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Abstract

Representations that can compactly and effectively cap-

ture the temporal evolution of semantic content are important

to computer vision and machine learning algorithms that op-

erate on multi-variate time-series data. We investigate such

representations motivated by the task of human action recog-

nition. Here each data instance is encoded by a multivariate

feature (such as via a deep CNN) where action dynamics are

characterized by their variations in time. As these features

are often non-linear, we propose a novel pooling method,

kernelized rank pooling, that represents a given sequence

compactly as the pre-image of the parameters of a hyper-

plane in a reproducing kernel Hilbert space, projections of

data onto which captures their temporal order. We develop

this idea further and show that such a pooling scheme can be

cast as an order-constrained kernelized PCA objective. We

then propose to use the parameters of a kernelized low-rank

feature subspace as the representation of the sequences. We

cast our formulation as an optimization problem on general-

ized Grassmann manifolds and then solve it efficiently using

Riemannian optimization techniques. We present experi-

ments on several action recognition datasets using diverse

feature modalities and demonstrate state-of-the-art results.

1. Introduction

In this paper, we propose compact representations for

non-linear multivariate data arising in computer vision ap-

plications, by casting them in the concrete setup of action

recognition in video sequences. The concrete setting we

pursue is quite challenging. Although, rapid advancement

of deep convolutional neural networks has led to signifi-

cant breakthroughs in several computer vision tasks (e.g.,

object recognition [22], face recognition [38], pose estima-

tion [56]), action recognition continues to be significantly

far from human-level performance. This gap is perhaps due

to the spatio-temporal nature of the data and its size, which

quickly outgrows processing capabilities of even the best

hardware platforms. To tackle this, deep learning algorithms

for video processing usually consider subsequences (a few
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Figure 1. An illustration of our two kernelized rank pooling

schemes, namely (1) Pre-image pooling, that uses the pre-image

z (in the input space) as the pooled descriptor; this pre-image is

computed such that the projections of kernel embeddings Φ(x) of

input points x preserve the temporal frame order when projected

onto Φ(z), and (2) kernel subspace pooling, that uses the parame-

ters of the kernel subspace for pooling, such that the projections of

Φ(x) onto this subspace captures the temporal order (as increasing

distances from the subspace origin). Both schemes assume that

the input data is non-linear, while their kernelized embeddings (in

an infinite dimensional RKHS) may allow compact linear order-

preserving projections – which can be used for pooling.

frames) as input, extract features from such clips, and then

aggregate these features into compact representations, which

are then used to train a classifier for recognition.

In the popular two-stream CNN architecture for action

recognition [43, 14], the final classifier scores are fused us-

ing a linear SVM. A similar strategy is followed by other

more recent approaches such as the 3D convolutional net-

work [46, 4] and temporal segment networks [54]. Given

that an action is comprised of ordered variations of spatio-

temporal features, any pooling scheme that discards such

temporal variation may lead to sub-optimal performance.

Consequently, various temporal pooling schemes have

been devised. One recent promising scheme is rank pool-

ing [17, 18], in which the temporal action dynamics are

summarized as the parameters of a line in the input space

that preserves the frame order via linear projections. To
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estimate such a line, a rank-SVM [3] based formulation is

proposed, where the ranking constraints enforce the tem-

poral order (see Section. 3). However, this formulation is

limited on several fronts. First, it assumes the data belongs

to a Euclidean space (and thus cannot handle non-linear ge-

ometry, or sequences of structured objects such as positive

definite matrices, strings, trees, etc.). Second, only linear

ranking constraints are used, however non-linear projections

may prove more fruitful. Third, data is assumed to evolve

smoothly (or needs to be explicitly smoothed) as otherwise

the pooled descriptor may fit to random noise.

In this paper, we introduce kernelized rank pooling (KRP)

that aggregates data features after mapping them to a (poten-

tially) infinite dimensional reproducing kernel Hilbert space

(RKHS) via a feature map [42]. Our scheme learns hyper-

planes in the feature space that encodes the temporal order of

data via inner products; the pre-images of such hyperplanes

in the input space are then used as action descriptors, which

can then be used in a non-linear SVM for classification. This

appeal to kernelization generalizes rank pooling to any form

of data for which a Mercer kernel is available, and thus

naturally takes care of the challenges described above. We

explore variants of this basic KRP in Section 4.

