
Hyperparameter Optimization for Tracking with Continuous Deep Q-Learning

Xingping Dong 1, Jianbing Shen∗ 1,2, Wenguan Wang 1, Yu, Liu 1, Ling Shao 2,3, and Fatih Porikli 4

1
Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China

2Inception Institute of Artificial Intelligence, Abu Dhabi, UAE
3School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, U.K.

4Research School of Engineering, Australian National University, Australia

Abstract

Hyperparameters are numerical presets whose values

are assigned prior to the commencement of the learning

process. Selecting appropriate hyperparameters is critical

for the accuracy of tracking algorithms, yet it is difficult to

determine their optimal values, in particular, adaptive ones

for each specific video sequence. Most hyperparameter op-

timization algorithms depend on searching a generic range

and they are imposed blindly on all sequences. Here, we

propose a novel hyperparameter optimization method that

can find optimal hyperparameters for a given sequence us-

ing an action-prediction network leveraged on Continuous

Deep Q-Learning. Since the common state-spaces for ob-

ject tracking tasks are significantly more complex than the

ones in traditional control problems, existing Continuous

Deep Q-Learning algorithms cannot be directly applied. To

overcome this challenge, we introduce an efficient heuris-

tic to accelerate the convergence behavior. We evaluate our

method on several tracking benchmarks and demonstrate its

superior performance1.

1. Introduction

Recent years witnessed a burst of object tracking solu-

tions based on correlation filters and deep learning mod-

els. After the pioneering work of Henriques et al. [19],

the kernelized correlation filter has evoked increasing at-

tention in tracking applications thanks to its computation-

al advantages, robust performance, and appealing theoreti-

∗Corresponding author: Jianbing Shen (shenjianbing@bit.edu.cn).

This work was supported in part by the Beijing Natural Science Foun-

dation under Grant 4182056, the Australian Research Council’s Discovery

Projects funding scheme under Grant DP150104645, the Fok Ying Tung

Education Foundation under Grant 141067, and the Specialized Fund for

Joint Building Program of Beijing Municipal Education Commission.
1Our source code is available at https://github.com/

shenjianbing/dqltracking.

KCF SiamFc-3s Siam-py Ours
Figure 1. Sample results of our hyperparameter optimization

method on a real-time tracker: Siam-py [48]. By only optimiz-

ing the hyperparameters of Siam-py, we achieve a significant im-

provement. For instance, our method improves the distance preci-

sion [53] from 4.6% to an astounding score of 99.7% on Bolt (top

row). It also outperforms the original versions of KCF [19] and

SiamFc-3s [3].

cal framework. Many variants were devised to further im-

prove its accuracy. For instance, Color Name [10] applies

an alternative feature representation, DSST [9] estimates

object scale using a multi-scale correlation filter, and LCT

[34] and MUSTer [20] attempt to recover the target after a

complete occlusion. In parallel, contemporary deep learn-

ing models have also been incorporated in object tracking

tasks. Some approaches focus on accuracy, including Deep-

Track [27, 28] and MDnet [37], which won the VOT 2015

518

https://github.com/shenjianbing/dqltracking
https://github.com/shenjianbing/dqltracking

challenge [26]. Several others aim at faster computational

speeds such as deep regression networks [18], SiamFc [3],

CFnet [48] and Siam-py [48].

Regardless of the tracking approach, hyperparameter-

s need to be optimized for the desired performance. For

example, Siam-py [48] adjusts its five hyperparameters by

randomly grid searching 300 times in a validation dataset

of 129 videos, which requires a lot of time. In most appli-

cations, hyperparameters are finetuned manually, which is

impractical and time-consuming. Moreover, hyperparame-

ters of many trackers are fixed and enforced to be identical

across all test cases. Even if they may be suitable for some

sequences, it is highly likely that the same hyperparameters

may deteriorate the results for the others.

Our intuition is that by automatically selecting an opti-

mal set of hyperparameters for each sequence, even for each

frame, it is possible to improve the performance of a given

baseline tracker. For instance, as shown in Fig. 1, the per-

formance of Siam-py tracker [48] can be greatly enhanced

by selecting a better set of hyperparameters. Most hyper-

parameter optimization algorithms including grid search,

greedy search [1], tree search [22], Bayesian processes [44],

and bandit-based scheme [29], concentrate on how to find

the best hyperparameters on a validation set within a limit-

ed time and fix the obtained hyperparameters, which makes

them invariant to test data.

Our ultimate goal is to optimize hyperparameters dy-

namically to accommodate different sequences. One idea

is to employ a conventional neural network to predict the

optimal hyperparameters for each sequence. However, we

do not have the ground-truth values of the hyperparameter-

s, thus we cannot provide target values for the network to

regress them in a supervised fashion.

In reinforcement learning, an agent is trained to learn a

policy to take a better action by giving a reward for its action

according to the current state. The learning goal is to maxi-

mize the expected returns in a time sequence, where the re-

turn at time step t is defined as the accumulation of rewards

from t to the end of the sequence. For our optimization task,

we use a neural network to represent the agent and allow

it choose the hyperparameters for each frame by regarding

the choice as its action. By defining the reward as tracking

accuracy, the goal of reinforcement learning becomes max-

imizing the expected cumulative tracking accuracies, which

is consistent with the tracking evaluation.

