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Abstract

Learning autonomous-driving policies is one of the most

challenging but promising tasks for computer vision. Most

researchers believe that future research and applications

should combine cameras, video recorders and laser scan-

ners to obtain comprehensive semantic understanding of

real traffic. However, current approaches only learn from

large-scale videos, due to the lack of benchmarks that con-

sist of precise laser-scanner data. In this paper, we are

the first to propose a LiDAR-Video dataset, which provides

large-scale high-quality point clouds scanned by a Velodyne

laser, videos recorded by a dashboard camera and standard

drivers’ behaviors. Extensive experiments demonstrate that

extra depth information help networks to determine driving

policies indeed.

1. Introduction

Driving policy learning is a core problem in autonomous

driving research. Computer vision is expected to play an

important role in this challenging task, since driving plan-

ning and perception together run as a closed loop. There-

fore, some computer vision researchers [5, 20, 21, 27] at-

tempt to model it as a perception-action model, which is an

end-to-end system that maps from pixels to actuation. It

opens a new direction in the autonomous driving field.

However, current research and dataset neglect an impor-

tant cue, namely, depth information. On the one hand, bi-

ological experiments [4, 19] show that monocular people

can not drive nicely. For instance, monocular drivers in ex-

periments did worse in parking and lane changing tasks for

the lack of stereoscopic depth perception. It verifies depth
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Figure 1. LiDAR-Video Driving dataset: a benchmark for polices

learning in autonomous driving.

information is necessary, though drivers have perfect recog-

nition ability. Most of the people believe that depth infor-

mation should be a necessary cue in real-world auto-driving

due to the consideration of safety. On the other hand, many

high-quality depth sensors would be cheap and widely af-

fordable. For example, the cost of Velodyne comes to hun-

dreds of dollars, that is, it will be ready to be equipped in

most autonomous cars.

In consequence, computer vision researchers should

pay more attention to perception-action model with depth.

Whereas, we found it still misses out both research road-

maps and datasets. Thus, this paper aims to fundamentally

study this problem. We offer a large-scale dataset that in-

cludes both driving videos with depth and corresponding

driving behaviors. Our dataset is largely different from pre-

vious ones for vision-based auto-driving research. On the

one hand, the depth data sampled by a LiDAR camera is

provided, which misses in [9, 27]. On the other hand, some

datasets like KITTI [11, 12] provide depth information,

however, driving behavior is not included, which makes

them fail to be a benchmark for policy learning. In short, the

proposed dataset is the first driving policy learning dataset

that includes depth information. Our dataset involves many

features: (1) large-scale: our dataset consists of more than
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10k frames of real street scenes and the amount of data ex-

ceeds 1TB in total. (2) diversity: we record continuous but

varied scenes in real traffic, such as seaside roads, school

areas and even mountain roads, which include a number of

crossroads, pedestrians and traffic signs. (3) high-quality:

point clouds, videos and drivers’ behaviors in our dataset

are all acquired by high-resolution sensors, which provides

distinct recovery of real driving conditions.

Apart from the dataset, this paper attempts to throughly

study how important depth information is for auto-driving

and fully discuss what we can achieve if current techniques

are used. First, we produce an analysis that why depth is

necessary for autonomous vehicles. Second, we answer the

question that how to leverage current techniques, if depth is

given. Finally, we draw a conclusion that depth information

would benefit learning driving policies and it has a large

room to improve techniques in terms of how to use depth. It

again verifies that a qualified dataset is crucial for advancing

this topic.

In conclusion, the key contributions of our work in this

paper are mainly two aspects: First, we propose a dataset

which is the first policy learning benchmark composed of

driving videos, LiDAR data and corresponding driving be-

haviors. Second, we conduct complete analysis on how im-

portant depth information is, how to leverage depth infor-

mation and what we can achieve by utilizing current tech-

niques.

2. Related Work

The ultimate goal in autonomous vehicle navigation is to

learn driving policies. In this section, we investigate driving

policy learning methods and existing driving datasets.

