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Abstract

Scene segmentation is a challenging task as it need

label every pixel in the image. It is crucial to exploit

discriminative context and aggregate multi-scale features

to achieve better segmentation. In this paper, we first

propose a novel context contrasted local feature that not

only leverages the informative context but also spotlights

the local information in contrast to the context. The pro-

posed context contrasted local feature greatly improves the

parsing performance, especially for inconspicuous objects

and background stuff. Furthermore, we propose a scheme of

gated sum to selectively aggregate multi-scale features for

each spatial position. The gates in this scheme control the

information flow of different scale features. Their values are

generated from the testing image by the proposed network

learnt from the training data so that they are adaptive

not only to the training data, but also to the specific

testing image. Without bells and whistles, the proposed

approach achieves the state-of-the-arts consistently on the

three popular scene segmentation datasets, Pascal Context,

SUN-RGBD and COCO Stuff.

1. Introduction

Scene segmentation has been an essential component

of image understanding and is in intensely demand for

automation devices, virtual reality, self-driving vehicles and

etc. The goal of scene segmentation is parsing a scene

image into a set of coherent semantic regions and labeling

each pixel to one of classes including not only objects but

also stuff (e.g. road, grass, sky). It implicitly involves image

classification, object localization and boundary delineation.

Thus, scene segmentation demands multi-scale and multi-

level visual recognition.

The recent success of Deep Convolutional Neural Net-

works (DCNN) has greatly improved the performance of

computer vision tasks [20], such as image classification

[53, 55, 22, 39, 24] and object detection [45, 46, 15, 37,

Figure 1: Scene segmentation refers to labeling each pixel

including salient objects, inconspicuous objects and stuff.

However, the various forms of objects/stuff (e.g salient or

inconspicuous, foreground or background) and the existence of

multi-scale objects (e.g the multi-scale cows in third image) make

it challenging to parsing each pixel using DCNN.

16]. However, there are some limitations when applying

DCNN to dense prediction tasks like scene segmentation

[38, 51, 8, 29]. The success of DCNN is closely related

with its inherent invariance to feature deformations [62].

This invariance lets the DCNN learn very abstract feature

representation of the whole image, therefore the network

can obtain information of dominated/salient objects at any

position, which is desirable for image classification. But

for scene segmentation, spatial information is essential and

pixel-level discriminative features are desired. Most state-

of-the-arts scene segmentation frameworks are based on

image classification networks pre-trained on [49], but it

remains an open question of how to better adopt DCNN on

scene segmentation. Herein, we mainly consider two hand-

icaps when applying DCNN on dense prediction tasks: the

various forms of objects/stuff (e.g. salient or inconspicuous)

and the existence of multi-scale objects.

First, different from object segmentation and image

classification, scene segmentation aims to labeling every

pixel to one of many classes including stuff and object

classes, thus not only the dominated salient objects but
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also the stuff and inconspicuous objects should be parsed

well. DCNN pre-trained on [49] prefers image-level

abstract features, which is not equally discriminative for

every spatial position. Meanwhile, due to the various

forms of objects/stuff in scene segmentation, a pixel may

belong to salient object, inconspicuous object or stuff.

Therefore, when directly applying DCNN on scene segmen-

tation, inconspicuous objects and stuff will be dominated

by salient objects and its information will be somewhat

weakened or even disregarded, which is contradictory

with the goal of scene segmentation. To address this

issue, locally discriminative features are desired. Context

is essential for scene segmentation and lots of works

devote to get informative context, e.g. [8, 51, 36, 61].

However, contexts often have smooth representation and are

dominated by features of salient objects, which is harmful

for labeling inconspicuous objects and stuff. Better features

for scene segmentation are discriminative context aware

local features, i.e., the features for pixel position p will

not be dominated by other parts of image while being

aware of the context information. For this purpose, we

propose a context contrasted local feature, which benefits

from both context and local information. Context contrasted

local features could not only exploit the informative context

but also spotlights the local information in contrast to

the context. Further, we use a context contrasted local

(CCL) model to obtain multi-scale and multi-level context

contrasted local features.