Since the hyperparameters of most trackers are continu-

ous, we apply reinforcement learning in continuous actions

settings. Recently, [31] proposed Deep Deterministic Pol-

icy Gradient (DDPG) to solve the problem of continuous

actions by adding an action-predict network into Deep Q-

learning [36]. Following that, [15] simplified DDPG with

Normalized Advantage Functions (NAF), which devises an

imagination rollouts mechanism to accelerate the learning

process. NAF decomposes the Q-function (evaluation of

the action taken at current state) into three independent deep

networks: action-predict, value, and lower-triangular matrix

nets, which are trained by using replay buffer for sampling

and minimizing the Q-value’s temporal difference between

samples. To reduce the training time, we opt for NAF as

our base method. However, the convergence speed of a di-

rect incorporation of NAF would still be too slow for object

tracking due to two reasons. The first one is that our state-

space (embodying observations) is much higher dimension-

al than the state-spaces of ordinary control problems. For

example, in the task of ‘pendulum swing-up’, only a vector

with three coefficients is sufficient to represent the state-

space [43]. In object tracking, the dimensionality of the

state vector may easily reach to hundreds or thousands to

allow the extracted features to accurately represent video

frames. The second factor is that computing the reward,

i.e., tracking accuracy, in an object tracking setting would

involve more intensive computations (tracker needs to be

run) whereas in other applications of reinforcement learning

it would take little computational time to get the reward.

To obtain an even further acceleration of NAF, we im-

pose an efficient heuristic inspired by some recent stud-

ies [11, 4, 42, 46, 41, 32, 33]. Firstly, we use the orig-

inal hyperparameters as the supervised labels to train the

action-predict network to attain a reliable initial action (hy-

perparameters). Then, we freeze the action-predict network

and learn parameters of the other value, and lower-triangle

matrix networks. After that, we have a reliable initializa-

tion and apply it to train all three networks with the NAF

method. Our heuristic is simple yet effective, which is

demonstrated in our experiments. After the training, we

only apply the action-predict network to adjust the hyper-

parameters of the tracker. Figure 2 shows a flowchart of

our adjustment process. In our experiments, we use a smal-

l action-predict network (only with 3 convolutional layers

and 3 fully-connected layers) to reduce the computations

further. We verify our method on a recent real-time track-

er, named Siam-py [48]. The results show that the adjusted

tracker achieves a significant improvement in terms of the

Area Under Curve (AUC) metric [53] (by increasing 5.4%
from 0.597 to 0.629 on OTB-2013 [53]) while having s-

lightly reduced speed (from 74 FPS to 69 FPS). Our hyper-

parameter optimization is suitable for all trackers that gen-

erate heat-maps, including the majority of the correlation

filter based trackers and deep trackers [51, 3].

2. Related works

Hyperparameter optimization: Consequently, hyper-

parameters are set with brute-force methods such as random

search and grid search. To develop more efficient search

methods, some researchers [1, 22, 44] dominate the prob-

lem of hyperparameter optimization by using Bayesian Op-

519

Figure 2. The flow chart of online tracking with our action-predict network based adjustment process. Green arrows shows the original

tracking method. A tracker is applied on search region to get a heat-map used to predict the object bounding box, and offer search region

for next frame. To adjust the original tracker, we only add two parts: initialization (blue arrows) and action prediction (orange arrows). In

initialization, we run the original tracker once on search region in frame 2 to get the initial heat-map. In action prediction, the heat-map is

feed into Action Network to predict optimal hyperparameters to adjust the tracker.

timization methods to identify good hyperparameter con-

figurations more quickly than standard baselines like ran-

dom search. Existing works [47, 13, 45] have proven that

these methods outperform random search in empirical ex-

periments. To further accelerate Configuration Selection,

Li et al. [29] define hyperparameter optimization as a

pure-exploration non-stochastic infinitely many armed ban-

dit problem and give some theoretical desirable guarantees.

The aim of the above hyperparameter optimization methods

is to find a fixed good set of hyperparameters, which is not

suitable for our task since we need to search for dynamical

hyperparameters for each sequence. A similar work [17] is

proposed to control the learning rate on the gradient-based

learning method by using deep Q-learning. In fact, it is on-

ly used to learn an optimization hyperparameter while our

method can be applied to control multiple hyperparameters.

Continuous Deep Q-learning: Mnih et al. [36] pro-

pose a ‘Deep Q Network’ (DQN) algorithm to play many

Atari video games and achieve human level performance,

by combining advances in deep learning and reinforcement

learning. DQN is effective for the task with discrete and

low-dimensional action spaces, but it cannot be directly

used for high-dimensional, continuous action spaces. To

solve this problem, Lillicrap et al. [31] present a model-

free, off-policy actor-critic algorithm based on deep ap-

proximate function and the Deterministic Policy Gradient

(DPG) algorithm [43], called DDPG. They design an ac-

tor network to represent a continuous action and a crit-

ic Q network to evaluate its action. These networks are

trained with a replay buffer similar in DQN. To accelerate

DDPG, Gu et al. [15] propose two complementary tech-

niques: they derive a continuous variant of the Q-learning

algorithm called Normalized Advantage Functions (NAF)

to simplify the DDPG; they use the iteratively refitted local

linear models (imagination rollouts mechanism) to further

speed up the process. Existing empirical evidences have

shown DDPG and NAF can learn competitive policies for

the task using low-dimensional observations. However, for

high-dimensional tasks like our hyperparameter optimiza-

tion on tracking, they may fail or take long time to learn

good policies.

