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Abstract

In this paper, we present supervision-by-registration, an

unsupervised approach to improve the precision of facial

landmark detectors on both images and video. Our key

observation is that the detections of the same landmark in

adjacent frames should be coherent with registration, i.e.,

optical flow. Interestingly, coherency of optical flow is a

source of supervision that does not require manual label-

ing, and can be leveraged during detector training. For

example, we can enforce in the training loss function that

a detected landmark at framet−1 followed by optical flow

tracking from framet−1 to framet should coincide with the

location of the detection at framet. Essentially, supervision-

by-registration augments the training loss function with a

registration loss, thus training the detector to have output

that is not only close to the annotations in labeled images,

but also consistent with registration on large amounts of

unlabeled videos. End-to-end training with the registra-

tion loss is made possible by a differentiable Lucas-Kanade

operation, which computes optical flow registration in the

forward pass, and back-propagates gradients that encour-

age temporal coherency in the detector. The output of our

method is a more precise image-based facial landmark de-

tector, which can be applied to single images or video. With

supervision-by-registration, we demonstrate (1) improve-

ments in facial landmark detection on both images (300W,

ALFW) and video (300VW, Youtube-Celebrities), and (2)

significant reduction of jittering in video detections.

1. Introduction

Precise facial landmark detection lays the foundation

for high quality performance of many computer vision and

computer graphics tasks, such as face recognition [15], face

animation [2] and face reenactment [32]. Many face recog-

nition methods rely on locations of detected facial land-

∗Work done during an internship at Facebook Oculus

Figure 1. Annotations are imprecise. We show annotations of

nine annotators on two images of the mouth. Each color indicates

a different landmark. Note the inconsistencies of annotations even

on the more discriminative landmarks such as the corner of the

mouth. This could be harmful to both the training and evaluation

of detectors, thus motivating the use of supervisory signals which

does not rely on human annotations.

marks to spatially align faces, and imprecise landmarks

could lead to bad alignment and degrade face recognition

performance. In face animation and reenactment meth-

ods, 2D landmarks are used as anchors to deform 3D face

meshes toward realistic facial performances, so temporal

jittering of 2D facial landmark detections in video will be

propagated to the 3D face mesh and could generate percep-

tually jarring results.

Precise facial landmark detection is still an unsolved

problem. While significant work has been done on image-

based facial landmark detection [19, 28, 37], these detectors

tend to be accurate but not precise, i.e., the detector’s bias is

small but variance is large. The main causes could be: (1)

insufficient training samples and (2) imprecise annotations,

as human annotations inherently have limits on precision

and consistency as shown in Figure 1. As a result, jitter-

ing is observed when we apply the detector independently

to each video frame, and the detected landmark does not

adhere well to an anatomically defined point (e.g., mouth

corner) on the face across time. Other methods that focus

on video facial landmark detection [13, 22, 23] utilize both

detections and tracking to combat jittering and increase pre-

cision, but these methods require per-frame annotations in

video, which are (1) tedious to annotate due to the sheer

volume of video frames and (2) difficult to annotate consis-

tently across frames, even for temporally adjacent frames.
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Therefore, precise facial landmark detection might not be

simply solved with large amounts of human annotations.

Instead of completely relying on human annotations,

we present Supervision-by-Registration (SBR), which aug-

ments the training loss function with supervision automat-

ically extracted from unlabeled videos. The key observa-

tion is that the coherency of (1) the detections of the same

landmark in adjacent frames and (2) registration, i.e., op-

tical flow [18], is a source of supervision. This supervi-

sion can complement the existing human annotations dur-

ing the training of the detector. For example, a detected

landmark at framet−1 followed by optical flow tracking be-

tween framet−1 and framet should coincide with the loca-

tion of the detection at framet. So, if the detections are

incoherent with the optical flow, the amount of mismatch is

a supervisory signal enforcing the detector to be temporally

consistent across frames, thus enabling a SBR-trained de-

tector to better locate the correct location of a landmark that

is hard to annotate precisely. The key advantage of SBR

is that no annotations are required, thus the training data is

no longer constrained by the quantity and quality of human

annotations.