A technical difficulty with KRP is its reliance on the com-

putation of a pre-image of a point in feature space. However,

given that the pre-images are finite-dimensional represen-

tatives of infinite-dimensional Hilbert space points, they

may not be unique or may not even exist [32]. To this end,

we propose an alternative kernelized pooling scheme based

on feature subspaces (KRP-FS) where instead of estimat-

ing a single hyperplane in the feature space, we estimate a

low-rank kernelized subspace subject to the constraint that

projections of the kernelized data points onto this subspace

should preserve temporal order. We propose to use the pa-

rameters of this low-rank kernelized subspace as the action

descriptor. To estimate the descriptor, we propose a novel

order-constrained low-rank kernel approximation, with or-

thogonality constraints on the estimated descriptor. While,

our formulation looks computationally expensive at first

glance, we show that it allows efficient solutions if resort-

ing to Riemannian optimization schemes on a generalized

Grassmann manifold (Section 4.3).

We present experiments on a variety of action recogni-

tion datasets, using different data modalities, such as CNN

features from single RGB frames, optical flow sequences, tra-

jectory features, pose features, etc. Our experiments clearly

show the advantages of the proposed schemes achieving

state-of-the-art results.

Before proceeding, we summarize below the main contri-

butions of this paper.

• We introduce a novel order-constrained kernel PCA ob-

jective that learns action representations in a kernelized

feature space. We believe our formulation may be of

independent interest in other applications.

• We introduce a new pooling scheme, kernelized rank

pooling based on kernel pre-images that captures tempo-

ral action dynamics in an infinite-dimensional RKHS.

• We propose efficient Riemannian optimization schemes

on the generalized Grassmann manifold for solving our

formulations.

• We show experiments on several datasets demonstrating

state-of-the-art results.

2. Related Work

Recent methods for video-based action recognition use

features from the intermediate layers of a CNN; such features

are then pooled into compact representations. Along these

lines, the popular two-stream CNN model [43] for action

recognition has been extended using more powerful CNN

architectures incorporating intermediate feature fusion in

[14, 12, 46, 53], however typically the features are pooled

independently of their temporal order during the final se-

quence classification. Wang et al. [55] enforces a grammar

on the two-stream model via temporal segmentation, how-

ever this grammar is designed manually. Another popular

approach for action recognition has been to use recurrent

networks [58, 9]. However, training such models is often dif-

ficult [35] and need enormous datasets. Yet another popular

approach is to use 3D convolutional filters, such as C3D [46]

and the recent I3D [4]; however they also demand large (and

clean) datasets to achieve their best performances.

Among recently proposed temporal pooling schemes,

rank pooling [17] has witnessed a lot of attention due to

its simplicity and effectiveness. There have been extensions

of this scheme in a discriminative setting [15, 1, 18, 52],

however all these variants use the basic rank-SVM formu-

lation and is limited in their representational capacity as

alluded to in the last section. Recently, in Cherian et al. [6],

the basic rank pooling is extended to use the parameters of

a feature subspace, however their formulation also assumes

data embedded in the Euclidean space. In contrast, we gen-

eralize rank pooling to the non-linear setting and extend our

formulation to an order-constrained kernel PCA objective to

learn kernelized feature subspaces as data representations.

To the best of our knowledge, both these ideas have not been

proposed previously.

We note that kernels have been used to describe actions

earlier. For example, Cavazza et al. [5] and Quang et al. [37]

propose kernels capturing spatio-temporal variations for ac-

tion recognition, where the geometry of the SPD manifold

is used for classification, and Harandi et al. [29, 19] uses

geometry in learning frameworks. Koniusz et al. [27, 26, 7]

uses features embedded in an RKHS, however the resultant

kernel is linearized and embedded in the Euclidean space.

Vemulapalli et al. [50] uses SE(3) geometry to classify pose
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sequences. Tseng [47] proposes to learn a low-rank subspace

where the action dynamics are linear. Subspace represen-

tations have also been investigated [48, 21, 34], and the

final representations are classified using Grassmannian ker-

nels. However, we differ from all these schemes in that our

subspace is learned using temporal order constraints, and

our final descriptor is an element of the RKHS, offering

greater flexibility and representational power in capturing

non-linear action dynamics. We also note that there have

been extensions of kernel PCA for computing pre-images,

such as for denoising [32, 31], voice recognition [30], etc.,

but are different from ours in methodology and application.

3. Preliminaries

In this section, we setup the notation for the rest of

the paper and review some prior formulations for pool-

ing multivariate time series for action recognition. Let

X = [x1,x2, ...,xn] be features from n consecutive frames

of a video sequence, where we assume each xi ∈ R
d.

Rank pooling [17] is a scheme to compactly represent

a sequence of frames into a single feature that summarizes

the sequence dynamics. Typically, rank pooling solves the

following objective:

min
z∈Rd

1

2
‖z‖

2
+ λ

∑

i<j

max(0, η + z
T
xi − z

T
xj), (1)

where η > 0 is a threshold enforcing the temporal order and

λ is a regularization constant. Note that, the formulation

in (1) is the standard Ranking-SVM formulation [3] and

hence the name. The minimizing vector z (which captures

the parameters of a line in the input space) is then used as

the pooled action descriptor for X in a subsequent classifier.