Tracker with heat-map: Our hyperparameter frame-

work can be directly applied to the tracker with heat-map,

thus we give several real-time related works including some

deep learning trackers [3, 48, 16] and recent correlation fil-

ter based trackers [5, 19, 9, 10, 34, 58, 2, 12, 52, 24, 14].

Here, we only introduce some trackers with high frame-

rates (more than 50 FPS).

Bertinetto et al. [3] propose a end-to-end trained

Siamese network with fully convolutional layers (SiamFc)

for tracking, which is not updated during the tracking phase.

So it achieves high frame-rates beyond real-time, nearly 86

FPS with GPU. In CFnet [48], a correlation filter layer is

embedded into a Siamese network to enable learning deep

features that are tightly coupled to the Correlation Filter

(CF). It shows that 2 convolutional layers adding CF layer

in Siamese network will achieve similar performance and

speed (75 FPS) compared with SiamFc including 5 convo-

lutional layers.

The early MOSSE [5] and improved Kernelized Corre-

lation Filter (KCF) [19] can achieve the speed at 669 FPS

and 292 FPS respectively. The following CN [10] track-

er combined with adaptive color name feature can operate

at 105 FPS. Another work Staple [2] tries to use multiple

features containing color and HOG [8] to achieve robust

performance and high speed (80 FPS). Recently, Wang et

al. [52] accelerate the Structured output support vector ma-

chine (SVM) based tracker using the correlation filter algo-

rithm and it can also run at 80 FPS.

Tracker with reinforcement learning: In computer

520

vision, reinforcement learning (RL) has been successfully

used to some applications, such as object detection [6, 23].

For visual object tracking, there are several works [55, 7,

56, 21, 46] that use RL to learn good policies for tracking,

e.g., [46] learns when to update the tracker and [56] learns

an early decision policy for different frames to speed up the

tracker. Our work is the first one to use RL to learn the

optimal hyperparameters of a tracker for each frame.

3. Our approach

In this section, we first briefly introduce reinforcement

learning and how to transfer it for continuous hyperparam-

eter optimization. Then we describe a heuristic method to

speedup continuous deep Q-learning for our task. For u-

nified notation, we use the same math notation in [15] for

reinforcement learning.

3.1. Reinforcement learning for hyperparameter
optimization

In reinforcement learning, the main abstract concepts in-

clude the agent and environment E, which are interacted for

each other. At each time step t ∈ [1, T], the agent take an

action ut from action space U according to its current pol-

icy π(ut|xt) and state xt ∈ X in environment E. The en-

vironment gives a reward r(xt,ut) for this action and then

update its states with a dynamic distribution p(xt+1|xt,ut).
According to this new state, the agent will go into next time

step and choose a new action. For each time step t, a re-

turn reward is defined as Rt =
∑T

i=t γ
i−tr(xi,ui), where

γ ∈ (0, 1] is a discount factor that prioritizes earlier reward-

s over later ones. The goal of reinforcement learning is

to train an agent with policy π to maximize the expected

sum of returns, defined as R = Eri≥1,xi≥1∼E,ui≥1∼π[R1].
To optimize the expected return R, a variant of model-free

and model-based algorithms are proposed. In the next sub-

section, we will review the most recent deep Q-learning al-

gorithm for continuous action space [15], which is the main

learning method in our experiments. Now we explain how

to transfer the reinforcement learning to hyperparameter op-

timization in object tracking.

In hyperparameter optimization for object tracking, the

goal is find the optimal hyperparameters of the tracker for

each frame in a sequence. An object tracking algorithm and

its input sequence can be seen as the environment in rein-

forcement learning. Adjusting the hyperparameters can be

seen as an action. Then the hyperparameter optimization

is turned into learning a policy to choose the best action by

training an adjusting agent. In object tracking, a lot of track-

ers like [3, 48] will produce a heat-map in the search region

and then the location with the highest value is selected as

the object location. This heat-map will capture the informa-

tion of the tracker and the appearance of the object being

tracked, and it will offer useful information for adjusting

hyperparameters. Thus, we can apply the heat-map ht−1 in

the previous frame to construct the state xt, written as

xt = {ht−1, ot−1, θ
tr
t−1} (1)

where ht−1 = HEAT (ot−1|θ
tr
t−1) is a spatial heat-map

with size H × W , ot−1 is the appearance feature (such as

the RGB-color or deep convolutional feature) of the search

region with size h × w × f , HEAT is a mapping func-

tion from R
h×w×f to R

H×W , and θtrt−1 is the parameters

of the tracker (including hyperparameters). Given the state

xt, the adjusting agent will take an action i.e. choose a hy-

perparameter vector at ∈ R
Na , where Na is the number of

hyperparameters to be adjusted. It is a user-defined variable

and varies with different trackers. In this paper, we choose 5

key hyperparameters in Siam-py [48] containing scale step,

scale penalty, scale learning rate, window weight, and tem-

plate learning rate. After taking an action (ut = at), the

tracker will be updated by replacing the hyperparameters

with ut, formulated as

θtrt = UPDATE(θtrt−1,ut) (2)