The overview of our method is shown in Figure 2. Our

end-to-end trainable model consists of two components: a

generic detector built on convolutional networks [16], and

a differentiable Lucas-Kanade (LK, [1, 4, 18]) operation.

During the forward pass, the LK operation takes the land-

mark detections from the past frame and estimates their lo-

cations in the current frame. The tracked landmarks are

then compared with the direct detections on the current

frame. The registration loss is defined as the offset between

them. In the backward pass, the gradient from the regis-

tration loss is back-propagated through the LK operation

to encourage temporal coherency in the detector. To ensure

that the supervision from registration is reasonable, supervi-

sion is only enforced for landmarks whose optical flow pass

the forward-backward check [12]. The final output of our

method is an enhanced image-based facial landmark detec-

tor which has leveraged large amounts of unlabeled video

to achieve higher precision in both images and videos, and

more stable predictions in videos.

Note that our approach is fundamentally different from

post-processing such as temporal filtering, which often sac-

rifices precision for stability. Our method directly incorpo-

rates the supervision of temporal coherency during model

training, thus producing detectors that are inherently more

stable. Therefore, neither post-processing, optical flow

tracking, nor recurrent units are required upon per-frame

detection in test time. Also note that SBR is not regular-

ization, which limits the freedom of model parameters to

prevent overfitting. Instead, SBR brings more supervisory

signals from registration to enhance the precision of the de-

tector. In sum, SBR has the following benefits:
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Figure 2. The supervision-by-registration (SBR) framework

takes labeled images and unlabeled video as input to train an

image-based facial landmark detector which is more precise on

images/video and also more stable on video.

1. SBR can enhance the precision of a generic facial land-

mark detector on both images and video in an unsuper-

vised fashion.

2. Since the supervisory signal of SBR does not come

from annotations, SBR can utilize a very large amount

of unlabeled video to enhance the detector.

3. SBR can be trained end-to-end with the widely used

gradient back-propagation method.

2. Related Work

Facial landmark detection is mainly performed on two

modalities: images and video. In images, the detector can

only rely on the static image to detect landmarks, whereas

in video the detector has additional temporal information to

utilize. Though image-based facial landmark detectors [8,

19, 37, 38, 3, 20] can achieve very good performance on

images, sequentially running these detectors on each frame

of a video in a tracking-by-detection fashion usually leads

to jittering and unstable detections.

There are various directions for improving facial land-

mark detection in videos apart from tracking-by-detection.

Pure temporal tracking [1, 9] is a common method but of-

ten suffer from tracker drift. Once the tracker has failed

in the current frame, it is difficult to make the correct pre-

diction in the following frames. Therefore, hybrid meth-

ods [13, 17, 22] jointly utilize tracking-by-detection and

temporal information in a single framework to predict more

stable facial landmarks. Peng et al. [22] and Liu et al. [17]

utilize recurrent neural networks to encode the temporal in-

formation across consecutive frames. Khan et al. [13] uti-
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lize global variable consensus optimization to jointly opti-

mize detection and tracking in consecutive frames. Unfortu-

nately, these methods require per-frame annotations, which

are resource-intensive to acquire. Our approach SBR shares

the high-level idea of these algorithms by leveraging tem-

poral coherency, but SBR does not require any video-level

annotation, and is therefore capable of enhancing detectors

from large numbers of unlabeled videos.

Other approaches utilize temporal information in video

to construct person-specific models [27, 23, 24]. Most of

these methods usually leverage offline-trained static appear-

ance models. The detector, which is used to generate initial

landmark prediction, is not updated based on the tracking

result in their algorithms, whereas SBR dynamically refines

the detector based on LK tracking results. Self-training [41]

can also be utilized for creating person-specific models, and

was shown to be effective in pose estimation [5, 29]. How-

ever, unlike our method which can be trained end-to-end,

[5, 29] did alternating bootstrapping to progressively im-

prove the detectors. This leads to longer training times, and

also inaccurate gradient updates as detailed in Sec. 5.