2.1. Driving Policy Learning

Because of the complexity of real street scenes, deep

learning techniques such as neural network are expected the

most promising methods to solve this problem. Pomerleau

et al. [21] was the pioneer to use neural networks for lane

following and obstacles avoiding. There are now two main-

stream ways for this promising task.

End-to-end learning: This line of works employed end-to-

end systems mapping pixels directly to policies. [5, 20, 21]

demonstrated that autonomous vehicles are capable to learn

driving policies nicely in simple scenarios, such as highway.

NVIDIA [5] group did excellent attempts to map directly

from images by utilizing multi-layer convolution neural net-

work and successfully self-drive in real roads. Recently,

[27] broadened video scenes and illustrated that it is feasi-

ble for vehicles to drive in multiple complex situations.

Learning affordable rules: Rather than directly obtain

driving policies, these works learned some affordable in-

formation in advance which is helpful for decision making.

[7] proposed to learn some pre-defined low-level measures

such as depth information. Whereas, more works [1, 3, 29]

used neural networks to solve relevant helpful problems

such as semantic segmentation based on monocular images.

[2, 6, 8, 18] attempt to perform 3D object detection or seg-

mentation leveraging LiDAR information.

2.2. Existing Driving Datasets

Large-scale datasets have contributed greatly to the de-

velopment of machine learning and computer vision. As

for the autonomous driving area, research relies much on

some benchmarks [9, 12, 17, 24, 27]. These datasets have

different features and hierarchies. We conducted a compre-

hensive survey on existing driving datasets in the view of

policy learning challenge.

Comma.ai [24] proposed their novel architecture for policy

learning with their dataset published, which contains around

7.25-hour highway driving data divided into 11 videos. The

released video frames are 160 × 320 pixels in the middle

of the captured screen. Besides, the vehicle is equipped

with several sensors that were measured with different fre-

quencies and interpolated to 100Hz. Example data coming

from sensors are the car speed, steering angle, GPS, gyro-

scope, IMU, etc. However, this dataset only concentrates on

highway driving scenarios, which is not suitable for generic

driving policy learning. In addition, it only consists of 2D

vision information, that is, only images are used for making

decisions.

KITTI [11, 12] established a benchmark which comprises

389 stereo and optical flow image pairs, stereo visual odom-

etry sequences of 39.2 km length, and over 200k 3D ob-

ject annotations captured in cluttered scenarios. It provides

instance-level annotations for humans and vehicles in real

scenes, which is intended for object detection and segmen-

tation tasks. However, KITTI is only composed of less

busy suburban traffic scenes. In other words, KITTI ex-

hibits significantly fewer flat ground structures, fewer hu-
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Figure 3. The pipeline of data preprocessing when constructing dataset. Multiple perception are equipped for acquiring high-resolution

data. Videos, point clouds and driving behaviors are preprocessed jointly in figure. Finally, we register the corresponding time for three

types of data and obtain our benchmark.

mans, and more suburb scenes, which results in lack of di-

versity. Moreover, the vehicles do not fix multiple sensors,

so there is no standard drivers’ behaviors. On the whole,

this benchmark is not designed for learning driving poli-

cies, but for other affordable tasks.

Cityscapes Cityscapes [9] is a large-scale, diverse set of

stereo video sequences recorded in streets from 50 differ-

ent cities. It mainly provides images and a small number

of videos. In particular, 5000 of these images have high-

quality pixel-level annotations and 20000 additional im-

ages have coarse annotations to enable methods that lever-

age large volumes of weakly-labeled data. The data set is

designed to capture the high variability of outdoor street

scenes and was acquired from a moving vehicle during sev-

eral months, covering spring, summer, and fall in 50 cities,

primarily in Germany but also in neighboring countries. Al-

though this benchmark did well in the diversity of scenarios,

the shortage of 3D perception such as LIDAR and driving

status data makes it not so appropriate to learn driving poli-

cies.