Then we use the updated tracker to predict the object box

bt in current frame t, defined as

bt = φ(ot|θ
tr
t) (3)

where φ is the mapping function of the tracker. As shown in

equation (1) , the updated tracker θtrt is also applied to pre-

dict the heat-map in frame t, and transfers the state from xt

to xt+1. In the training phase, the reward function r(xt,ut)
is defined according to the Intersection-over-Union (IoU)

between the predicted box bt and ground-truth box gt. The

IoU can be formally defined as

IoU(bt,gt) = area(bt ∩ gt)/area(bt ∪ gt). (4)

Then the reward function r(xt,ut) is formulated as

r(xt,ut) =

{

IoU(bt,gt), stop = 0

−3, stop = 1
(5)

where stop is a flag deciding whether the agent stops to

take an action. Assume the agent takes a policy to adjust

the tracker but gets small IoUs (less than a threshold thres)

at consecutive K frames - it means tracking failure and this

policy is not suitable for the current sequence. We need to

give a negative reward to punish the agent and stop to adjust

the tracker with this policy in the current sequence . Thus,

we use the stop flag to represent the situation with tracking

failure and define the reward function in equation (5). In

our experiments, we set thres = 0.5 and K = 5.

521

3.2. Continuous Deep Q­learning

To solve the reinforcement learning problem in a con-

tinuous action space, Lillicrap et al.[31] propose a simple

model to enable deep Q-learning into the continuous action

space and accelerate learning with new imagination rollout-

s. This method is suitable for the classical control tasks with

a low dimensional state space. However, it cannot be ap-

plied directly to our hyperparameter optimization because

of the huge dimension of our state space. Inspired by recent

works with reinforcement learning for tracking [55, 46], we

design a novel heuristic method to pre-train the networks.

Firstly, we briefly introduce the continuous deep Q-learning

[15], and then explain our heuristic method.

In Q-learning, the Q function Qπ(xt,ut) evaluating ac-

tion -value is defined as the expected return from xt after

taking action ut following policy π. The formulation is

Qπ(xt,ut) = Eri≥t,xi≥t∼E,ui≥t∼π[Rt|xt,ut]. (6)

This function is applied to choose the best action

µ(xt) = argmaxu Q(xt,ut), which corresponds to

π(ut|xt) = δ(ut = µ(xt)). Denote θQ as the parameter-

s of action-value function, β to be an arbitrary exploration

policy, and ρβ as the corresponding state distribution, then

the learning goal is to minimize the Bellman error:

L(θQ) = E
xt∼ρβ ,ut∼β,rt∼E [(Q(xt,ut|θ

Q)− yt)
2] (7)

yt = r(xt,ut) + γQ(xt+1, µ(xt+1)). (8)

For a discrete action problem, we only use a deep net-

work to represent the Q-function and easily take a best ac-

tion µ(xt) by traversing the action space. However, it is d-

ifficult for a continuous action problem. To solve this prob-

lem, Gu et al. [15] propose a continuous Q-learning method

with Normalized Advantage Functions (NAF). They de-

compose the Q-function into two terms: a value func-

tion V (x) and an advantage function A(x,u) containing

the action-predict network to determine its maximum i.e.

µ(x|θµ) = argmaxu Q(xt,ut). The advantage term is a

quadratic function of nonlinear features of the state, written

as:

A(x,u|θA) = −
1

2
(u−µ(x|θµ))TP(x,u|θP)(u−µ(x|θµ))

(9)

where P(x,u|θP) is a state-dependent, positive-definite

square matrix, which is decomposed as P(x,u|θP) =
L(x,u|θP)L(x,u|θP)T , where L(x,u|θP) is a lower-

triangular matrix whose elements come from an output of

a neural network, with the diagonal terms exponentiated.

The final Q-function is defined as:

Q(x,u|θQ) = A(x,u|θA) + V (x|θV). (10)

According to equations (9) and (10), three networks corre-

sponding to θµ, θP , and θV should be defined to construct

the Q-function. Then they train the combined network by

using target networks, replay buffers and imagination roll-

outs mechanism.

As mentioned before, the NAF method cannot be ap-

plied directly to our hyperparameter optimization, since it

is more complex than the classical controlling tasks. It is in

common use to give a reliable initiation for a deep network

before using it to reinforcement learning [4, 42, 55, 46].

Thus, we design a heuristic method to initialize the param-

eters of Q-function: θµ, θP , and θV . Firstly, we train the

action-predict network θµ with an off-line heuristic method

by using supervised learning. The original hyperparameter

vector µ0 of a tracker is regarded as the target of the action-

predict network and the loss function is defined with a mean

squared error between them, written as:

L(θµ) =
1

N

∑

i

‖µ(xi|θ
µ)− µ0‖

2
2. (11)

Usually µ0 is manually adjusted to fit the tracker, so it

is more reliable than the random initialization. Letting the

prediction of network θµ be close to µ0 will keep the initial

adjusted tracker to be consistent with the original tracker in

terms of tracking performance. The other two networks θP

and θV cannot be initialized with supervised learning, since

we cannot estimate the approximation of their output. Here,

we use an on-line heuristic method by fixing the network θµ

and learning the other networks θP and θV using the NAF

method. Given the initialization of these three networks, we

can learn the Q-function with the NAF method.

