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Abstract

In this paper we explore the role of duality principles

within the problem of rotation averaging, a fundamental

task in a wide range of computer vision applications. In

its conventional form, rotation averaging is stated as a min-

imization over multiple rotation constraints. As these con-

straints are non-convex, this problem is generally consid-

ered challenging to solve globally. We show how to circum-

vent this difficulty through the use of Lagrangian duality.

While such an approach is well-known it is normally not

guaranteed to provide a tight relaxation. Based on spectral

graph theory, we analytically prove that in many cases there

is no duality gap unless the noise levels are severe. This al-

lows us to obtain certifiably global solutions to a class of

important non-convex problems in polynomial time.

We also propose an efficient, scalable algorithm that out-

performs general purpose numerical solvers and is able to

handle the large problem instances commonly occurring in

structure from motion settings. The potential of this pro-

posed method is demonstrated on a number of different

problems, consisting of both synthetic and real-world data.

1. Introduction

Rotation averaging appears as a subproblem in many

important applications in computer vision, robotics, sen-

sor networks and related areas. Given a number of rela-

tive rotation estimates between pairs of poses, the goal is to

compute absolute camera orientations with respect to some

common coordinate system. In computer vision, for in-

stance, non-sequential structure from motion systems such

as [21, 11, 22] rely on rotation averaging to initialize bundle

adjustment. The overall idea is to consider as much data as

possible in each step to avoid suboptimal reconstructions.

In the context of rotation averaging this amounts to using as

many camera pairs as possible.

The problem can be thought of as inference on the cam-

era graph. An edge (i, j) in this undirected graph represents

a relative rotation measurement R̃ij and the objective is to

find the absolute orientation Ri for each vertex i such that

RiR̃ij = Rj holds (approximately in the presence of noise)

Figure 1: In many structure from motion pipelines, cam-

era orientations are estimated with rotation averaging fol-

lowed by recovery of camera centres (red) and 3D structure

(blue). Here are three solutions corresponding to different

local minima of the same rotation averaging problem.

for all edges. The problem is generally considered difficult

due to the need to enforce non-convex rotation constraints.

Indeed, both L1 and L2 formulations of rotation averaging

can have local minima, see Fig. 1. Wilson et al. [28] studied

local convexity of the problem and showed that instances

with large loosely connected graphs are hard to solve with

local, iterative optimization methods.

In contrast, our focus is on global optimality. In this

paper we show that convex relaxation methods can in fact

overcome the difficulties with local minima in rotation aver-

aging. We utilize Lagrangian duality to handle the quadratic

non-convex rotation constraints. While such an approach is

normally not guaranteed to provide a tight relaxation we

give analytical error bounds that guarantee there will be no

duality gap. For instance, it is sufficient that each angular

residual is less than 42.9◦ to ensure optimality for complete

camera graphs. Additionally, we develop a scalable and ef-

ficient algorithm, based on block coordinate descent, that

outperforms standard semidefinite program (SDP) solvers

for this problem.

Related work. Rotation averaging has been under in-

tense study in recent years, see [19, 20, 21, 2, 25, 8]. Despite

progress in practical algorithms, they largely come without

guarantees. One of the earliest averaging methods was due

to Govindu [15], who showed that when representing the

rotations with quaternions the problem can be viewed as a

linear homogeneous least squares problem. There is how-

ever a sign ambiguity in the quaternion representation that

has to be resolved before the formulation can be applied. It
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was observed by Fredriksson and Olsson in [14] that since

both the objective and the constraints are quadratic, the La-

grange dual can be computed in closed form. The resulting

SDP was experimentally shown to have no duality gap for

moderate noise levels.

A more straightforward rotation representation is 3 × 3
matrices. Martinec and Pajdla [21] approximately solve

the problem by ignoring the orthogonality and determi-

nant constraints. A similar relaxation was derived by Arie-

Nachimson et al. in [1]. In addition, an SDP formulation

was presented which is equivalent to the one we address

here, but with no performance guarantees. The tightness of

SDP relaxations for 2D rotation averaging is studied in [30].

A number of robust approaches have been developed

to handle outlier measurements. A sampling scheme over

spanning trees of the camera graph is developed by Govindu

in [16]. Enqvist et al. [11] also start from a spanning tree

and add relative rotations that are consistent with the solu-

tion. In [17] the Weiszfeld algorithm is applied to single ro-

tation averaging with the L1 norm. In [18] convexity prop-

erties of the single rotation averaging problem are given. To

our knowledge these results do not generalize to the case

of multiple rotations. In [9] a robust formulation is solved

using IRLS and in [3] Cramér-Rao lower bounds are com-

puted for maximum likelihood estimators, but neither with

any optimality guarantees.