3. Methodology

SBR consists of two complementary parts, the general

facial landmark detector and the LK tracking operation, as

shown in Figure 3. The key idea of this framework is that we

can directly perform back-propagation through the LK op-

eration, thus enabling the detector before the LK operation

to receive gradients which encourage temporal coherency

across adjacent frames. LK was chosen because it is fully

differentiable.

3.1. LK Operation

Motivated by [4], we design an LK operation through

which we can perform back-propagation. Given the fea-

ture Ft−1
1 from framet−1 and feature Ft from the framet,

we estimate the parametric motion for a small patch near

xt−1 = [x, y]T from framet−1. The motion model is rep-

resented by the displacement warp function W (x;p). A

displacement warp contains two parameters p = [p1, p2]
T ,

and can be formulated as W (x;p) = [x+ p1, y+ p2]
T . We

leverage the inverse compositional algorithm [1] for our LK

operation. It finds the motion parameter p by minimizing

∑

x∈Ω

αx ‖ Ft−1(W (x; ∆p))− Ft(W (x;p)) ‖2, (1)

with respect to ∆p. Here, Ω is a set of locations in a patch

centered at xt−1, and αx = exp(−
||x−xt−1||

2

2

2σ2 ) is the weight

value for x determined by the distance from xt−1 to down-

weight pixels further away from the center of the patch. Af-

1The features can be RGB images or the output of convolution layers.
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Figure 3. The training procedure of supervision-by-registration

with two complementary losses. The detection loss utilizes ap-

pearance from a single image and label information to learn a

better landmark detector. The registration loss uncovers temporal

consistency by incorporating a Lucas-Kanade operation into the

network. Gradients from the registration loss are back-propagated

through the LK operation to the detector network, thus enforcing

the predictions in neighboring frames to be consistent.

ter obtaining the motion parameter, the LK operation up-

dates the warp parameter as follows:

W (x;p)←W (W (x; ∆p)−1;p) =

[

x+ p1 −∆p1
y + p2 −∆p2

]

.

(2)

p is an initial motion parameter (p = [0, 0]T in our case),

which will be iteratively updated by Eq. (2) until conver-

gence.

The first order Taylor expansion on Eq. (1) gives:

∑

x∈Ω

αx ‖ Ft−1(W (x;0)) +∇Ft−1

∂W

∂p
∆p− Ft(W (x;p)) ‖2

(3)

We then have the solution to Eq. (3) according to [1]:

∆p = H
−1

∑

x∈Ω

J(x)Tαx(Ft(W (x;p))− Ft−1(W (x;0))),

(4)

where H = JTAJ ∈ R
2×2 is the Hessian matrix. J ∈

R
C|Ω|×2 is the vertical concatenation of J(x) ∈ R

C×2, x ∈
Ω, which is the Jacobian matrix of Ft−1(W (x;0))). C is

the number of channels of F. A is a diagonal matrix, where

elements in the main diagonal are the αx’s corresponding to

the x’s used to create J. H and J are constant over iterations

and can thus be pre-computed.

We illustrate the detailed steps of the LK operation in

Figure 4, and describe it in Algorithm 1. We define the LK

operation as L̃t = G(Ft−1,Ft,Lt−1). This function takes

a matrix Lt−1 = [x1
t−1,x

2
t−1, ...,x

K
t−1] ∈ R

2×K , which

represents the coordinates of K landmarks from framet−1,

as input to generate the landmarks L̃t for the next (future)
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Figure 4. Overview of the LK operation. This operation takes

the features of two adjacent frames, i.e., Ft−1 and Ft, and a lo-

cation xt−1 at framet−1 as inputs. The inverse compositional LK

algorithm iteratively updates the motion parameter p and outputs

the corresponding coordinates xt at framet. The iterative portion

of the algorithm is indicated by the red arrows. Every step of this

process is differentiable, thus gradients can back-propagate from

xt to Ft−1, Ft and xt−1.

frame. Since, all steps in the LK operation are differen-

tiable, the gradient can back-propagate to the facial land-

mark locations and the feature maps through LK.