4. Implementation Details

Q-function with three networks: We define the Q-

function containing µ(x|θµ), L(x,u|θP), and V (x|θV)
with three simple deep neural networks, and each one

includes three convolutional layers and several fully-

connected layers. To process the input state x with size

H × W , we design three convolutional layers. The first

one consists of 5 × 5 × 128 convolutions followed by Re-

LU and 2 × 2 max pooling. The second one is constructed

with 3× 3× 64 convolutions followed by ReLU and 2× 2
max pooling. The last one is similar with the second but re-

places the max pooling with a flatten layer to output a vec-

tor. These three convolutional layers are applied to these

three networks since all of them need the input state x. For

µ(x|θµ), we add three fully-connected layers following the

last convolutional layer. The first and second layer outputs

128 channels followed by ReLU. The last layer is a linear

output layer with size Na, where Na is the dimension of

the action space, i.e. the number of hyperparameters. In

V (x|θV), we also add three similar fully-connected layers

except for the different output numbers, which are defined

as 64, 64, 1, respectively. To handle the other input ac-

522

tion u of L(x,u|θP), we enlarge the action with two fully-

connected layers followed by ReLU, where the correspond-

ing output number is 64 and 1024. The underlying goal is to

achieve a similar size between the enlarged action u and the

convolutional output of state x. Then we concatenate them

and feed the output to a network with three fully-connected

layers, which is similar with that in network µ(x|θµ) except

that the output numbers are 256, 256, and Na(Na + 1)/2.

Base tracker: Recently, Valmadre et al. [48] provide

a Python version of their code implementing its baseline

algorithm (Siam-py), which is a variant of SiamFc track-

er [3]. They modify the 5 convolution layers of SiamFc

to get a bigger heat-map with spatial size from 17 × 17 to

33 × 33. We use this algorithm as our base tracker, since

it is easy to be combined with the Python toolkit for re-

inforcement learning: Keras-rl [39]. In fact, Siam-py will

produce a multi-scale heat-map for scale estimation. We

only use the heat-map with the original scale as the input

of our state. The hyperparameters, i.e. actions, are select-

ed with 5 key hyperparameters in Siam-py containing scale

step, scale penalty, scale learning rate, window weight, and

template learning rate. These 5 hyperparameters are limited

between the lower bound (1.02, 0.90, 0.40, 0.10, 0.00) and

the upper bound (1.08, 1.00, 1.00, 0.50, 0.05). According

this limit range, we normalize each hyperparameter to [0, 1]
for training. This normalization will reduce the issue with

different magnitudes of the 5 hyperparameters.

Training details: We use the NAF method in Keras-

rl [39] to train the main three networks with ADAM [25]

on a video detection benchmark of ILSVRC15 [40]. The

learning rate is initialized with 0.001. Our training process

consists of three phases: supervised learning, NAF learn-

ing with fixed action, and NAF learning. Firstly, in super-

vised learning, we only want to learn a coarse action-predict

network. Thus to avoid over-fitting, we train it with mean

squared loss in 10 epochs including 500 batches. In the

last two phases, we train them in 200000 and 24000 step-

s, respectively. More steps are used in phase 2 since most

parameters of networks are randomly initialized. The batch

size in all phases is set as 128. During training, we random-

ly sample a video clip with 20 frames as an episode defined

in reinforcement learning and the discount factor γ is set as

0.99. After training, the action-predict network is applied

to adjust the corresponding tracker. In our experiments, the

tracker Siam-py [48] with our hyperparameter optimization

(HP) can run at average 69 FPS (original speed is 74 FPS)

on OTB-2013 [53].

5. Experimental Results

In our experiments, we use the popular tracking bench-

marks OTB-2013 [53], OTB-50, OTB-100 [54], and VOT-

2015 [26] as test sets, which are used to compare our

method with state-of-the-art trackers.

NAF NAF+SL NAF+SL+Mu (Ours)
Figure 3. Self-comparison with NAF, NAF+SL, and NAF+SL+Mu

(Ours) in terms of loss, mean q, episode reward and mean IoU. The

loss may increase with the training since the Q estimates are away

from true reward returns for the complex tasks. Still, they can be

used to learn competent policies to obtain sufficiently good results.

mean q is the average of estimated Q values of each episode.

Evaluation metric: The success and precision metrics

[53] are used to evaluate all trackers on OTB-2013, OTB-

50, and OTB-100. Success measures the intersection over

union (IoU) of ground truth and predicted bounding boxes.

The success plot shows the rate of bounding boxes whose

IoU score is larger than a given threshold. Area Under the

Curve (AUC) of success plots is applied to rank the track-

ers. The precision metric measures the percentage of frame

locations within a certain threshold distance from those of

the ground truth. The threshold distance is set as 20 for all

trackers. For the VOT-2015 dataset, we evaluate tracking

performance in terms of accuracy (overlap with the ground-

truth) and robustness (failure rate) [26]. In VOT-2015, a

tracker is restarted in the case of a failure, where there is

no overlap between the predicted bounding box and ground

truth.