Oxford The data was collected by the Oxford RobotCar

platform [24], an autonomous Nissan LEAF. It includes

over 1000km of recorded driving with almost 20 million

images collected from 6 mounted cameras, along with LI-

DAR, GPS and INS ground truth. In addition, it was col-

lected in all weather conditions, including heavy rain, night,

direct sunlight and snow. Road and building works over the

period of a year significantly changed sections of the route

from the beginning to the end of data collection. Same as

KITTI and Cityscapes, it omits drivers’ behaviors, which is

of great significance for the decision prediction.

BDDV Berkley DeepDrive Video dataset [27] (unpublished

completely) is a benchmark that is intended for driving

predictions, which provides more than 10k-hour dash-cam

videos in different periods of multiple cities with varied

weather conditions. From the paper, it is at least two or-

ders larger than other public datasets for vision-based au-

tonomous driving. It also contains labels including steering

angles and vehicle speeds like Comma.ai. Due to focus on

end-to-end generic driving model training, it neglects spe-

cific car annotations. Unfortunately, it only concerns 2D vi-

sion. In another word, it misses 3D stereoscopic depth per-

ception information such as point clouds or meshes, which

is an essential cue for future vehicle driving.

3. Dataset

Our dataset is intended for driving policy learning and

largely different from previous ones for its novel hierarchy

and excellent properties. In this section, we firstly intro-

duce our collection platform system in Section 3.1. Then

the pipeline of preprocessing LiDAR data is given in Sec-

tion 3.2. Finally, in Section 3.3, we compare our dataset

with existing benchmark and display features of LiVi-Set.

3.1. Platform and Data Collection

As is shown in Figure 2, the dataset was acquired by

our collection system in a multi-functional road informa-

tion acquisition vehicle. The vehicle we used is a Buick

GL8 loaded with multiple perception scanners and sensors.

We collected three types of signals, namely, point clouds,

videos and driving behaviors.

Point Cloud We equipped the vehicle with a pair of Velo-

dyne scanners, including one HDL-32E and one VLP-16
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Datasets Video/Image LiDAR Behaviors

KITTI X X ×

Cityscape X × ×

Oxford X X ×

Comma.ai X × X

BDDV X × X

LiVi-Set(ours) ✔ ✔ ✔

Table 1. Comparison with existing public driving datasets. Our

dataset is first to combine 2D and 3D vision with labeled drivers’

behaviors.

laser scanner. In our experiment, we mainly exploited HDL-

32E to collect point cloud data. The HDL-32E is always

used for high-precision and wide-range point clouds acqui-

sition, of which frequency is 10 Hz with 32 laser beams and

depth range is from 1m to 70m with a resolution of 2cm.

The range of scanning angle is from +10.67 to −30.67 de-

grees view in vertical and 360 degrees view in horizontal.

The density is about 700,000 points per second. Velodyne

laser scanners are installed on the top front of our vehicle.

Video A color dashboard camera with real-time update sys-

tem is placed on the top right of the front glass, which cap-

tures the video frame with 30 frames per second, of which

the resolution is up to 1920× 1080. Moreover, 128G mem-

ory space makes it possible to record 20-hour continuous

1080P videos maximally.

Driving Behavior A recording software is wirelessly con-

nected to vehicle controller to get velocity from sensors

equipped. Its resolution is up to 0.1km/h. The driver steer-

ing angle meter acquires the orientation data, whose resolu-

tion is 1 degree. When the steering wheel has a left (right)

rotation with regard to standard center angle, angle meter

records a negative (positive) value.

Using our platform, we totally obtained seven sets with

different test scenarios. Every set contains three types of

data including point clouds, videos and driver behaviors.

The amount of all point clouds is around 1TB and traffic

videos are about 15GB. In addition, collected data includes

a variety of traffic conditions such as boulevard, primary

road, mountain road, school area, narrow road and even

tourist special route.