We apply a very small value to the diagonal elements of

H. This ensures that H is invertible. Also, in order to crop

a patch at a sub-pixel location x, we use the spatial trans-

former network [11] to calculate the bilinear interpolated

values of the feature maps.

3.2. Supervision­by­Registration

We describe the details of the two complementary losses:

the detection loss based on human annotations and the reg-

istration loss used to enforce temporal coherency.

Detection loss. Many facial landmark detectors take an

image I as input and regresses to the coordinates of the fa-

cial landmarks, i.e., D(I) = L. They usually apply an L2

loss on these coordinates L with the ground-truth labels L∗,

i.e., ℓdet = ||L− L∗||22.

Other methods [35, 20] predict a heat-map rather than

the coordinates for each landmark, and the L2 loss is usu-

ally applied on the heatmap during the training procedure.

During testing, instead of directly regressing the location of

the landmarks, the argmax operation is used on the heatmap

to obtain the location of the landmark. Unfortunately, the

argmax operation is not differentiable, so these methods

cannot be directly used with our LK operation. To en-

able the information to be back-propagated through the pre-

dicted coordinates in heatmap-based methods, we replace

the argmax operation with a heatmap peak finding opera-

tion which is based on a weighted sum of heatmap con-

fidence scores. Let M be the predicted heatmap. For

each landmark, we first compute a coarse location using

argmax M = [x′, y′]T . Then we crop a small square re-

gion with edge length 2× r centered at [x′, y′]T , denoted as

Algorithm 1 Algorithm Description of the LK operation

Input: Ft−1, Ft, xt−1, p = [0, 0]T

1. Extract template feature from Ft−1 centered at xt−1

2. Calculate the gradient of the template feature

3. Pre-compute the Jacobian and Hessian matrices, J and H

for iter = 1; iter ≤ max; iter++ do

4. Extract target feature from Ft centered at xt−1 + p

5. Compute the error of the template and target features

6. Compute ∆p using Eq. (4)

7. Update the motion model p using Eq. (2)

end for

Output: xt = xt−1 + p

M′ = {(i, j) | i ∈ [x′ − r, x′ + r], j ∈ [y′ − r, y′ + r]}.
Lastly, we use the soft-argmax operation on this square re-

gion to obtain the final coordinates:

x =

∑

(i,j)∈M′ Mi,j × [i, j]T
∑

(i,j)∈M′ Mi,j

. (5)

Since Eq. (5) is differentiable, we can utilize this peak find-

ing operation to incorporate heatmap-based methods into

our framework. Note that when we train with different

kinds of networks, we can still use the original loss func-

tions and settings described in their papers [35, 20, 19, 40],

but for simplicity, we still denote in this paper the detection

loss as the L2 distance between the predicted and ground-

truth coordinates.

Registration loss. Registration loss can be computed in

an unsupervised manner to enhance the detector. It is real-

ized with a forward-backward communication scheme be-

tween the detection output and the LK operation, as shown

in Figure 5. The forward communication computes the reg-

istration loss while the backward communication evaluates

the reliability of the LK operation.

In the forward communication, the detector passes the

detected landmarks of past frames (e.g., Lt−1 for framet−1)

to the LK operation. The LK operation then generates new

landmarks of future frames (e.g., L̃t = G(Ft−1,Ft,Lt−1)
for framet) by tracking. LK-generated landmarks for future

frames should be spatially near the detections in the future

frames. Therefore, the registration loss directly computes

the distance between the LK operation’s predictions (green

dots in Figure 5) and the detector’s predictions (blue dots in

Figure 5), thus encouraging the detector to be more tempo-

rally consistent. The loss is as follows:

ℓtregi =

K
∑

i=1

βt,i||Lt,i − L̃t,i||2 (6)

=
K
∑

i=1

βt,i||Lt,i −G(Ft−1,Ft,Lt−1,i)||2.
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Figure 5. Forward-backward communication scheme between

the detector and the LK operation during the training procedure.

The green and pink lines indicate the forward and backward LK

tracking routes. The blue/green/pink dots indicate the landmark

predictions from the detector/forward-LK/backward-LK. The for-

ward direction of this communication adjusts the detection results

of future frames based on the past frame. The backward direction

assesses the reliability of the LK operation output.