The rank pooling formulation in [17] encodes the temporal

order as increasing intercept of input features when projected

on to this line.

The objective in (1) only considers preservation of the

temporal order; as a result, the minimizing z may not be

related to input data at a semantic level (as there are no con-

straints enforcing this). It may be beneficial for z to capture

some discriminative properties of the data (such as human

pose, objects in the scene, etc.), that may help a subsequent

classifier. To account for these shortcomings, Cherian et

al. [6], extended rank pooling to use the parameters of a

subspace as the representation for the input features with

better empirical performance. Specifically, [6] solves the

following problem.

min
U∈G(p,d)

1

2

n∑

i=1

∥∥xi − UUT
xi

∥∥2 +
∑

i<j

max(0, η +
∥∥UT

xi

∥∥2 −
∥∥UT

xj

∥∥2), (2)

where instead of a single z as in (1), they learn a subspace U
(belonging to a p-dimensional Grassmann manifold embed-

ded in R
d), such that this U provides a low-rank approxima-

tion to the data, as well as, projection of the data points onto

this subspace will preserve their temporal order in terms of

their distance from the origin.

However, both the above schemes have limitations; they

assume input data is Euclidean, which may be severely lim-

iting when working with features from an inherently non-

linear space. To circumvent these issues, in this paper, we

explore kernelized rank pooling schemes that generalize rank

pooling to data objects that may belong to any arbitrary ge-

ometry, for which a valid Mercer kernel can be computed.

As will be clear shortly, our schemes generalize both [17]

and [6] as special cases when the kernel used is a linear

one. In the sequel, we assume an RBF kernel for the feature

map, defined for x, z ∈ R
d as: k(x, z) = exp

{
−‖x−z‖2

2σ2

}
,

for a bandwidth σ. We use K to denote the n × n RBF

kernel matrix constructed on all frames in X , i.e., the ij-th

element Kij = k(xi,xj), where xi,xj ∈ X . Further, for

the kernel k, let there exist a corresponding feature map

Φ : Rd × R
d → H, where H is a Hilbert space for which

〈Φ(x),Φ(z)〉H = k(x, z), for all x, z ∈ R
d.

4. Our Approach

Given a sequence of temporally-ordered features X , our

main idea is to use the kernel trick to map the features to

a (plausibly) infinite-dimensional RKHS [42], in which the

data is linear. We propose to learn a hyperplane in the RKHS,

projections of the data to which will preserve the temporal

order. We formalize this idea below and explore variants.

4.1. Kernelized Rank Pooling

For data points x ∈ X and their RKHS embeddings Φ(x),
a straightforward way to extend (1) is to use a direction Φ(z)
in the feature space, projections of Φ(x) onto this line will

preserve the temporal order. However, given that we need to

retrieve z in the input space, to be used as the pooled descrip-

tor, one way (which we propose) is to compute the pre-image

z of Φ(z), which can then used as the action descriptor in

a subsequent non-linear action classifier. Mathematically,

this basic kernelized rank pooling (BKRP) formulation is:

arg min
z∈Rd

BKRP(z) :=
1

2
‖z‖

2
+

λ
∑

i<j

max(0, η + 〈Φ(xi),Φ(z)〉 − 〈Φ(xj),Φ(z)〉 (3)

=
1

2
‖z‖

2
+ λ

∑

i<j

max(0, η + k(xi, z)− k(xj , z)). (4)

As alluded to earlier, a technical issue with (4) (and also

with (1)) is that the optimal direction z may ignore any useful
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properties of the original data X (instead could be some line

that preserves the temporal order alone). To make sure z is

similar to x ∈ X , we write an improved (4) as:

argmin
z∈Rd,ξ≥0

IBKRP(z) :=
1

2

n∑

i=1

‖xi − z‖
2
+ C

n∑

i,j=1

ξij

+ λ
∑

i<j

max(0, η − ξij + k (xi, z)− k(xj , z)) , (5)

where the first component says that the computed pre-image

is not far from the input data.1 The variables ξ represent

non-negative slacks and C is a positive constant.