3.2. Data Preprocessing

In this section, we only introduce the preprocessing of

point clouds. The processing of videos and driving polices

is given in Section 4.4.

On the whole, there are three major aspects of point

cloud processing (middle pipeline in Figure 3).

Frames Fusion Every 200 frames of raw point clouds, one

of which captures small part of real scenes, were fused into

one scene. One scene is corresponding to one video frame

and one pair of driving behaviors. After that, each test sce-

nario (set) owns around 600 scenes. For the point clouds ob-

tained by our fusion algorithm are stored in PCD format, we

employed a standard software to transform data into LAS

format, which is an industry standard for LiDAR data.

Synchronization LiDAR scanners and speed sensors with

video system are synchronized in advance to obtain valid

data for driving policy learning. It is worthy to mention that

synchronization is essential step before data collecting and

we try the best to keep it precise (The bias is lower than 0.1

second).

Addressing Errors We triple-checked acquired data com-

prehensively and insured that videos, point clouds and driv-

ing behaviors are synchronous. Some unexpected errors

were corrected after we manually re-calibrated to produce

high-quality data in those time sections.

3.3. Data Structure

Our LiDVR-Video Driving dataset (LiVi-Set) is a bench-

mark comprised of real driving videos, point clouds and

standard driving behaviors. The data structure of dataset

is illustrated in Figure 3. Compared with existing bench-

mark datasets, LiVi-Set benchmark has combined 2D and

3D vision and moves the first attempt to leverage depth in-

formation (point clouds) to make the driving predictions.

More details are shown in Table 1.

In consequence, the dataset is largely different from pre-

vious benchmarks for vision-based autonomous driving. To

the best of our knowledge, it is the first benchmark for au-

tonomous driving policy prediction combined with 2D and

3D information.

3.4. Features and Statistics

Our dataset has a list of excellent features illustrated in

Figure 4, which are beneficial to policy learning. We have

performed an in-depth analysis on properties of our dataset.

Scale We have used two kinds of LiDAR scanners to collect

point clouds. They produced more than 1TB point clouds

covering more than 100km distance, which is twice larger

than previous KITTI. To the best of our knowledge, it is the

largest public LiDAR data with corresponding vehicle sta-

tus (speed and angle).

Diversity Our dataset contains a variety of traffic condi-

tions, including local route, boulevard, primary road, moun-

tain road, school areas, which contains a number of cross-

roads, urban overpasses, ramp ways and hairpin bends. So

our benchmark covers light, normal and heavy traffic situa-

tions. In addition, it also meets scenes with different num-

bers of pedestrians. For instance, there are many pedestrians

in school areas but few in highway. More specifically, our

dataset contains more than 1500 cars, 500 road signs, 160
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Figure 4. Driving Behavior Distribution, Object Occurrence

and Scenarios Statistics of our Dataset. This figure demon-

strates (from left to right and top to bottom): the vehicle and accel-

erated speed distribution, the wheel angle and angular acceleration

distribution, different types of objects occurring and different traf-

fic conditions (road types) in our sequence.

traffic lights and 363 crossroads and 32 footbridges. The

diversity of real road scenes meets the real requirement for

autonomous driving practice and makes our models more

generic to operate in real scenarios.

Quality We use the Velodyne HDL-32E scanner to acquire

3D point clouds. HDL-32E can produce accurate depth in-

formation in mobile platforms. The depth range is 70 me-

ters and it can achieve 2cm resolution. Additionally, the

density of points is approximately 34,000 points per sec-

ond so that abundant information is included in our point

clouds data. We can clearly see buildings, trees, road lines

traffic lights and even pedestrians. As for digital videos, ve-

hicle’s dashboard camera produces 1920× 1080 resolution

videos with minor distortion while the vehicle moving at

high speed.