Lt,i and L̃t,i denote the i-th row of Lt and L̃t, which corre-

spond to the i-th landmark location. βt,i ∈ {0, 1} indicates

the reliability of the i-th tracked landmark at time t, which

is determined by the backward communication scheme.

The LK tracking may not always succeed, and su-

pervision should not be applied when LK tracking fails.

Therefore, the backward communication stream utilizes the

forward-backward check [12] to evaluate the reliability of

LK tracking. Specifically, the LK operation takes L̃t as in-

put and generates the landmarks of framet−1 by tracking

in reverse order, formulated as: L̂t−1 = G(Ft,Ft−1, L̃t).
Our premise is that if the LK operation output is reliable, a

landmark should return to the same location after forward-

backward tracking. Therefore, if the backward tracks are

reliable, then βt,i = 1 else βt,i = 0, i.e., this point is not

included in the registration loss. Since only reliable tracks

will be used, the forward-backward communication scheme

ensures that the registration loss yields improvement in per-

formance when unlabeled data are exploited. Note that the

registration loss is not limited to adjacent frames and can be

applied to a sequence of frames as shown in Figure 5.

Complete loss function. Let N be the number of train-

ing samples with ground truth. For notation brevity, we

assume there is only one unlabeled video with T frames.

Then, the complete loss function of SBR is as follows:

ℓfinal =
N
∑

n=1

ℓndet + γ

T−1
∑

t=1

ℓtregi, (7)

which is a weighted combination of the detection and regis-

tration loss controlled by the weight parameter γ.

Computation Complexity. The computational cost of

the LK module consists of two parts, the pre-computed op-

erations, and iterative updating. The cost of the first part is

O(C|Ω|), where C is the channel size of the input (C = 3
for RGB images), and |Ω| is the patch size used in LK

which is usually less than 10 × 10. The second part is

O(TC|Ω|), where T is the number of iterations and usu-

ally less than 20. Therefore, for all K landmarks, the LK

cost is O(KC|Ω|)+O(KCT |Ω|), which is negligible when

compared to the complexity of evaluating a CNN.

3.3. Personalized Adaptation Modeling

SBR can also be used to generate personalized facial

landmark detectors, which is useful in (1) unsupervised

adaptation to a testing video which may be in a slightly dif-

ferent domain than the training set and (2) generating the

best possible detector for a specific person, e.g., a star actor

in a movie. SBR can achieve this by treating testing videos

as unlabeled videos and including them in training. Dur-

ing the training process, the detector can remember certain

personalized details in an unsupervised fashion to achieve

more precise and stable facial landmark detection.

4. Evaluation and Results

4.1. Datasets

300-W [28] provides annotations for 3837 face images

with 68 landmarks. We follow [39, 19, 40] to split the

dataset into four sets, training, common testing, challeng-

ing testing, and full testing, respectively.

AFLW [15] consists in total of 25993 faces in 21997

real-world images, where each face is annotated with up to

21 landmarks. Following [19], we ignore two landmarks of

ears and only use the remaining 19 landmarks.

YouTube-Face [36] contains 3425 short videos of 1595

different people. This dataset does not have facial landmark

labels, but the large variety of people makes it very suitable

to provide to SBR as unlabeled video. We filter videos with

low resolution2, and use the remaining videos to train SBR

in an unsupervised way.

300-VW [30, 34, 6]. This video dataset contains 50

training videos with 95192 frames. The test set consists of

three categories with different levels. These three subsets

(A, B and C) have 62135, 32805 and 26338 frames, respec-

tively. C is the most challenging one. Following [13], we

report the results for the 49 inner points on subset A and C.

YouTube Celebrities [14]. This dataset contains videos

of 35 celebrities under varying poses, illumination and oc-

clusion. Following the same setting as in [23], we perform

PAM on the same six video clips as [23].

4.2. Experiment Settings

Baselines. We exploit two facial landmark detectors as

baselines on which we further perform SBR and PAM.