Second, due to the huge scale variation of objects in

scene segmentation, it is irrational to classify all individual

pixels based on a single scale feature. There are several

ways to address this issue. One way is to resize the input

image to multiple resolutions and feed them to different (or

a shared) networks, then fuse the corresponding features

form multiple resolutions, such as [30, 12, 9, 44]. The

aggregation ability for multi-scale features of this strategy

is limited in practice due to expensive computation and the

finite scales of input images. Another way makes use of

features from middle layers, such as [38, 21, 48, 14]. The

intention of this strategy is to exploit multi-scale features

with multi-level information. We follow the way of FCN

[38] to adopt skip layers to utilize multi-scale features,

which is effective as well as economic. However, in

previous works, such as [38, 21, 40, 51, 7, 43], the score

maps of skip layers are integrated via a simple sum fusion

and hence the different importance of different scales are

ignored. To address this problem and find an optimal

integration choice, we propose a network that controls the

information flow of different scale features. It generates

control signals to perform a gated sum of the score maps

to aggregate multi-scale features selectively. As a selection

mechanism is embedded in the multi-scale fusion, more

skip layers can participate in the aggregation to provide

rich information for selection. This also improves the

aggregation ability of multi-scale features.

In summary, this paper makes the following contribu-

tions:

• We propose a novel context contrasted local feature

which is tailored for scene segmentation and propose a

context contrasted local (CCL) model to obtain multi-

scale and multi-level context contrasted local features.

• We further propose a gated sum to selectively ag-

gregate appropriate scale features for each spatial

location, which is an efficient and effective way

to address the issue of the existence of multi-scale

objects.

• We achieve new state-of-the-art performance consis-

tently on the three public scene segmentation bench-

marks, Pascal Context, SUN-RGBD and COCO Stuff.

2. Related work

2.1. Contextual Modeling

One direction is to apply new layers to enhance high-

level contextual aggregation. For example, Chen et al. [8]

introduced an atrous spatial pyramid pooling (ASPP) to

capture useful context information at multiple scales. Visin

et al.[56], Shuai et al. [51] and Byeon et al.[4] adopted

recurrent neural networks to capture long-range context.

Zhao et al.[63] employed multiple pooling to exploit global

information from different regions. Liu et al. [36] proposed

to model the mean field algorithm with local convolution

layers and incorporate it in deep parsing network (DPN).

Yu et al. [61] attached multiple dilated convolution layers

after class likelihood maps to exercise multi-scale context

aggregation. Another way is to use Conditional Random

Fields (CRF) [28] to model the context of score maps

[7, 8, 64, 30, 36]. For example, Chen et al. [8] adopted

CRF to post-process the unary predictions. Zheng et al.

[64] proposed CRF-RNN to jointly train CRF with their

segmentation networks.

Different with previous works, in this paper, we propose

a context contrasted local feature to perform discriminative

high-level feature modeling. Furthermore, a context con-

trasted local (CCL) model is proposed to collect multi-level

context aware local features.

2.2. Multi­scale Aggregation

Due to the huge scale variation of objects in scene seg-

mentation, it is difficult to achieve robust segmentation with

single scale features’ prediction. Multi-scale aggregation is

a crucial way to deliver detailed parsing maps. There are

several methods to achieve multi-scale aggregation. Farabet

et al. [12] and Lin et al. [30] adopted multi-resolution

input (image pyramid) approach and fuse the corresponding
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features from multiple resolution. Liu et al. [34] generated

multi-scale patches and aggregated the results. Pinheiro

et al. [44] inputted multi-size images at different layers

of a recurrent convolutional neural networks. However,

the above approaches are computational expensive and

consume large GPU memory, thus their aggregation ability

for multi-scale features is limited in practice. The seminal

work FCN [38] introduced the skip layers to locally classify

multi-scale feature maps and aggregate their predictions

via sum fusion. This is an effective as well as efficient

method to integrate different scale features and our work

follows this way. Nonetheless, in previous works [38, 21,

40, 51, 7, 43], the score maps of skip layers are fused via a

simple sum and hence the different importance of different

scales are ignored. To address this issue, we propose a

network that facilitates a gated sum to selectively aggregate

different scale features. With gated sum fusion, the network

can exploit more skip layers from richer scale features in

DCNN and customize a suitable integration of different

scale features. To the best of our knowledge, our gated sum

is the first work to selectively aggregate appropriate scale

features in a single network.