4. Experimental Evaluation

This section answers how to leverage depth information

and what we can achieve if current state-of-the-art tech-

niques are used. Section 4.1 and 4.2 define prediction tasks

in our experiment and evaluation metrics. Then representa-

tive approaches tested in our dataset are displayed in Sec-

tion 4.3 and more details of the training process are supple-

mented in Section 4.4. Finally, we give experimental results

and discussion of our methods in Section 4.5 and 4.6.
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Figure 5. Prediction accuracy variation trends for trained model.

4.1. Tasks

Driving behavior prediction tasks can be classified into

two categories, discrete and continuous prediction.

Discrete action prediction It is to predict current proba-

bility distribution over all possible actions. The limitation

of discrete prediction is that autonomous vehicle can only

make decisions among limited predefined actions. For ex-

ample, [27] defines four actions: straight, stop, left turn and

right turn and policy decision becomes classification task.

Obviously, the discrete task is not suitable for real driving,

since it is too coarse to guide the vehicle driving.

Continuous prediction It is to predict current states of ve-

hicles such as wheel angle and vehicle speed, which is a re-

gression task. If driving policies on all real-world states can

be predicted correctly, vehicles are expected to be driven

successfully by trained model.

Therefore, we model driving process as a continuous

prediction task. Our task is to train a model that receives

multiple perception information including video frames and

point clouds, thus predict correct steering angles and vehi-

cle speeds.

4.2. Evaluation Metric

To evaluate the performance of driving behavior predic-

tion, we investigated previous evaluation metrics. In [27],

Xu et al. proposed a driving perplexity metric which is in-

spired by representative Markov model in linguistics. The

action perplexity is defined as the exponent of the sum of

entropy in sequential prediction events. Perplexity metric

is a positive number smaller than one and the smaller score

indicates the more accurate prediction.

Nevertheless, many researchers do not consider it as an

effective metric. It is because that they do not give it real-

world meaning and they believe perplexity value is more

suitable for working as loss function in training process. For

example, people do not know whether their models are ef-

fective enough or not, when the perplexity is 0.1 (seemingly

low).

5874



Figure 6. Examples of gray and jet feature maps. First row of this figure is gray feature maps and second row is the corresponding

colored feature maps using jet color map. Depth information and spatial information (pedestrians, vehicles, trees, traffic lights, bridges,

buildings and so on) can be obtained implicitly from maps.

Accuracy metric is more intuitive in comparison to per-

plexity. More importantly, accuracy metric has been widely

adopted [5, 20, 24] and applied to realistic scenarios [5]. If

vehicles can always be very close to ground truth behavior,

they will self-drive smoothly and safely.

Threshold In accuracy computing, we need to count how

many predictions are correct. Therefore, a tolerance thresh-

old is required. When the bias between prediction and

ground truth is smaller than tolerance threshold, we count

this prediction are a correct case. In fact, human drivers

also have minor biases in driving, but it can be tolerated.

4.3. Representative Approaches

To demonstrate the effectiveness of depth information,

we explore how well prediction models can achieve if cur-

rent techniques are utilized. As before, we should intro-

duce some learning tools and depth representation as prior

knowledge. In the end, two current mainstream frameworks

are presented.

4.3.1 Learning Tools

DNN. DNN has been built as a powerful class of models

for extracting image features. In this paper, we adopt Resnet

[13] and Inception-v4 [25], which are all the state-of-the-art

approaches for extracting image features. These two mod-

els are pretrained on ImageNet [23] and fine-tuned in our

experiments. Besides, we also use NVIDIA architecture [5]

which is much smaller than networks mentioned above but

has been tested well in real practice such as highway lane

following.

LSTM. Driving policy prediction based on one frame (or

small frame batch) only may miss information in the tem-

poral domain. Therefore, we make use of long short-term

memory (LSTM) [14] recurrent neural network to capture

temporal events. LSTM is a well-improved recurrent neu-

ral network by introducing memory gates. It avoids gradi-

ent vanishing and is capable of learning long-term depen-

dencies. Actually, LSTM is widely used in state-of-the-

art frameworks for predicting driving behaviors. In [10],

LSTM-based framework is proposed for video classifica-

tion. The championship [16] in Udacity Self-Driving Chal-

lenge 2 also adopts this architecture.