The above formulation assumes a pre-image z always

exists, which may not be the case in general, or may not be

unique even if it exists [32]. We could avoid this problem

by simply not computing the pre-image, instead keeping the

representation in the RKHS itself. To this end, in the next

section, we propose an alternative formulation in which we

assume useful data maps to a p-dimensional subspace of the

RKHS, in which the temporal order is preserved. We pro-

pose to use the parameters of this subspace as our sequence

representation. Compared to a single z to capture action

dynamics (as described above), a subspace offers a richer

representation (as is also considered in [6])

4.2. Kernelized Subspace Pooling

Reusing our notation, let x1,x2, ...,xn be the n points in

R
d from a sequence. Since it is difficult to work in the com-

plete Hilbert space H, we restrict ourselves to the subspace

of H spanned by the Φ(xi), i = 1, 2, ..., n. For convenience,

let this space be called H. Assuming that they are all lin-

early independent, the Representer theorem [51, 40] says

that the points {Φ(xi)} can be chosen as a basis for H (not

in general an orthonormal basis, however). In this case, H is

a space of dimension n.

As alluded to above, we are concerned with the case

where all the Φ(xi) may lie close to some p-dimensional

subspace of H, denoted by V . This space will initially be

unknown, and is to be determined in some manner. Denote

by Ωp : H → V , the orthogonal projection from H to V .

Assume that V has an orthonormal basis, {ei | i = 1, ..., p}.

In terms of the basis {Φ(xj)} for H, we can write

ei =

n∑

j=1

aijΦ(xj), (6)

for appropriate scalars a. Let Ωp(Φ(x)) denote the em-

bedding of the input data point x ∈ R
d in this kernelized

subspace. Then,

Ωp(Φ(x)) =

p∑

i=1

〈Φ(x), ei〉 ei. (7)

1When x is not an object in the Euclidean space, we assume ‖.‖ to

define some suitable distance on the data.

Substituting (6) into (7), we obtain

Ωp(Φ(x))=

p∑

i=1

n∑

j=1

aij〈Φ(x),Φ(xj)〉

(
n∑

ℓ=1

aiℓΦ(xℓ)

)

=

p∑

i=1

n∑

j=1

n∑

ℓ=1

k(x,xj)a
T
jiaiℓΦ(xℓ), (8)

which can be written using matrix notation as:

Ωp(Φ(x)) = Φ(X)AAT
k(X,x), (9)

where k(X,x) denotes the n× 1 vector whose j-th dimen-

sion is given by k(xj ,x) and A is an n×p matrix. Note that

there is a certain abuse of notation here in that Φ(X) is a

matrix with n columns, each column of which is an element

in H, where as the other matrices are those of real numbers.

Using these notation, we propose a novel kernelized fea-

ture subspace learning (KRP-FS) formulation below, with

ordering constraints:

arg min
A∈Rn×p

F (A) :=
1

2

n∑

i=1

‖Φ(xi)− Ωp(Φ(xi))‖
2
H (10)

s.t. ‖Ωp(Φ(xi))‖
2
H + η ≤ ‖Ωp(Φ(xj))‖

2
H , ∀i<j, (11)

where (10) learns a p-dimensional feature subspace of the

RKHS in which most of the data variability is contained,

while (11) enforces the temporal order of data in this sub-

space, as measured by the length (using a Hilbertian norm

‖.‖H) of the projection of the data points x onto this sub-

space. Our main idea is to use the parameters of this ker-

nelized feature subspace projection Ωp as the pooled de-

scriptor for our input sequence, for subsequent sequence

classification. To ensure that such descriptors from different

sequences are comparable2, we need to ensure that Ωp is nor-

malized, i.e., has orthogonal columns in the feature space,

viz., ΩT
p Ωp = Ip. In the view of (6), this implies the basis

{ei} for V satisfies 〈ei, ej〉 = δij (the delta function) and

boils down to:

ΩT
p Ωp = AT

KA = Ip, (12)

where K is the kernel constructed on X and is symmet-

ric positive definite (SPD). Incorporating these conditions

and including slack variables (to accommodate any outliers)

using a regularization constant C, we rewrite (10), (11) as:

argmin
A∈R

n×p,

AT
KA=Ip,ξ≥0

F (A):=
1

2

n∑

i=1

‖Φ(xi)−Ωp(Φ(xi))‖
2
H+C

n∑

i<j

ξij

(13)

s.t. ‖Ωp(Φ(xi))‖
2
H+η− ξij≤‖Ωp(Φ(xj))‖

2
H ,∀i < j. (14)

2Recall that such normalization is common when using vectorial repre-

sentations, in which case they are unit normalized.
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It may be noted that our objective (13) essentially depicts

kernel principal components analysis (KPCA) [41], albeit

the constraints make estimation of the low-rank subspace

different, demanding sophisticated optimization techniques

for efficient solution. We address this concern below, by

making some key observations regarding our objective.