5.1. Ablation Study

We evaluate our heuristic training method

(NAF+SL+Mu) comparing the original NAF learning

[15] and its variant initialized with the supervised action-

predict network (NAF+SL). Fig. 3 shows the loss, mean

q during our second training phase with 200000 steps and

the episode reward, mean IoU on OTB-2013 in the last

training phase with 24000 steps. The first two metrics

are applied to analyze convergence and the last two is

used to evaluate tracking accuracy. Our loss is lower

than other two methods, which indicates our method can

get faster convergence. The plot of mean q shows its

value is proportional to the loss that means a too large

523

Figure 4. The results of OTB-2013 [53] benchmark. Success plots with AUC for OPE, TRE and SRE are one pass evaluation, temporal

robustness, and spatial robustness evaluation, respectively. Only the top ten trackers are shown.

predicted Q value may cause slow convergence speed or

even divergence. Our method achieves lower mean q since

we fix the action-predict network (µ net) to simplify the Q

function. NAF gets similar mean q since its µ net falls into

local optimal values and outputs fixed values, which is also

proved by its flat mean IoU. We have higher episode reward

and mean IoU. This also demonstrates the effectiveness of

our method.

5.2. Comparison on OTB­2013

On OTB-2013 including 50 videos, we compare our

HP tracker against state-of-the-art trackers that can oper-

ate in real-time: Siam-py [48], SiamFc-3s [3], Staple [2],

LCT [34], and KCF [19]. For reference, we also compare

with recent trackers: DSST [9], MEEM [57], SAMF [30],

DLSSVM [38] and 29 trackers from OTB-2013. AUC s-

cores of all trackers are reported for OPE (one pass), SRE

(spatial robustness) and TRE (temporal robustness) evalua-

tions [53]. For OPE, the trackers run once with initialization

from the ground truth position in the first frame. TRE starts

at different frames and SRE uses different bounding box-

es in the first frame for initialization. As shown in Fig. 4,

our method outperforms recent state-of-the-art trackers in

terms of OPE, TRE and SRE. Notice that Siam-py is our

base tracker. Our tracker improves its AUC from 0.597 to

0.629 in terms of OPE and in robustness evaluations TRE

and SRE, we also perform better than it.

5.3. Results on OTB­50 and OTB­100

OTB-100 benchmark improves OTB-2013 by adding

more video sequences and selects 50 more challenging se-

quences to construct a small benchmark OTB-50. On these

two benchmarks, we only compare the recent trackers men-

tioned on OTB-2013 comparison, since the performance of

other 29 trackers is lower. Both precision and success met-

rics are reported for OPE. Fig. 5 shows that our tracker also

(a) OTB-50

(b) OTB-100
Figure 5. Precision and success plots with AUC for OPE on OTB-

50 and OTB-100 [54] benchmark.

performs better than the other tackers in these two bench-

marks in terms of precision and success metrics. On OTB-

50, we have significant improvement in these two metric-

s. For example, our method achieves a promotion of 7.4%
in the AUC metric compared with the second best tracker

SiamFc-3s. On OTB-100, compared with the second best

tracker, we also improve 1.5% and 3.3% in terms of preci-

sion and AUC, respectively.

Attribute-based Performance Analysis. On OTB-100,

the sequences are annotated with 11 attributes for differen-

t challenging factors including Illumination Variation (IV),

524

Figure 6. Overlap success plots of OPE with AUC for eight tracking challenges in terms of SV, OCC, DEF, MB, FM, IPR, OPR and OV.

Table 1. Evaluation on VOT2015 by the means of accuracy, robustness and speed. We run our method, Siam-py and SiamFc-3s, and report

their speed (FPS). Otherwise (*) we report the values from the VOT2015 results [26] in EFO units, which roughly correspond to FPS (e.g.

the speed of the NCC tracker is 140 FPS with 160 EFO). The first and second best scores are highlighted in color.

HP(ours) Siam-py SiamFc-3s BDF NCC FOT ASMS FCT matFlow SKCF PKLTF

Acc. 0.578 0.540 0.549 0.401 0.500 0.432 0.507 0.431 0.420 0.485 0.453

Rob. 1.578 1.366 1.818 3.106 11.345 4.360 1.846 3.338 3.121 2.681 2.721

FPS 69 74 78 175* 140* 126* 101* 73* 71* 58* 26*

Scale Variation (SV), Occlusion (OCC), Deformation (DE-

F), Motion Blur (MB), Fast Motion (FM), In-Plane Rotation

(IPR), Out-of-Plane Rotation (OPR), Out-of-View (OV),

Background Clutters (BC), and Low Resolution (LR). To e-

valuate the proposed method, we compare our method with

other trackers in the subsets with different dominant at-

tributes. Fig. 6 shows the results of 8 main challenging

attributes evaluated by the overlap success plots of OPE.

Our approach outperforms all others in 6 subsets: SV, OC-

C, MB, FM, IPR, and OPR, and achieves the second best

performance in DEF and OV following Staple and SiamFc-

3s, respectively. Compared with our baseline Siam-py, our

tracker gets significant improvement in all 8 attributes.

5.4. Evaluation on VOT­2015

Fast speed: We compare our tracker with Siam-py,

SiamFc-3s and 8 top participants in the VOT-2015 in terms

of speed, including BDF [35], FOT [49], ASMS [50], NCC,

FCT, matFlow, SKCF, and PKLTF [26]. Table 1 shows that

our tracker achieves the highest accuracy among the most

accurate trackers with speed more than 20 FPS. Among all

VOT2015 trackers, including the ones with less than 1 FP-

S speed, our tracker achieves the second highest accuracy

closely following MDnet [37] (accuracy: 0.603). Among

the fast trackers, the highest robustness (1.366) belongs to

Siam-py followed by ours HP (1.578). Our tracker signifi-

cantly improves the accuracy and robustness of all partici-

pants with top speed in VOT2015 (BDF, FOT, ASMS, NCC,

FCT, matFlow, SKCF, PKLTF) and SiamFc-3s.