3. Segmentation Networks

Challenges of applying DCNN on scene segmentation

are closely associate with the various forms of objects/stuff

(e.g. salient or inconspicuous, foreground or background)

and the existence of multi-scale objects. A robust seg-

mentation network should be able to handle huge scale

variation of objects and detect inconspicuous objects/stuff

from images overwhelmed by other salient objects.

3.1. Overall Framework

The overall framework of our network is shown in Figure

2. Our baseline is FCN-like architecture with ResNet-101

(pre-trained on ImageNet [49]) as backbone network. We

add more skip layers to fuse rich scale feature maps. The

proposed context contrasted local (CCL) model in Figure

2 generates multi-level and multi-scale context aware local

features. Furthermore, we propose a gated sum denoted by

g+ in Figure 2 to selectively aggregate rich scale features

in DCNN and CCL.

The proposed CCL and Gated Sum are presented in

details in the following sections.

3.2. Context Contrasted Local Feature

Context information is known being essential for scene

labeling that can greatly improve performance. In fact,

DCNN has already generated relatively high-level context

features for object recognition [53, 22], but these context

features penchant for abstract feature representation of

the whole image, which are not appropriate for scene

segmentation where labeling for each pixel is required.

...
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Figure 2: Overview of our network framework. The proposed

context contrasted local (CCL) model generates multi-level and

multi-scale context aware local features. Gated sum selectively

aggregate rich scale features in DCNN and CCL.

First, these context features generated for object recognition

focus on the dominated objects of the whole image and

cannot ensure useful context for inconspicuous objects and

stuff. Also, they are not discriminative at different spatial

positions. Therefore, it is significant to design tailored high-

level features for scene segmentation.

Lots of previous works devote to obtain informative

context for robust semantic segmentation, such as [8, 51,

57, 61]. Different from previous works, we introduce a

context contrasted local feature to perform high-level fea-

ture modeling. Compared with object segmentation, there

are richer categories and complex conjunctions between

categories in scene segmentation. Due to the complexity

of objects and stuff in scene segmentation, indiscriminately

collecting context information will bring harmful noise,

especially under clutter surroundings. For example, in

Figure 4, compared with the two persons, the cars behind

them are inconspicuous objects. The detailed local feature

collects information around pixel A and is discriminative

to other pixels, but it is not aware of global information

such as road and building, thus could not obtain robust

high level features for pixel A. However, aggregating

context will bring features of dominated objects like the

men, thus the features of pixels at the car, like pixel A,

will be dominated by the features of the men. Some

information of cars would be ignored in the final prediction,

resulting wrong labeling for pixels at that location. Also,
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Figure 3: Context Contrasted Local (CCL) is a convolutional

network integrating multi-level context aware local features. Each

block of CCL consists of two parallel parts: coarse context and

delicate local. The context aware local features are obtained

via making a contrast between the context and local information.

Several blocks are chained to make multi-level context contrasted

local features.

contexts for different position are apt to a consistency

representation of dominated features, thus are lacking

in discrimination. Therefore, it’s very hard to collect

appropriate and discriminative high level features for pixel

A. To address this issue, we propose to generate local

information and context separately and then fuse them via

making contrast between these two:

CL = Fl(F,Θl)−Fc(F,Θc) (1)

where F is the input features, Fl is the function of local

Conv, Fc is the function of context Conv, Θl and Θc

are respective parameters, and CL is the desired context

contrasted local features. They make a contrast between

the separated context and local information, thus could not

only exploit useful context but also foreground the local

information in contrast to the context. Function of context-

local forces the networks generating tailored features for

scene segmentation. It is a mechanism that imitates human

behavior. When our human beings look at one object we

always collect discriminative-context for that object in a

way that our eyes focus on that object in contrast to the

blurred surroundings [13]. In other word, we concentrate

on that object while we are aware of its surroundings.