4.3. Efficient Optimization

Substituting for the definitions of K and Ωp, the formula-

tion in (13) can be written using hinge-loss as:

argmin
A∈R

n×p|AT
KA=Ip

ξ≥0

F (A) :=
1

2

n∑

i=1

−2k(X,xi)
TAAT

k(X,xi)

+ k(X,xi)
TAAT

KAAT
k(X,xi) + C

∑

i<j

ξij

+ λ
∑

i<j

max

(
0,k(X,xi)

TAAT
KAAT

k(X,xi)+

− k(X,xj)
TAAT

KAAT
k(X,xj)+η −ξij

)
. (15)

As is clear, the variable A appears as AAT through out and

thus our objective is invariant to any right rotations by an

element of the p-dimensional orthogonal group O(p), i.e.,

for R ∈ O(p), F (A) = F (AR). This, together with the

condition in (12) suggests that the optimization on A as

defined in (15) can be solved over the so called generalized

Grassmann manifold [11][Section 4.5] using Riemannian

optimization techniques.

We use a Riemannian conjugate gradient (RCG) algo-

rithm [44] on this manifold for solving our objective. A key

component for this algorithm to proceed is the expression

for the Riemannian gradient of the objective gradAF (A),
which for a generalized Grassmannian can be obtained from

the Euclidean gradient ∇AF (A) as:

gradAF (A) = K
−1∇AF (A)−A sym(AT∇AF (A)),

(16)

where sym(L) = L+LT

2 is the symmetrization opera-

tor [33][Section 4]. The Euclidean gradient for (15) is as

follows: let S1 = KKA, S2 = KAAT , and S3 = AT
KA,

then

∇AF (A) = S1 (S3−2Ip)+S2S1+λ (K12AS3+S2K12A) ,
(17)

where K12 = K1K
T
1 − K2K

T
2 , K1,K2 are the kernels

capturing the order violations in (15) for which the hinge-

loss is non-zero; K1 collecting the sum of all violations for

xi and K2 the same for xj . If further scalability is desired,

one can also invoke stochastic Riemannian solvers such as

Riemannian-SVRG [59, 24] instead of RCG. These methods

extend the variance reduced stochastic gradient methods to

Riemannian manifolds, and may help scale the optimization

to larger problems.

4.4. Action Classification

Once we find A per video sequence by solving (15), we

use Ω = Φ(X)A (note that we omit the subscript p from Ωp

as it is by now understood) as the action descriptor. However,

as Ω is semi-infinite, it cannot be directly computed, and thus

we need to resort to the kernel trick again for measuring the

similarity between two encoded sequences. Given that Ω ∈
G(p) belong to a generalized Grassmann manifold, we can

use any Grassmannian kernel for computing this similarity.

Among several such kernels reviewed in [20], we found

the exponential projection metric kernel to be empirically

beneficial. For two sequences X1 ∈ R
d×n1 , X2 ∈ R

d×n2 ,

their subspace parameters A1, A2 and their respective KRP-

FS descriptors Ω1,Ω2 ∈ G(p), the exponential projection

metric kernel is defined as:

KG(Ω1,Ω2) = exp
(
ν
∥∥ΩT

1 Ω2

∥∥2
F

)
, for ν > 0. (18)

Substituting for Ω’s, we have the following kernel for action

classification, whose ij-th entry is given by:

K
ij
G (Ω1,Ω2) = exp

(
ν ‖AiKAj‖

2
F

)
, (19)

where K ∈ R
n1×n2 is an (RBF) kernel capturing the simi-

larity between sequences.

4.5. Nyström Kernel Approximation

A challenge when using our scheme on large datasets is

the need to compute the kernel matrix (such as in a non-

linear SVM); this computation can be expensive. To this end,

we resort to the well-known Nyström-based low-rank kernel

approximations [10]. Technically, in this approximation,

only a few columns of the kernel matrix are computed, and

the full kernel is approximated by a low-rank outer product.

In our context, let K̃G ∈ R
n×m (for m << n) represents a

matrix with m randomly chosen columns of KG , then the

Nyström approximation K̂G of KG is given by:

K̂G = K̃GMK̃
T

G , (20)

where M is the (pseudo) inverse of the first m×m sub-matrix

of K̃G . Typically, only a small fraction (1/8-th of KG in our

experiments, Table 4) of columns are needed to approximate

the kernel without any significant loss in performance.

5. Computational Complexity

Evaluating the objective in (15) takes O(n3p+m3+mnd)
operations and computing the Euclidean gradient in (17)

needs O(n3 + n2p) computations for each iteration of the

solver. While, this may look more expensive than the basic

ranking pooling formulation, note that here we use kernel

matrices, which for action recognition datasets, are much

smaller in comparison to very high dimensional (CNN) fea-

tures used for frame encoding. See Table 3 for empirical

run-time analysis.