4.3.2 Depth Representation

To leverage point clouds information effectively, we should

seek a powerful depth representation. We have attempted

different lines of techniques including point clouds reshap-

ing, point clouds mapping and PointNet.

Point Clouds Mapping (PCM). We adopt the algorithm

proposed in [28] to preserve geometrical information from

raw point clouds. As shown in Figure 7, we firstly divides

mobile LiDAR points into h × w grids on XOZ plane,

where h and w are 600 and 1080 in our paper respectively.

Each grids is represented by a single value to form a h× w
feature map. The feature values of different grids are cal-

culated using the algorithm in [28]. Intuitive idea behind it

is to get the nearest points of Y coordinate in each grid. In

short, feature map nicely extracts geometry information in

point clouds. Figure 6 demonstrates some samples of fea-

ture maps and their jet color visualization in our dataset and

Figure 7 depicts pipeline of this process.

PointNet. A novel PointNet architecture is put forward in

[22] and opens a new direction for directly utilizing disor-

dered point clouds. It directly takes disorder points as the

input of neural networks and finally output the represen-

tation features. Currently, this distinct architecture outper-

forms other shape representation methods and achieves high

accuracy.

4.3.3 Two Mainstream Frameworks

As is illustrated in Figure 8, inspired by plentiful previous

works [5, 10, 16, 24], we decide to adopt two representative

mainstream frameworks for policy prediction tasks, namely

“DNN-only” and “DNN-LSTM”.

DNN-only. [5, 24] adopt this line of framework in their

driving prediction. The “DNN-only” framework is an end-
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Figure 8. Network architecture of our prediction models.

to-end system that receives one (or a mini-batch) frame in-

put and predicts driving behavior (seeing Figure 8 (a)). We

employ three representative DNNs (NVIDIA, Resnet152

and Inception-v4) to extract features of RGB frames and

2D depth maps by PCM. The feature of point cloud is also

extracted through PointNet. Thus, we concatenate two fea-

tures (IO + PCM or IO + PointNet) as the input vector of one

1024 layer. This hidden layer is fully connected to fusion

network, which outputs final driving behavior prediction.

DNN-LSTM. [10, 16] utilize this line of framework in their

research. Different from “DNN-only”, we replace fusion

network with stacked LSTM nets in “DNN-LSTM” frame-

work. (seeing Figure 8 (b))

More specifically, two features of input data are ex-

tracted and concatenated like “DNN-only” framework.

Then the concatenated vectors are sent into stacked LSTMs

to get predictions.

4.4. Details of Training

The training samples are time-registered data including

videos, point clouds, feature maps and driving behaviors.

The captured videos are down-sampled to 1 fps. Frames

are reshaped to different sizes which are suitable for three

DNNs (NVIDIA: 66 × 200, Resnet: 224 × 224 and Incep-

tion: 299 × 299). Besides, point clouds are down-sampled

to 16384 points (16384×3) while adopting PointNet. Orig-

inal point clouds which contain millions of points in each

scene are used to generate feature maps directly to maintain

enough information.

Our loss objective is a root-mean-square deviation

(RMSD) to represent the sample standard deviation of the

differences between predicted values and ground truth val-

ues. Vehicle speed and steering angle prediction models are

trained individually. We attempt to train them jointly, but

the performance is slightly worse than the cases where they

are trained individually. We use a 80-20 training-testing

split in our experiment and Adam optimizer [15] to mini-

mize the loss function.