Context Contrasted Local (CCL) Model. The architec-

ture of CCL is shown in Figure 3. The CCL consists of

several chained context-local blocks to make multi-level

context contrasted local features. Gated sum (presented in

the next section) is adopted in CCL to selectively aggregate

different levels of context contrasted local features.

Comparison with State-of-the-art Context Models.

Local

Coarse Context Context-Local E�ect of Contex-Local

Dense ContextPixel A

Pixel A

Figure 4: (Best viewed in color) Visualization of different feature

information. The local information of pixel A could not aggregate

useful contexts, such as road and other cars. However, its

contexts will be dominated by the features of the men in the both

schemes of dense context and coarse context. The context-local

scheme injects blur context to local feature of pixel A to make

discriminative context aware local feature.

ASPP[8] aggregates multi-scale contexts via combining

score maps generated by different context aggregation

branches, each of which uses dilated Conv kernels with

different stride rates to incorporate different scale contexts.

Compared with this type of context model, CCL first

contextualizes contrasted features at every block to obtain

context aware local features, which combines two different

scales in the feature level and take advantage of both

context and local information, then further aggregate

multi-scale context contrasted local features in score level.

Moreover, the score maps of CCL are fused via gated

sum instead of the simple sum. DAG-RNN [51] performs

contextual modeling by propagating local information

in feature maps to encode long-range context. Different

from DAG-RNN, CCL exploits multi-scale features for

segmentation, and the context aware local features of

CCL are different from those in DAG-RNN. CRF [28] is

ordinarily applied to score maps and boosts consistency of

low-level information like boundary, while CCL aims to

discriminative high-level features. In fact, CRF can also

be used as a post-processing step to promote performance

of our segmentation network. We compare these context

models in a controlled experiment and summarize their

performance on Pascal Context in Table 1. The proposed

CCL noticeably outperforms others, which demonstrates

the significance of CCL.

3.3. Gated Multi­scale Aggregation

In this section, we discuss how to select different scale

of features. One of the challenges in applying DCNN to

scene segmentation is that it is difficult to use a single scale

to obtain appropriate information for all pixels because of

the existence of objects at multiple scales. An efficient
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and effective way to address this challenge is to add skip

layers from the middle layers of DCNN. Based on the

encoder-decoder architecture FCN [38], skip layers being as

classifiers are used to exploit multi-scale features in DCNN

to generate corresponding segmentation score maps.

However, in previous works such as [38, 21, 40, 51, 7],

the score maps of skip layers are mainly integrated via

sum fusion that does not take into account the individual

differences of these inputs. Sum fusion can only non-

selectively collect the score maps from different skip

layers, but some of them may not be appropriate or

even be harmful. If these score maps are aggregated

indiscriminately, the inapposite or incorrect scores will

harm the final prediction. To address this problem, we

propose an aggregation scheme called gated sum to select

different scale features. There are inherent position-wise

gates in this scheme to control the information flow of

skip layers. The primary motivation of gated sum is that

we need to adaptively decide the desirable receptive field

of each pixel in the image based on its scale, contextual

support, etc. A by-pass and simple approximated solution

is to pick different scale features for different pixel in

FCN framework, where skip layers are aimed to capture

multi-scale features. With gated sum fusion, the network

can customize a suitable aggregation choice of score maps

according to the information of images, corresponding to

choose which scale of feature is better and more desirable.

More importantly, with gated sum fusion, we can add

more skip layers to extract richer scale information without

posing problem of inapposite results.