2201



6. Experiments

In this section, we provide experiments on several action

recognition datasets where action features are represented

in diverse ways. Towards this end, we use (i) the JHMDB

and MPII Cooking activities datasets, where frames are en-

coded using a VGG two-stream CNN model, (ii) HMDB

dataset, for which we use features from a ResNet-152 CNN

model, (iii) UTKinect actions dataset, using non-linear fea-

tures from 3D skeleton sequences corresponding to human

actions, and (iv) hand-crafted bag-of-words features from

the MPII dataset. For all these datasets, we compare our

methods to prior pooling schemes such as average pooling

(in which features per sequence are first averaged and then

classified using a linear SVM), rank pooling (RP) [17], and

generalized rank pooling (GRP) [6]. We use the publicly

available implementations of these algorithms without any

modifications. Our implementations are in Matlab and we

use the ManOpt package [2] for Riemannian optimization.

Below, we detail our datasets and their pre-processing, fol-

lowing which we furnish our results.

6.1. Datasets and Feature Representations

HMDB Dataset [28]: is a standard benchmark for action

recognition, consisting of 6766 videos and 51 classes. The

standard evaluation protocol is three-split cross-validation

using classification accuracy. To generate features, we use

a standard two-stream ResNet-152 network pre-trained on

the UCF101 dataset (available as part of [12]). We use the

2048D pool5 layer output to represent per-frame features for

both streams.

JHMDB Dataset [23]: consists of 960 video sequences

and 21 actions. The standard evaluation protocol is average

classification accuracy over three-fold cross-validation. For

feature extraction, we use a two-stream model using a VGG-

16 network. To this end, we fine-tune a network, pre-trained

on the UCF101 dataset (provided as part of [14]). We extract

4096D fc6 layer features as our feature representation.

MPII Cooking Activities Dataset [39]: consists of cook-

ing actions of 14 individuals. The dataset has 5609 video

sequences and 64 different actions. For feature extraction,

we use the fc6 layer outputs from a two-stream VGG-16

model. We also present experiments with dense trajectories

(encoded as bag-of-words using 4K words). We report the

mean average precision over 7 splits.

UTKinect Actions [57]: is a dataset for action recognition

from 3D skeleton sequences; each sequence has 74 frames.

There are 10 actions in the dataset performed by 2 subjects.

We use this dataset to demonstrate the effectiveness of our

schemes to explicit non-linear features. We encode each

3D pose using a Lie algebra based scheme that maps the

skeletons into rotation and translation vectors which are

objects in the SE(3) geometry as described in [50]. We

report the average classification accuracy over 2 splits.

6.2. Analysis of Model Parameters

Ranking Threshold η: An important property of our

schemes to be verified is whether it reliably detects tem-

poral order in the extracted features and if so how does the

ordering parameter η influence the generated descriptor for

action classification. In Figures 2(a), 2(b), we plot the accu-

racy against increasing values of the ranking threshold η for

features from the RGB and flow streams on JHMDB split-1.

The threshold η was increased from 10−4 to 1 at multiples of

10. We see from the Figure 2(a) that increasing η does influ-

ence the nature of the respective algorithms, however each

algorithm appears to have its own setting that gives the best

performance;e.g., IBKRP achieves best at η = 0.1, while

KRP-FS takes the best value at η = 0.0001. We also plot the

same for GRP [6] and a linear kernel; the latter takes a dip

in accuracy as η increases, because higher values of η are

difficult to satisfy for our unit norm features when only linear

hyperplanes are used for representation. In Figure 2(b), we

see a similar trend for the RGB stream.

Number of Subspaces p: In Figure 2(c), we plot the clas-

sification accuracy against increasing number of subspaces

on the HMDB dataset split-1. We show the results for both

optical flow and image streams separately and also plot the

same for GRP (which is a linear variant of KRP-FS). The

plot shows that using more subspaces is useful, however

beyond say 10-15, the performance saturates suggesting per-

haps temporally ordered data inhabits a low-rank subspace,

as was the original motivation to propose this idea.

Dimensionality Reduction: To explore the possibility of

dimensionality reduction (using PCA) of the CNN features

and understand how well the kernelization results be (does

the lower-dimensional features still capture the temporal

cues?), in Figure 2(d), we plot accuracy against increasing

dimensionality in PCA on 2048D ResNet-152 features from

HMDB-51 split1. As the plot shows, for almost all the

variants of our methods, using a reduced dimension does

result in useful representations – perhaps because we remove

noisy dimensions in this process. We also witness that KRP-

FS performs the best in generating representations from very

low-dimensional features.