The first detector is CPM [35], which utilizes the Ima-

geNet pre-trained models [31, 7, 10] as the feature extrac-

tion part. In our experiment, we use the first four convolu-

tional layers of VGG-16 [31] for feature extraction and use

only three CPM stages for heatmap prediction. The faces

2Videos with mean face size < 100
2 are considered as low-resolution.
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Method
300-W

AFLW
Common Challenging Full Set

SDM [37] 5.57 15.40 7.52 5.43

LBF [25] 4.95 11.98 6.32 4.25

MDM [33] 4.83 10.14 5.88 -

TCDCN [38] 4.80 8.60 5.54 -

CFSS [39] 4.73 9.98 5.76 3.92

Two-Stage [19] 4.36 7.56 4.99 2.17

Reg 8.14 16.90 9.85 5.01

Reg + SBR 7.93 15.98 9.46 4.77

CPM 3.39 8.14 4.36 2.33

CPM + SBR 3.28 7.58 4.10 2.14

Table 1. Comparison of NME on 300-W and AFLW datasets.

are cropped and resized into 256×256 for pre-processing.

We train the CPM with a batch size of 8 for 40 epochs in

total. The learning rate starts at 0.00005 and is reduced by

0.5 at 20th and 30th epochs.

The second detector is a simple regression network, de-

noted as Reg. We use VGG-16 as our base model and

change the output neurons of the last fully-connected layer

to K×2, where K is the number of landmarks. Since VGG-

16 requires the input size to be 224×224, we thus resize the

cropped face to 224×224 for this regression network. Fol-

lowing [17], we normalize the L2 loss by the size of faces

as the detection loss.

Training with LK. We perform LK tracking over three

consecutive frames. For Ω in Eq. (1), we crop a 10 × 10
patch centered at the landmark. To cope with faces with

different resolutions, we resize the images accordingly such

that a 10 × 10 crop is a reasonable patch size. Too large or

small patch size can lead to poor LK tracking and hurt per-

formance. The maximum iterations of LK is 20 and the con-

vergence threshold for ∆p = 10−6. For the input feature

of the LK operation, we use the RGB image by default and

also perform ablation studies when using the conv-1 feature

layer (see Section 5). The weight of the registration loss

is γ = 0.5. When training a model from scratch, we first

make sure the detection loss has converged before activating

the registration loss. When training with SBR, the ratio of

labeled images and unlabeled video for each batch should

be balanced. In the case when there are more unlabeled

video than labeled images, we duplicate the labeled images

such that the ratio is still balanced. Also, when applying

SBR, one should confirm that the distribution of faces in

unlabeled video is similar to the distribution of labeled im-

ages. Otherwise, the initial detector may perform poorly on

the unlabeled videos, which leads to very few reliable LK

tracks and a less effective PAM. All of our experiments are

implemented in PyTorch [21].

Evaluation Metrics. Normalized Mean Error (NME) is

used to evaluate the performance on images. Following [19,

8, 25], the interocular distance and face size is employed to

Method DGCM [13] CPM CPM+SBR CPM+SBR+PAM

AUC@0.08 59.38 57.25 58.22 59.39

Table 2. AUC @ 0.08 error on 300-VW category C. Note that SBR

and PAM do not utilize any additional annotations, but can still

improve the baseline CPM and achieve the state-of-the-art results.

Method SDM [37] ESR [3] RLB [25] PIEFA [23]

NME 5.85 5.61 5.37 4.92

Ours Reg Reg+PAM CPM CPM+PAM

NME 10.21 9.31 5.26 4.74

Table 3. Comparisons of NME on YouTube Celebrities dataset.

normalize mean error on 300-W and AFLW respectively.

We also use Cumulative Error Distribution (CED) [26] and

Area Under the Curve (AUC) [13] for evaluation.

4.3. Evaluation on Image Datasets

In order to show that the proposed SBR can enhance

generic landmark detectors, we show the results of SBR

performed on both the Reg (regression-based) and CPM

(heatmap-based) on AFLW and 300-W. We also compare

against nine facial landmark detection algorithms.