The proposed scheme of gated sum is shown in Figure

5 where the values of gates are not directly learned from

the training data but are generated from the testing image

by a network learnt from the training data. In this way, the

values of the gates are adaptive to the different testing input

images. In order to obtain the information to control the

gates, such as scale and contextual support, info-skip layers

consisting of Conv+Sigmoid are introduced to extract the

information from corresponding feature maps and generate

information maps with size H×W×1, where H×W is the

spatial size of feature maps. Since these information

maps and score maps of skip layers are generated from

a same DCNN, the sequence relationship, e.g. from low

level to high level, among feature maps of DCNN should

also be considered. Recurrent Neural Networks (RNN)

[17, 18, 19, 33] is effective and efficient to learn such

sequence relationship, thus all of the information maps are

feeded to RNN in sequence to learn the relationship of

these information maps. Based on RNN, these information

maps can be aware of neighbourhood maps and acquire the

sequence relationship among all of the information maps.

In details, we hypothesize that the information maps

from higher layers have already grasped the information of

Higher Layer

...

Info-S

Info-S

...

Concat

Conv
1x1

Sum Split

Classi�er

Global

Re�ne. .
 .

*

*

... Sum

RNN

... ...

Global Re�ne

Info-S Info-Skip:
Conv(1x1)+Sigmoid

*
Element-wise 

Multiplication

. .
 .

. .
 .

Norm

-alized ...

Lower Layer

Classi�er

Figure 5: Gated Sum could control the information flow of skip

layers via its inherent gates. The gates G
n
p could adjust its value

according to the input images. All the maps in gated sum have the

same spatial size of H×W.

lower layers due to the effect of DCNN, thus the RNN begin

with information map of the last layer of our segmentation

network. Suppose there are N score maps Sc,np generated by

N skip layers from different scale features Fn
p , i.e. Sc,np =

Fn
s (F

n
p ,Θ

n
s ), where p is the spatial position, n ∈ 1, 2..., N ,

c ∈ 1, 2..., C and C is the number of class labels, Fn
s

is the classifier function of nth skip layer and Θn
s is its

parameters, Fn
p is the input feature with the dimensionality

of H×W×#channels. For each skip layer, we first generate

an information map I
n
p of size H×W×1 from corresponding

feature:

I
n
p = F

n
i (F

n
p ,Θ

n
i ) (2)

where Fn
i is the function of nth info-skip layer

Conv+Sigmoid and Θn
i is its parameters. Then

these information maps Inp are inputted to RNN in sequence

to learn their relationships:

hn
p = tanh

(

Wn

(

hn−1

p

I
n
p

))

(3)

where hn
p is the nth output of RNN. To make our network

efficient, all positions are processed parallely and Wn is

shared for all spatial positions. To ensure every information

map be aware of global information, the outputs of RNN

are concatnated , Hp = (h1

p...h
N
p )T , and refined with global

information:

Hp = Fg (Hp,Θg) +Hp (4)

where Fg is a 1×1×N×N Conv and Θg is its parame-

ters. Next, Hp is splitted, Hp = (h
1

p...h
N

p )T , and used to

generate the gates Gn
p for gated sum:

Gn
p = N ·

eh
n

p

∑N

i=1
eh

i

p

(5)
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the sum of Gn
p for each position p is normalized to N.

Finally, N score maps are selectively fused via gated sum:

S
c

p =

N
∑

n=1

Gn
pS

c,n
p (6)

where S
c

p is the output of gated sum.

The gates of gated sum control the information flow of

skip layers, i.e. how much can the S
c,n
p pass the gates

depends on the value of Gn
p . A larger Gn

p means a better

feature, for labeling of position p, is used for nth skip layer.

While a smaller Gn
p means that for position p, the parsing

results generated by the nth skip layer is not desirable and

should be inhibited. More importantly, Gn
p is neither fixed

value nor directly learned from training data. It is generated

from the testing image by the proposed networks learned

from the training data. Thus, Gn
p is adaptive to different

testing images. The values of Gn
p not only depend on the

training data, but also depend on the testing input images

and vary according to the feature maps. Therefore, we call

them “gates” to differentiate them from the simple fixed or

learned “weights”. With gated sum, the network adaptively

(to different testing images) selects appropriate score maps

from richer scales of features.