Nyström Approximation Quality: In Table 4, we plot the

kernel approximation quality using Nyström on HMDB split-

1 features for the KRP-FS variant. We uniformly sampled

data in the order of 1/2k-th original data size, where k is

varied from 5 to 2. We see from the table that the accuracy

decreases only marginally (< 1%) with the approximation.

In the sequel, we use a factor of 1/8-th data size.

Runtime Analysis: For this experiment, we use a single

core Intel 2.6 GHz CPU. To be compatible with others, we

re-implemented [17] as a linear kernel. Table 3 presents

the results. As expected, our methods are slightly costlier
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Figure 2. Analysis of parameters in our schemes: (a,b) accuracy against increasing ordering threshold η for RGB and FLOW streams

respectively on JHMDB dataset split-1, (c) classification accuracy against increasing subspace dimensionality on HMDB-51 split1, and (d)

Effect of applying PCA to input features before using our schemes (on HMDB split1).

than others, mainly due to the need to compute the kernel.

However, they are still fast, and even with our unoptimized

Matlab implementation, could run at real-time rates (27fps).

Further, increasing the number of subspaces in KRP-FS

does not make a significant impact on the running time; e.g.,

(increasing from 3 to 20 increased by 1.2ms).

Feature Pre-processing: As described in [17] and [15],

taking a signed-square root (SSR) and temporal moving-

average (MA) of the features improve accuracy. In Table 2,

we revisit these steps in the kernelized setting (KRP-FS)

using 3 subspaces. It is clear these steps bring only very

marginal improvements. This is unsurprising; as is known

RBF kernel already acts as a low-pass filter.

Homogeneous Kernels: A variant of rank pooling [17] uses

homogeneous kernels [49] to map data into a linearizable

Hilbert space onto which linear rank pooling is applied.

In Table 1, we use a Chi-squared kernel for rank pooling

and compare the performance to BKRP (using RBF kernel).

While we observe a 5% improvement over [17] when using

homogeneous kernels, still BKRP (which is more general)

significantly outperforms it.

HMDB Dataset FLOW RGB FLOW+RGB

RP [17] 56.7 38.3 63.1

Hom. Chi-Sq. RP [17] 61.5 43.8 66.5

BKRP (ours) 54.9 45.9 69.5
Table 1. Comparisons to rank pooling using a homogeneous kernel

linearization of CNN features via a Chi-Squared kernel as in [17].

Method FLOW RGB

with MA + SSR 61.5 51.6

w/o MA + SSR 61.4 51.4

w/o MA + w/o SSR 60.8 51.3
Table 2. Effect of Moving Average (MA) and signed-square root

(SSR) of CNN features before KRP-FS on HMDB split-1.

6.3. Comparisons between Pooling Schemes

In Tables 5, 6, and 7, we compare our schemes between

themselves and similar methods. As the tables show, both

IBKRP and KRP-FS demonstrate good performances against

their linear counterparts. We also find that linear rank pool-

ing (RP), as well as BKRP are often out-performed by aver-

age pooling (AP) – which is unsurprising given that the CNN

features are non-linear (for RP) and the pre-image computed

(as in BKRP) might not be a useful representation without

the reconstructive term as in IBKRP or KRP-FS. We also

find that KRP-FS is about 3-5% better than its linear variant

GRP on most of the datasets.

RP GRP BKRP IBKRP KRP-FS

1.1 3.8 6.7 8.8 9.5
Table 3. Avg. run time (time taken / frame) – in milli-seconds – on

the HMDB dataset. CNN forward pass time is not included.

Kernel Sampling Factor Accuracy

1/32 60.56

1/8 61.43

1/2 61.7
Table 4. Influence of Nyström approximation to the KRP-FS kernel,

using 3 subspaces on HMDB split-1.

6.4. Comparisons to the State of the Art

In Tables 9, 10, and 11, we showcase comparisons to state-

of-the-art approaches. Notably, on the challenging HMDB

dataset, we find that our method KRP-FS achieves 69.8%

on 3-split accuracy, which is better to GRP by about 4%.