4.5. Results

Table 2 shows the accuracy of two aforementioned main-

stream frameworks. Each setting is measured with the accu-

racy of predictions on wheel angles and vehicle speeds. Fur-

thermore, we adopt three network structures to extract fea-

tures of video frames and depth maps. The tolerance thresh-

olds of vehicle speed and wheel angle are 5km/h and 6◦,

respectively. More results under different tolerance thresh-

olds are available in the supplementary file. In Figure 5,

we display the trends of accuracy in IO model that adopted
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DNN Architecture Metric

prediction accuracy of steering angle and vehicle speed

DNN only DNN-LSTM

IO PM PN IO PM PN

NVIDIA
angle 63.0% 67.1% 71.1% 77.9% 83.5% 81.6%

speed 70.1 % 69.2% 66.1% 70.9% 73.8% 76.8%

Resnet-152
angle 65.3% 70.8% 68.6% 78.4% 84.2% 82.7%

speed 71.4% 72.6% 69.4% 71.9% 74.3% 78.3%

Inception-v4
angle 70.5% 71.1% 73.2% 78.3% 83.7% 84.8%

speed 68.5% 70.3% 69.3% 70.3% 76.4% 77.3%

Table 2. Performance of different combinations of basic networks with and without depth information. IO represents feeding images

only into networks. PM denotes plain images plus feature maps (PCM). PN denotes plain networks combined with PointNet architecture.

The accuracies are measured within 6◦ or 5 km/h biases.

NVIDIA architecture with tolerance threshold increasing.

Overall, “DNN-LSTM” outperforms “DNN-only” set-

ting, which means that feeding videos-frames in the se-

quence to networks helps autonomous vehicles to make de-

cisions. It is because that independent image neglects im-

portant long-term event information.

More importantly, it is fascinating that utilizing depth

information improves the accuracy of prediction greatly in

comparison to the use of video frames only (IO in Table 2).

It again verifies the importance of depth information for

driving behavior prediction and also shows the great po-

tentials to improve driving prediction task by designing ad-

vanced depth representations and effective ways of extract-

ing point features.

4.6. Discussion

Firstly, regarding autonomous driving prediction process

as a temporally sequential model keeps more essential infor-

mation and gets better results. The system that holds mem-

ory in sequence is suitable for deciding future trends.

Secondly, depth information contributes to more reli-

able results and it helps vehicles learn driving polices more

effectively. In consequence, we believe that future au-

tonomous vehicles are likely to equip with 3D-scanners in

order to gain comprehensive perception like the human.

Thirdly, although we use powerful DNNs such as Resnet

to extract features, the improvement is still minor, which

means we may meet an upper-board for 2D vision.

Finally, the large gap among different ways of using

depth information tells us current depth representation is

still an open problem that is not fully resolved. Even though

our paper has attempted various depth representation and

seems to produce good results, we still believe that there

are huge potentials for depth utilization.

5. Conclusion and Future Work

In this paper, we have proposed a LiDAR-Video Driving

benchmark dataset, which is among the first attempts to uti-

lize point clouds to help driving policy learning. We have

performed an in-depth analysis of how important depth in-

formation is, how to leverage depth information and what

we can achieve by leveraging current representative tech-

niques. From preliminary experiment results, we found that

the utilization of depth information had resulted in consider-

able promotion in prediction performance. However, it still

has a large room to improve the usage of point cloud infor-

mation. We believe our benchmark dataset will open one

door to study policy learning by providing extra but signifi-

cant point clouds.

Our paper has attempted varied ways to take the advan-

tages of point clouds in the benchmark. Even though these

methods has helped networks to learn driving policies, they

are far from optimal solutions for insufficient utilization of

point clouds. How to make the best of these information

remains to be further studied.

Moreover, although the supervised end to end segmen-

tation may improved performance greatly, it may be too

expensive to annotate the training data. Unlike plane 2D

images or videos, point clouds contains rich depth informa-

tion and geometrical features. In consequence, it is feasible

to segment point clouds in unsupervised ways [2, 26]. We

believe that affordable weakly-supervised or unsupervised

coarse segmentation will help generate quantities of anno-

tated data and learn driving policies.
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