• Sum is a special case of the gated sum where all the

gates are fixed to “1”. Sum fusion dose not take into

account the individual characteristic of different inputs

and could only indiscriminately fuse all the inputs.

• Gated sum selectively aggregates appropriate score

maps for each position’s parsing via its inherent gates.

The gate Gn
p adjusts its value adaptive to the testing

input features to control the information flow of skip

layers.

4. Experiments

We evaluate our segmentation framework on 3 public

scene segmentation datasets, Pascal Context, SUN-RGBD

and COCO Stuff.

4.1. Implementation Details

We use truncated ResNet-101 [22] (pre-trained on Ima-

geNet [49]) as our fine-tune model. In detail, pool5 and

layers after it are discarded and a convolutional adaption

layer that decrease the feature channels from 2048 to 512

is placed on the top of truncated ResNet-101 to reduce

parameters. The number of blocks in CCL can be modified

according to inputs, ours is six. We upsample the score

maps with deconvolution (transpose convolution).

Our Network is trained end-to-end with SGD with fixed

momentum 0.9 and weight decay 0.0005. Following [8],

we employ the ”poly” learning rate, Lrc = Lri×(1 −
iter

max iter
)power, where the Lrc is current learning rate and

Networks CA IoU

Baseline None 42.5%

Baseline + CRF[28] CRF 43.2%

Baseline + DAG-RNN [51] DAG-RNN 44.1%

Baseline + ASPP [8] ASPP 44.9%

Baseline + CCL CCL 48.3%

Table 1: Segmentation networks are adapted to encode-decode

architecture with rich skip layers, the stride rates (dilation factors)

of the four branches in ASPP are revised to {1, 3, 4, 6}
respectively. For fair comparisons, gated sum is not adopted, and

they only differentiate each other in terms of context aggregation

(CA).

Method GPA ACA IoU

Baseline 73.5% 53.9% 42.5%

Baseline+LA 75.8% 57.6% 45.9%

Baseline+LAd 75.7% 56.6% 45.4%

Baseline+CCL 76.6% 61.1% 48.3%

Table 2: Ablation experiments of CCL on Pascal Context. LA is

local aggregation generated by removing the context part of CCL.

LA
d doubles the hidden dimensionality of LA from 512 to 1024,

thus its parameter quantity is the same as CCL. Other settings are

all the same.

Lri is the initial learning rate. The initial learning rate is set

to be 10−3 and the power is set to 0.9. The iteration number

is set to 15K for Pascal Context, 13K for SUN-RGBD and

20K for COCO Stuff. Batch size is 10 during training

and the statistics of batch normalization layer is updated

after the final iteration. The parameters of new layers are

randomly initialized with Gaussian distribution (variance

10−2) and trained with higher learning rate (×3). For batch

processing, all images are resized to have maximum extent

of 512 pixels and padded with zero to 512 × 512 pixels

during training. We randomly flip the images horizontally

to augment the training data.

We evaluate our network with three performance metric-

s: Global Pixel Accuracy (GPA), Average Class Accuracy

(ACA) and Mean Intersection-over-Union (IoU). Mathe-

matical definitions please refer to [38].

4.2. Multi­scale Context Contrasted Local Features

In section 3.2 we introduced context contrasted local

(CCL) model to integrate multi-level context aware local

features. To evaluate the key principle (i.e. multi-scale

context contrasted local features) of CCL, we simplify our

context-local network architecture CCL to LA, and LAd.

LA abandons the context parts (dilated Conv) of CCL

and LAd doubles the hidden dimensionality of LA. The

performance of these models are listed in Table 2. Their

performance gap clearly demonstrates the benefit brought

by the proposed CCL model.

First, compared with LA that is conventional con-
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volutional feature, CCL aggregates specialized context

contrasted local features that not only leverages the infor-

mative context but also exploits the discriminative local

information in contrast to the context. In consequence,

CCL outperforms LA by a noticeable margin, which clearly

shows the significance of the context contrasted local

features for scene segmentation.