6. Conclusion

In this paper, we proposed a hyperparameter optimiza-

tion algorithm for object tracking by using continuous deep

Q-learning. Unlike the general hyperparameter optimiza-

tion that assigns fixed hyperparameters for all sequences,

our method can adjust hyperparameters for different se-

quences to achieve the best accuracy. Also, we proposed a

simple and effective heuristic to enable the continuous deep

Q-learning to handle high-dimensional state spaces. We

demonstrated the superior accuracy and competitive speed

of our method compared to recent real-time CF-based and

deep trackers over an extensive evaluation. Such a hyperpa-

rameter optimization method is appealing in that it is trained

end-to-end and can be used to any tracker with key hyper-

parameters.

525

References

[1] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Al-

gorithms for hyper-parameter optimization. In NIPS, pages

2546–2554, 2011. 2

[2] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H.

Torr. Staple: Complementary learners for real-time tracking.

In IEEE CVPR, pages 1401–1409, 2016. 3, 7

[3] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. Torr. Fully-convolutional siamese networks for object

tracking. In ECCV Workshops, pages 850–865, 2016. 1, 2,

3, 4, 6, 7

[4] R. A. Bianchi, C. H. Ribeiro, and A. H. Costa. Heuristically

accelerated reinforcement learning: Theoretical and experi-

mental results. In Proceedings of the 20th European Con-

ference on Artificial Intelligence, pages 169–174. IOS Press,

2012. 2, 5

[5] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui.

Visual object tracking using adaptive correlation filters. In

IEEE CVPR, pages 2544–2550, 2010. 3

[6] J. C. Caicedo and S. Lazebnik. Active object localization

with deep reinforcement learning. In IEEE ICCV, pages

2488–2496, 2015. 4

[7] J. Choi, J. Kwon, and K. M. Lee. Visual tracking by rein-

forced decision making. arXiv preprint arXiv:1702.06291,

2017. 4

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In IEEE CVPR, volume 1, pages 886–893,

2005. 3

[9] M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Accurate

scale estimation for robust visual tracking. In BMVC, 2014.

1, 3, 7

[10] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de

Weijer. Adaptive color attributes for real-time visual track-

ing. In IEEE CVPR, pages 1090–1097, 2014. 1, 3

[11] X. Dong, J. Shen, L. Shao, and M.-H. Yang. Interactive

cosegmentation using global and local energy optimization.

IEEE Trans. on Image Processing, 24(11):3966–3977, 2015.

2

[12] X. Dong, J. Shen, D. Yu, W. Wang, J. Liu, and H. Huang.

Occlusion-aware real-time object tracking. IEEE Trans. on

Multimedia, 19(4):763–771, 2017. 3

[13] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek,

H. Hoos, and K. Leyton-Brown. Towards an empirical foun-

dation for assessing bayesian optimization of hyperparame-

ters. In NIPS workshop on Bayesian Optimization in Theory

and Practice, volume 10, 2013. 3

[14] H. Fan and H. Ling. Parallel tracking and verifying: A frame-

work for real-time and high accuracy visual tracking. arXiv

preprint arXiv:1708.00153, 2017. 3

[15] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous

deep q-learning with model-based acceleration. In ICML,

pages 2829–2838, 2016. 2, 3, 4, 5, 6

[16] Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and S. Wang.

Learning dynamic siamese network for visual object track-

ing. In IEEE ICCV, pages 1–9, 2017. 3

[17] S. Hansen. Using deep q-learning to control optimization

hyperparameters. arXiv preprint arXiv:1602.04062, 2016. 3

[18] D. Held, S. Thrun, and S. Savarese. Learning to track at 100

fps with deep regression networks. In ECCV, pages 749–765,

2016. 2

[19] J. F. Henriques, C. Rui, P. Martins, and J. Batista. High-speed

tracking with kernelized correlation filters. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 37(3):583–596,