Results on 300-W. As shown in Table 1, the baseline

CPM obtains competitive performance (4.36 NME) on the

full testing set of 300-W. We then run SBR with unlabeled

videos from YouTube-Face for both the CPM and Reg,

which further improves the CPM by a relative 7% and the

Reg by a relative 6% without using any additional anno-

tation. The compared results are provided by the official

300-W organizer [26, 28].

Results on AFLW. The distribution of face size on

AFLW dataset is different from that of 300-W. Thus we re-

size the face to 176×176. Table 1 shows that SBR improves

the CPM by a relative 9% and Reg by a relative 5%.

Overall, the SBR improves both CPMs and regression

networks on 300-W and AFLW. We also achieve the state-

of-the-art performance with CPMs. This demonstrates the

flexibility and effectiveness of SBR. YouTube-Face is used

as unlabeled videos in our experiments, but in hindsight, it

may not be the best choice to enhance the detector on 300-

W, because the size of faces in YouTube-Face is smaller

than 300-W, and compression artifacts further affect LK

tracking. By using a video dataset with higher resolution,

our approach can potentially obtain higher performance.

4.4. Evaluation on Video Datasets

To show that SBR/PAM can enhance a detector to pro-

duce coherent predictions across frames, we evaluate on

300VW. We follow [13] and use the full training set. Since

we lack images from the XM2VTS and FRGC datasets,

we use the same number labeled images from an internal

dataset instead of these two datasets. The images in 300-

VW have a lower resolution than 300-W, thus we resize the
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Figure 6. Qualitative results of CPM (green) and CPM+SBR/PAM (blue) on 300VW. We sample predictions every 10 frames from videos.

Yellow circles indicate the clear failures from the CPM. CPM+SBR/PAM can produce more stable predictions across adjacent frames.

images to 172×172 during training according to the face

size statistics.

Results on 300VW. Table 2 shows that SBR improves

the CPM by 1%, and PAM further improves it by 1.2%.

t-Test shows a p-value of 0.0316 and 0.0001 when us-

ing SBR to enhance CPM and using PAM to enhance

CPM+SBR. These two statistical significance tests demon-

strate the improvement of SBR and PAM. We show that

CPM+SBR+PAM achieves the state-of-the-art performance

against all other methods. Importantly, SBR+PAM does not

utilize any more annotations than what the baselines use.

Results on YouTube Celebrities. We also compare dif-

ferent personalized methods in Table 3. The baselines Reg

and CPM are pre-trained on 300-W. The proposed PAM re-

duces the error of CPM from 5.26 to 4.74, achieving state-

of-the-art performance.

Qualitative comparison. Figure 6 shows the qualita-

tive results. CPM predictions are often incoherent across

frames. For example, in the third row, the predictions on

the eyebrow drifts, but SBR/PAM can produce more stable

predictions as the coherency is satisfied during training.

5. Discussion

Image Resolution. The resolution of the face can af-

fect the chance of the success of the LK operation as well

as detector performance. Figure 7 shows that videos with

higher face resolution usually result in a higher possibility

to pass the forward-backward check. However, the perfor-
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Figure 7. Analysis on category A of 300-VW. The x-axis indi-

cates the face size of 31 videos in ascending order. The left y-

axis indicates the AUC@0.08, and the right shows the number of

landmarks that are considered as reliable by the forward-backward

communication scheme.

mance improvement is not related to the face size. There

could be other factors which have more influence, such as

occlusion and head pose.

Temporal Length for Tracking. The duration of LK

tracking could be more than three consecutive frames.

However, a longer period will result in a stricter forward-

backward check, which reduces the number of landmarks

to be included in the registration loss. We tested CPM +

PAM with 5 frames LK tracking on YouTube Celebrities

and achieved 5.01 NME, which is worse than the result of
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three frames, 4.74 NME.

Image Features for Tracking. We also tested using the

conv-1 feature instead of the RGB image to do LK tracking,

which resulted in an increase of error on YouTube Celebri-

ties from 4.74 to 5.13 NME. This could be caused by the

convolutional feature losing certain information that is use-

ful for LK tracking, and more attention is required to learn

features suitable for LK tracking.