It’s crucial to introduce new parameters that fill the

domain gap during the fine-tuning of segmentation net-

works from classification networks. However, we believe

that the network architecture outweighs the magnitude of

parameters for boosting the performance. To validate this

claim, we increase the hidden dimension of LA from 512

to 1024, which is denoted by LAd in Table 2. The

parameter quantity of LAd is then the same as CCL, but

LAd does not improve the performance of LA and even

slightly make it worse. This convinces us that the noticeable

performance boost is mainly contributed by the architecture

of the context contrasted local features, not from simple

increase of the network parameters.

4.3. Embed Gated Sum into Encoder­Decoder
Architecture

Gated sum is a selection mechanism to pick appropriate

features. But for the encoder-decoder architecture, the

spatial sizes of distinct blocks are not the same, e.g. 16×16
for block 5 and 32× 32 for block 4 in Figure 2. This causes

difficulty of aggregating all the score maps. The most

straightforward solution is upsampling all the score maps

to the same resolution. However, this will consume a large

amount of resources. Therefore, in this work, we embed the

gated sum into the encoder-decoder architecture. For this

purpose, we adopt gated sum within each block where the

feature maps possess with the same spatial resolution. Then

the output of gated sum is upsampled to higher resolution to

participate in the gated sum in block with higher resolution.

Meanwhile, to pass the information maps form block to

block, the last output of RNN is also upsampled to generate

the gates for the upsampled score map.

We present an ablation experiment of the gated sum in

Table 3. As shown in Table 3, the gated sum improves the

performance visibly. Comparing ResNet-101 to ResNet-50

and comparing the networks with CCL to those without

CCL, we see that the performance gain brought by the

gated sum will be higher if there are more score maps for

selecting.

4.4. Results On Scene Segmentation

Pascal Context [41] contains 10103 images from Pascal

VOC 2010, and these images are re-annotated as pixel-wise

segmentation maps. There are 4998 images for training and

5105 images for testing in Pascal Context. We use the most

common 59 categories in this dataset for evaluation. A few

Baseline Model Gated Sum CCL IoU

ResNet-50 no no 40.7%

ResNet-50 yes no 41.5%

ResNet-50 no yes 46.3%

ResNet-50 yes yes 48.1%

ResNet-101 no no 42.5%

ResNet-101 yes no 43.9%

ResNet-101 no yes 48.3%

ResNet-101 yes yes 51.6%

Table 3: Ablation experiments of Gated Sum on Pascal Context.

Images Baseline Ours Ground Truth

Figure 6: Qualitative segmentation result comparisons on Pascal

Context. Our segmentation network performers well at salient

objects, stuff (e.g. road, grass, sky) and inconspicuous objects.

Further, our network has a robust adaptability to multi-scale

objects.

examples on validation set of Pascal Context are shown in

Figure 6. Compared with the baseline, our segmentation

network performers better at global information, salient

objects, stuff and inconspicuous objects and has a robust

adaptability to multi-scale objects. Quantitative results of

Pascal Context are shown in Table 4. It shows that our

segmentation network outperforms the state-of-the-arts by

a large margin for all the three evaluation metrics.

SUN-RGBD [54] provides pixel-wise labeling for 37

categories. It has 10335 indoor images which are from
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Methods GPA ACA IoU

O2P[6] - - 18.1%

CFM [11] - - 34.4%

FCN-8s [50] 67.5% 52.3% 39.1%

CRF-RNN [64] - - 39.3%

ParseNet [35] - - 40.4%

BoxSup [10] - - 40.5%

ConvPP-8 [60] - - 41.0%

HO-CRF [1] - - 41.3%

PixelNet [3] - 51.5% 41.4%

Context-CRF [30] 71.5% 53.9% 43.3%

DAG-RNN + CRF [51] 73.6% 55.8% 43.7%

FCRN [58] 72.9% 54.8% 44.5%

DeepLab-v2+CRF†[8] - - 45.7%

Hu et al.[23] 73.5% 56.7% 45.8%

Global-Context[25] 73.8% - 46.5%

RefineNet-Res101 [29] - - 47.1%

RefineNet-Res152 [29] - - 47.3%

PSPNet-Res101 [63] 76.0% 60.6% 47.8%

Ours 78.4% 63.9% 51.6%

Table 4: Pascal Context testing accuracies. Our network

outperforms all existing methods by a large margin across all

evaluation metrics. Methods trained with extra data are marked

with †.