Further, by combining with Fisher vectors– IDT-FV – (us-

ing dense trajectory features), which is a common practice,

we outperform other recent state-of-the-art methods. We

note that recently Carreira and Zissermann [4] reports about

80.9% accuracy on HMDB-51 by training deep models on

the larger Kinectics dataset [25]. However, as seen from Ta-

ble 9, our method performs better than theirs (by about 3%)

when not using extra data. We outperform other methods on

MPII and JHMDB datasets as well – specifically, KRP-FS

when combined with IDT-FV, outperforms GRP+IDT-FV

by about 1–2% showing that learning representations in the

kernel space is indeed useful.
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6.5. Comparisons to Hand­crafted Features

In Table 8, we evaluate our method on the bag-of-features

dense trajectories on MPII and non-linear features for en-

coding human 3D skeletons on the UTKinect actions. As is

clear from the tables, all our pooling schemes significantly

improve the performance of linear rank pooling and GRP

schemes. As expected, IBKRP is better than BKRP by nearly

8% on UT Kinect actions. We also find that KRP-FS per-

forms the best most often, with about 7% better accuracy

on the MPII cooking activities dataset against GRP and UT

Kinect actions. These experiments demonstrate the represen-

tation effectiveness of our method with regard to the diversity

of the data features.

JHMDB Dataset FLOW RGB FLOW+RGB

Avg. [43] 63.8 47.8 71.2

RP [16] 41.1 47.3 56.0

GRP [6] 64.2 42.5 70.8

BKRP (ours) 65.8 49.3 73.4

IBKRP (ours) 68.2 49.0 76.2

KRP-FS (ours) 67.5 46.2 74.6
Table 5. Classification accuracy on the JHMDB dataset split-1.

HMDB Dataset FLOW RGB FLOW+RGB

Avg. Pool [43] 57.2 45.2 65.6

RP [16] 56.7 38.3 63.1

GRP [6] 65.3 47.8 68.3

BKRP (ours) 54.9 45.9 69.5

IBKRP (ours) 58.2 46.8 69.6

KRP-FS (ours) 66.1 54.1 71.9
Table 6. Classification accuracy on the HMDB dataset split-1.

MPII Dataset FLOW RGB FLOW+RGB

Avg. [43] 48.1 41.7 51.1

RP [16] 49.0 40.0 50.6

GRP [6] 52.1 50.3 53.8

BKRP (ours) 40.5 35.5 42.9

IBKRP (ours) 52.1 43.2 55.9

KRP-FS (ours) 48.2 44.7 57.2
Table 7. Classification accuracy (mAP%) on the MPII dataset split1.

7. Conclusions

In this paper, we looked at the problem of compactly rep-

resenting temporal data for the problem of action recognition

in video sequences. To this end, we proposed kernelized sub-

space representations obtained via solving a kernelized PCA

objective. The effectiveness of our schemes were substan-

tiated exhaustively via experiments on several benchmark

datasets and diverse data types. Given the generality of our

approach, we believe it will be useful in several domains that

use sequential data.

Algorithm Acc.(%)

Avg. Pool 42.1

RP [17] 45.3

GRP [6] 46.1

BKRP 46.5

IBKRP 49.5

KRP FS 53.0

Algorithm Acc.(%)

SE(3) [50] 97.1

Tensors [27] 98.2

RP [17] 75.5

BKRP 84.8

IBKRP 92.1

KRP FS 99.0
Table 8. Performances of our schemes on: dense trajectories from

the MPII dataset (left) and UT-Kinect actions (right). For KRP-FS

on UTKinect actions, we use 15 subspaces.

Algorithm Avg. Acc. (%)

ST Multiplier Network[13] 68.9%

ST Multiplier Network + IDT[13] 72.2%

Two-stream I3D[4] 66.4%

Temporal Segment Networks [55] 69.4

Hier. Rank Pooling + IDT-FV [15] 66.9

GRP 65.4

GRP + IDT-FV 67.0

BRKP 64.1

IBKRP 66.3

IBKRP + IDT-FV 67.6

KRP-FS 69.8

KRP-FS + IDT-FV 72.7
Table 9. HMDB Dataset (3 splits)

Algorithm mAP(%)

Interaction Part Mining [60] 72.4

Video Darwin [17] 72.0

Hier. Mid-Level Actions [45] 66.8

PCNN + IDT-FV [8] 71.4

GRP [6] 68.4

GRP + IDT-FV [6] 75.5

BRKP 66.3

IBKRP 68.7

IBKRP + IDT-FV 71.8

KRP-FS 70.0

KRP-FS + IDT-FV 76.1
Table 10. MPII Cooking Activities (7 splits)

Algorithm Avg. Acc. (%)

Stacked Fisher Vectors [36] 69.03

Higher-order Pooling [7] 73.3

P-CNN + IDT-FV [8] 72.2

GRP [6] 70.6

GRP + IDT-FV [6] 73.7

BRKP 71.5

IBKRP 73.3

IBKRP + IDT-FV 73.5

KRP-FS 73.8

KRP-FS + IDT-FV 74.2
Table 11. JHMDB Dataset (3 splits)
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