2015. 1, 3, 7

[20] Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and

D. Tao. Multi-store tracker (muster): A cognitive psychol-

ogy inspired approach to object tracking. In IEEE CVPR,

pages 749–758, 2015. 1

[21] C. Huang, S. Lucey, and D. Ramanan. Learning policies for

adaptive tracking with deep feature cascades. arXiv preprint

arXiv:1708.02973, 2017. 4

[22] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential

model-based optimization for general algorithm configura-

tion. LION, 5:507–523, 2011. 2

[23] Z. Jie, X. Liang, J. Feng, X. Jin, W. Lu, and S. Yan. Tree-

structured reinforcement learning for sequential object local-

ization. In NIPS, pages 127–135, 2016. 4

[24] H. Kiani Galoogahi, A. Fagg, and S. Lucey. Learning

background-aware correlation filters for visual tracking. In

IEEE CVPR, pages 1135–1143, 2017. 3

[25] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014. 6

[26] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Čehovin,

and et al. The visual object tracking vot2015 challenge re-

sults. In IEEE ICCV Workshops, 2015. 2, 6, 8

[27] H. Li, Y. Li, and F. Porikli. DeepTrack: Learning discrimina-

tive feature representations by convolutional neural networks

for visual tracking. In BMVC, 2014. 1

[28] H. Li, Y. Li, and F. Porikli. Convolutional neural net bag-

ging for online visual tracking. Computer Vision and Image

Understanding, 153:120 – 129, 2016. 1

[29] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and

A. Talwalkar. Hyperband: A novel bandit-based ap-

proach to hyperparameter optimization. arXiv preprint arX-

iv:1603.06560, 2016. 2, 3

[30] Y. Li and J. Zhu. A scale adaptive kernel correlation filter

tracker with feature integration. In ECCV Workshops, pages

254–265, 2014. 7

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tas-

sa, D. Silver, and D. Wierstra. Continuous control with deep

reinforcement learning. arXiv preprint arXiv:1509.02971,

2015. 2, 3, 5

[32] B. Ma, L. Huang, J. Shen, and L. Shao. Discriminative

tracking using tensor pooling. IEEE Trans. on Cybernetics,

46(11):2411–2422, 2016. 2

[33] B. Ma, J. Shen, Y. Liu, H. Hu, L. Shao, and X. Li. Visu-

al tracking using strong classifier and structural local sparse

descriptors. IEEE Trans. on Multimedia, 17(10):1818–1828,

2015. 2

[34] C. Ma, X. Yang, C. Zhang, and M.-H. Yang. Long-term cor-

relation tracking. In IEEE CVPR, pages 5388–5396, 2015.

1, 3, 7

[35] M. E. Maresca and A. Petrosino. Clustering local motion

estimates for robust and efficient object tracking. In ECCV

Workshops, pages 244–253, 2014. 8

526

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,

M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,

G. Ostrovski, et al. Human-level control through deep rein-

forcement learning. Nature, 518(7540):529–533, 2015. 2,

3

[37] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. In IEEE CVPR, 2016. 1,

8

[38] J. Ning, J. Yang, S. Jiang, L. Zhang, and M.-H. Yang. Object

tracking via dual linear structured svm and explicit feature

map. In IEEE CVPR, pages 4266–4274, 2016. 7

[39] M. Plappert. keras-rl. https://github.com/

matthiasplappert/keras-rl, 2016. 6

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015. 6

[41] J. Shen, D. Yu, L. Deng, and X. Dong. Fast online tracking

with detection refinement. IEEE Trans. on Intelligent Trans-

portation Systems, 19(1):162–173, 2018. 2

[42] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, et al. Mastering the game

of go with deep neural networks and tree search. Nature,

529(7587):484–489, 2016. 2, 5

[43] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and

M. Riedmiller. Deterministic policy gradient algorithms. In

ICML, pages 387–395, 2014. 2, 3

[44] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian

optimization of machine learning algorithms. In NIPS, pages

2951–2959, 2012. 2

[45] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sun-

daram, M. Patwary, M. Prabhat, and R. Adams. Scalable

bayesian optimization using deep neural networks. In ICML,

pages 2171–2180, 2015. 3

[46] J. Supancic III and D. Ramanan. Tracking as online decision-

making: Learning a policy from streaming videos with rein-

forcement learning. arXiv preprint arXiv:1707.04991, 2017.

2, 4, 5

[47] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown.

Auto-weka: Combined selection and hyperparameter opti-

mization of classification algorithms. In Proceedings of the

19th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 847–855. ACM, 2013. 3

[48] J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, and

P. H. Torr. End-to-end representation learning for correla-

tion filter based tracking. arXiv preprint arXiv:1704.06036,

2017. 1, 2, 3, 4, 6, 7

[49] T. Vojı́ř and J. Matas. The enhanced flock of trackers. In

Registration and Recognition in Images and Videos, pages

113–136. Springer, 2014. 8

[50] T. Vojir, J. Noskova, and J. Matas. Robust scale-adaptive

mean-shift for tracking. Pattern Recognition Letters,

49:250–258, 2014. 8

[51] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual track-

ing with fully convolutional networks. In IEEE ICCV, pages

3119–3127, 2015. 2

[52] M. Wang, Y. Liu, and Z. Huang. Large margin objec-

t tracking with circulant feature maps. arXiv preprint arX-

iv:1703.05020, 2017. 3

[53] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A

benchmark. In IEEE CVPR, pages 2411–2418, 2013. 1, 2,

6, 7

[54] W. Yi, L. Jongwoo, and M.-H. Yang. Object tracking bench-

mark. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 37(9):1834–1848, 2015. 6, 7

[55] S. Y. J. C. Y. Yoo, K. Yun, and J. Y. Choi. Action-decision

networks for visual tracking with deep reinforcement learn-

ing. In IEEE CVPR, 2017. 4, 5

[56] D. Zhang, H. Maei, X. Wang, and Y.-F. Wang. Deep rein-

forcement learning for visual object tracking in videos. arXiv

preprint arXiv:1701.08936, 2017. 4

[57] J. Zhang, S. Ma, and S. Sclaroff. Meem: Robust tracking

via multiple experts using entropy minimization. In ECCV,

pages 188–203, 2014. 7

[58] W. Zuo, X. Wu, L. Lin, L. Zhang, and M.-H. Yang. Learning

support correlation filters for visual tracking. arXiv preprint

arXiv:1601.06032, 2016. 3

527

https://github.com/matthiasplappert/keras-rl
https://github.com/matthiasplappert/keras-rl