Methods GPA ACA IoU

Liu et al. [32] - 10.0% -

Ren et al. [47] - 36.3% -

FCN-8s [38] 68.2% 38.4% 27.4%

DeconvNet [42] 66.1% 33.3% 22.6%

Kendall et al. [27] 71.2% 45.9% 30.7%

SegNet [2] 72.6% 44.8% 31.8%

DeepLab [8] 71.9% 42.2% 32.1%

Context-CRF [30] 78.4% 53.4% 42.3%

RefineNet-Res101 [29] 80.4% 57.8% 45.7%

RefineNet-Res152 [29] 80.6% 58.5% 45.9%

Ours 81.4% 60.3% 47.1%

Table 5: SUN-RGBD (37 classes) segmentation results. We do

not use the depth information for training. Our segmentation

network outperforms existing methods consistently across all the

three evaluation metrics.

SUN3D [59], NYUDv2 [52], Berkeley B3DO [26] and the

newly captured images. The training set has 5285 images

and the test set contains 5050 images. We only use the

RGB modality as input for training. Quantitative results

of SUN-RGBD are reported in Table 5. It shows that our

segmentation network outperforms the previous state-of-

the-arts consistently across all evaluation metrics.

COCO Stuff [5] contains 10000 images from Microsoft

COCO dataset [31], out of which 9000 images are for

training and 1000 images for testing. The unlabeled

stuff pixels in original images of Microsoft COCO are

further annotated with additional 91 classes in COCO

Stuff. Herein, this dataset contains 171 categories including

objects and stuff annotated to each pixel. Quantitative

Networks GPA ACA IoU

FCN [5] 52.0% 34.0% 22.7%

DeepLab [7] 57.8% 38.1% 26.9%

DAG-RNN[51] 62.2% 42.3% 30.4%

RefineNet-Res101 [29] 65.2% 45.3% 33.6%

Ours 66.3% 48.8% 35.7%

Table 6: Parsing performance of different networks on COCO

Stuff dataset. Our segmentation network outperforms the state-

of-the-arts by a large margin across all evaluation metrics.

results of COCO Stuff are shown in Table 6. Our scene

segmentation network outperforms the existing methods by

a large margin across all evaluation metrics.

5. Conclusion

In this paper, we address the challenging task of scene

segmentation. Scene segmentation aims at parsing an image

into a set of coherent semantic regions and classifying each

pixel to one of classes, and hence the context and multi-

scale aggregation are crucial to achieve good segmentation.

However, DCNN designed for image classification tends to

extract abstract features of dominated objects, thus some

essentially discriminative information for inconspicuous

objects and stuff are weakened or even disregarded. To

address this issue, we propose a novel context contrasted

local feature to leverage the useful context and spotlight the

local information in contrast to the context. The proposed

context contrasted local feature greatly improves the pars-

ing performance, especially for inconspicuous objects and

stuff. Adding skip layers is a common way to exploit multi-

scale features, but the existing approaches indiscriminately

fuse the score maps of skip layers via a simple summation.

To achieve an optimal multi-scale aggregation, we propose

a scheme of gated sum to selectively aggregate multi-scale

features. The values of gates are generated from the testing

image by the proposed networks learnt from the training

data. Thus, they are adaptive not only to the training

data, but also to the specific testing image. Without bells

and whistles, our segmentation network achieves state-of-

the-arts consistently on the 3 popular scene segmentation

datasets used in the evaluation, Pascal Context, SUN-

RGBD and COCO Stuff.
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