Effect of imprecise annotation. SBR and PAM only

show a small improvement based on the NME and AUC

evaluation metric, but we observe significant reduction of

jittering in videos (see demo video). There could be two

reasons: (1) NME and AUC treat the annotations of each

frame independently and does not take into account the

smoothness of the detections, and (2) imprecise annotations

in the testing set may adversely affect the evaluation results.

We further analyze reason (2) by generating a synthetic face

dataset named “SyntheticFace” from a 3D face avatar. The

key advantage of a synthetic data set is that there is zero an-

notation error because we know exactly where each 3D ver-

tex is projected into a 2D image. This enables us to analyze

the effect of annotation errors by synthetically adding noise

to the perfect “annotations”. We generated 2537 training

and 2526 testing face images under different expressions

and identified 20 landmarks to detect. The image size is

5120×3840. We add varying levels of Gaussian noise to

the training and testing set, which are then used to train and

evaluate our detector. If we train on different levels of noise

and evaluate the models on clean annotations, the testing

performance is surprisingly close across models, as shown

in Figure 8a. This means that our detector is able to “aver-

age out” the errors in annotation. However, the same mod-

els evaluated against testing annotations with varying error

(Figure 8b) look significantly worse than Figure 8a. This

means that a well-performing model may have poor results

simply due to the annotation error in the testing data. In

sum, annotation errors could greatly affect quantitative re-

sults, and a lower score does not necessarily mean no im-

provement.

Connection with Self-Training. Our method is inter-

estingly a generalization of self-training, which was uti-

lized by [5, 29] to take advantage of unlabeled videos in

the pose estimation task. The procedure of self-training is

(1) train a classifier with the current training set, (2) pre-

dict on unlabeled data, (3) treat high confidence predictions

as pseudo-labels and add them to the training set, and (4)

repeat step 1. The main drawback of this method is that

high-confidence pseudo-labels are assumed “correct” and

no feedback is provided to fix errors in the pseudo-labels.

In our problem setting, the pseudo-labels are L̃t, which

are detections tracked from framet−1 with LK. If we sim-

ply perform self-training, L̃t are directly used as labels to

learn Lt. No feedback to L̃t is provided even if it is erro-

(b) evaluation results

on noisy testing data

(a) evaluation results

on clean testing data

Figure 8. Effect of annotation error. We add Gaussian noise

to the annotations of SyntheticFace, and train the model on these

noisy data. Different levels of Gaussian noise is indicated by dif-

ferent colors. Left: The models are evaluated on clean testing data

of SyntheticFace. Right: The models are evaluated on noisy test-

ing data of SyntheticFace, which has the same noise distribution

as training.

neous. However, our registration loss provides feedback for

both Lt and L̃t, thus if the pseudo-labels are inaccurate, L̃t

will also be adjusted. This is the key difference between

our method and self-training. More formally, the gradient

of our registration loss Eq. (6) with respect to the detector

parameter θ is as follows:

∇θℓ
t
regi =

K
∑

i=1

ηt,i(∇θLt,i −∇θLK(Ft−1,Ft,Lt−1,i)),

where ηt,i =
βt,i

2||Lt,i−LK(Ft−1,Ft,Lt−1,i)||2
. For self-

training, the gradients from L̃t: ∇θLK(Ft−1,Ft,Lt−1,i)
are missing. This compromises the correctness of the gra-

dient for θ, which is used to generate both Lt and L̃t. Em-

pirically we observed that the detector tends to drift in a

certain incorrect direction when the gradients of L̃t are ig-

nored, which led to an increase of error from 4.74 to 5.45

NME on YouTube Celebrities.

6. Conclusion

We present supervision-by-registration (SBR), which is

advantageous because: (1) it does not rely on human an-

notations which tend to be imprecise, (2) the detector is

no longer limited to the quantity and quality of human an-

notations, and (3) back-propagating through the LK layer

enables more accurate gradient updates than self-training.

Also, experiments on synthetic data show that annotation

errors in the evaluation set may make a well-performing

model seem like it is performing poorly, so one should be

careful of annotation imprecision when interpreting quanti-

tative results.
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