-

ble 4, by introducing KBP gate, KAC Net achieves 2.32%

(Hard KBP) and 3.27% (Soft KBP) increase compared to

state-of-the-art GroundeR [34] model. We observe us-

ing soft KBP gate achieves a slight increase in perfor-

mance than hard KBP gate. When KAC Net incorporates
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A girl rides a blue bike down a 

city sidewalk

Query 1: A girl Query 2: a blue bike Query 3: a city sidewalk

A man is taking a photo of 

another man and his two dogs 

on some grassy hills

Query 1: A man (incorrect) Query 2: two dogs Query 3: some grassy hills

Query 1: red backpack Query 2: water bottle second 

in the right

Query 1: cars Query 2: people standing on 

the right

A lady in a red car is crossing 

the bridge
Query 1: A lady Query 2: a red car Query 3: the bridge

Figure 4. Some phrase grounding results in Flickr30K Entities [32] (first three rows) and Referit Game [23] (forth row). We visualize

ground truth bounding box and grounding result in green and red respectively. When query is not clear without further context information,

KAC Net may ground reasonably incorrect objects (e.g., image in row three, column two).

Phrase Type people clothing body parts animals vehicles instruments scene other

GroundeR (VGGdet) [34] 44.32 9.02 0.96 46.91 46.00 19.14 28.23 16.98

LC + Soft KBP 55.23 4.21 2.49 67.18 54.50 11.73 37.37 13.25

VC + Soft KBP 51.56 5.33 2.87 58.11 51.50 20.01 26.86 12.63

KAC Net (Hard KBP) 55.14 7.29 2.68 73.94 66.75 20.37 43.14 17.05

KAC Net (Soft KBP) 58.42 7.63 2.97 77.80 69.00 20.37 43.53 17.05

Table 3. Phrase grounding performances for different phrase types defined in Flickr30K Entities. Accuracy is in percentage.

both visual and language consistency, it achieves another

1.66% and 1.86% increase compared to language consis-

tency branch with hard and soft KBP respectively. The full

model achieves 15.83% grounding accuracy, with 5.13% in-

crease over the GroundeR model.

Knowledge representation. Similar to Flickr30K Enti-

ties, we also evaluate KAC Net’s performance using knowl-

edge from PASCAL VOC 2007 [10] image classification
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Approach Accuracy (%)

Compared approaches

LRCN [9] 8.59

Caffe-7K [17] 10.38

GroundeR [34] (LC) (VGGcls) 10.70

Our approaches

LC + Hard KBP (VGGcls) 13.02

LC + Soft KBP (VGGcls) 13.97

KAC Net + Hard KBP (VGGcls) 14.68

KAC Net + Soft KBP (VGGcls) 15.83

Table 4. Different models’ performance on Referit Game. We

leverage knowledge from MSCOCO [25] classification task.

Knowledge PASCAL VOC [10] MSCOCO [25]

Hard KBP 12.04 14.68

Soft KBP 13.38 15.83

Table 5. Comparison of KAC Net using different KBP gates and

external knowledge on ReferitGame. Accuracy is in %.

task. In Table 5, we observe applying external learned from

MSCOCO [25] image classification achieves better perfor-

mance than that from PASCAL VOC 2007 [10]. How-

ever, both knowledge representations help achieve increase

in grounding accuracy over the state-of-the-art model.

4.5. Discussion

To further explore KAC Net performance on different

types of queries, we define queries with / without words

in MSCOCO categories as “Type A” and “Type B” respec-

tively. In Tables 6, 7, we evaluate two more compared meth-

ods: soft KBP only and pre-trained GroundeR [34] with

soft KBP (denoted as “G + KBP”) on both Flickr30K Enti-

ties [32] and Referit Game [23] datasets.

From Tables 6, 7, pre-trained GroundeR shows a perfor-

mance boost by adopting KBP. However, after end-to-end

training (LC+KBP) and applying visual consistency part,

KAC Net still outperforms state-of-the-art methods by a sig-

nificant margin. These results also show the generalizability

of KAC Net.

4.6. Qualitative Results

We visualize some of KAC Net’s grounding results on

Flickr30K Entities and Referit Game datasets for qualitative

evaluation in Fig. 4. For Flickr30K Entities, we first show

the image description where the query phrases come from,

then show the grounding results and ground truth objects

in red and green bounding boxes respectively. For Referit

Game, each query is independent with no common image

descriptions, we visualize two example images with two

queries in the third row of Fig. 4.

We find KAC Net is strong in recognizing people (“a

Type A Type B All

# queries 1762 15757 17519

Soft KBP 37.26 19.77 21.53

GroundeR 26.54 29.19 28.93

G + KBP 41.03 32.17 33.06

LC + KBP 42.13 33.44 34.31

KAC Net 45.66 37.93 38.71

Table 6. Different methods on Flickr30K Entities [32] for two

types of queries. Accuracy is in %.

Type A Type B All

# queries 8275 51796 60071

Soft KBP 12.88 7.74 8.45

GroundeR 7.29 11.24 10.70

G + KBP 14.16 12.56 12.78

LC + KBP 15.28 13.76 13.97

KAC Net 18.36 15.43 15.83

Table 7. Different methods on Referit Game [23] for two types of

queries. Accuracy is in %.

girl” in the first row) and vehicle (“cars” in the third row),

and is able to ground complex queries (“water bottle second

in the right” in the third row), which is also validated in

Table 3. However, since KAC Net takes only single query

phrase as input, it is unable to make use of context, such as

in the example of “a man” in the third row of Fig. 4.

5. Conclusion

We proposed a novel Knowledge Aided Consistency

Network (KAC Net) to address the weakly supervised

grounding task. KAC Net applies both visual and lan-

guage consistency to guide the training and leverages free

complementary knowledge to boost performance. Experi-

ments show KAC Net provides a significant improvement

in performance compared to state-of-the-arts, with 9.78%

and 5.13% increase in accuracy on Flickr30K Entities [32]

and Referit Game [23] datasets respectively.
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