A closely related problem is that of pose graph estima-

tion, where camera orientations and positions are jointly op-

timized. In this context Lagrangian duality has been applied

[6, 7]. In [26] a consensus algorithm that allows for efficient

distributed computations is presented. A fast verification

technique for pose graph estimation was given in [5]. In a

recent paper [23] an SDP relaxation for pose graph estima-

tion with performance guarantees is analyzed. It is shown

that there is a noise level β for which the relaxation is guar-

anteed to provide the optimal solution. However, the result

only shows the existence of β. Its value which is dependent

on the problem instance is not computed. In contrast our

result for rotation averaging gives explicit noise bounds.

The main contributions of this paper are:

• We apply Lagrangian duality to the rotation averaging

problem with the chordal error distance and study the

properties of the obtained relaxations.

• We develop strong theoretical bounds on the noise

level that guarantee exact global recovery based on

spectral graph theory.

• We develop a conceptually simple and scalable algo-

rithm which is able to handle large problem instances

occurring in structure from motion problems.

• We present experimental results that confirm our theo-

retical findings.

1.1. Notation and Conventions

Let G = (V,E) denote an undirected graph with vertex

set V and edge set E and let n = |V |. The adjacency matrix

A is by definition the n× n matrix with elements

aij =

{

0 (i, j) /∈ E
1 (i, j) ∈ E

for i, j = 1, . . . , n. (1)

The degree di is the number of edges that touch vertex

i, and the degree matrix D is the diagonal matrix D =
diag (d1, . . . , dn). The Laplacian LG of G is defined by

LG = D −A. (2)

It is well-known that LG has a zero eigenvalue with mul-

tiplicity 1. The second smallest eigenvalue λ2 of LG, also

known as the Fiedler value, reflects the connectivity of G.

For a connected graph G, which is the only case of interest

to us, we always have λ2 > 0.

The group of all rotations about the origin in three

dimensional Euclidean space is the Special Orthogonal

Group, denoted SO(3). This group is commonly repre-

sented by rotation matrices, orthogonal 3 × 3 real-valued

matrices with positive determinant, i.e.,

SO(3) ∈ {R ∈ R
3×3 | RTR = I, det(R) = 1}. (3)

If we omit det(R)=1, we get the Orthogonal Group, O(3).
We will use the convention that λi(A) is the i:th smallest

eigenvalue of the symmetric matrix A. The trace of matrix

A is denoted by tr (A) and the Kronecker product of ma-

trices A and B by A ⊗ B. The norm ‖A‖ is the standard

operator 2-norm and ‖A‖F the Frobenius norm.

2. Problem Statement

The problem of rotation averaging is defined as the task

of determining a set of n absolute rotations R1, ..., Rn given

distinct estimated relative rotations R̃ij . Available relative

rotations are represented by the edge set E of the camera

graph V . Under ideal conditions this amounts to finding the

n rotations compatible with the linear relations,

RiR̃ij = Rj , (4)

for all (i, j) ∈ E. However, in the presence of noise, a solu-

tion to (4) is not guaranteed to exist. Instead, it is typically

solved in a least-metric sense,

min
R1,...,Rn

∑

(i,j)∈E

d(RiR̃ij , Rj)
p, (5)

where p ≥ 1 and d(·, ·) is a distance function.

A number of distinct choices of metrics on SO(3) exist,

see Hartley et al. [19] for a comprehensive discussion. In

this work we restrict ourselves to the chordal distance, the
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most commonly used metric when analyzing Lagrangian

duality in rotation averaging. It has proven to be a conve-

nient choice as it is quadratic in its entries leading to a par-

ticularly simple derivation and form of the associated dual

problem.

The chordal distance between two rotations R and S is

defined as their Euclidean distance in the embedding space,

d(R,S) = ‖R− S‖F . (6)

It can be shown [19] that the chordal distance can also be

written as d(R,S) = 2
√
2 sin |α|

2 , where α is the rotation

angle of RS−1. With this choice of metric, the rotation

averaging problem is defined as

arg min
R1,...,Rn∈SO(3)

∑

(i,j)∈E

‖RiR̃ij −Rj‖2F , (7)

which, with trace notation, can be simplified to

arg min
R1,...,Rn∈SO(3)

−
∑

(i,j)∈E

tr
(

RiR̃ijR
T
j

)

, (8)

which constitutes our primal problem.

It will be convenient with a compact matrix formulation.

Let

R̃ =







0 a12R̃12 ... a1nR̃1n

a21R̃21 0 ... a2nR̃2n

...
. . .

...
an1R̃n1 an2R̃n2 ... 0






, (9)

where R̃ij = R̃T
ji and aij are the elements of the adjacency

matrix A of the camera graph G and let

R =
[

R1 R2 . . . Rn

]

. (10)

We may now write the primal problem as

(P ) min −tr
(

RR̃RT
)

s.t. R ∈ SO(3)n.
(11)

3. Optimality Conditions

3.1. Necessary Local Optimality Conditions

We now turn to the KKT conditions of our primal prob-

lem (P ). The constraint set R ∈ SO(3)n consists of two

types of constraints; the orthogonality constraints RT
i Ri =

I and the determinant constraints det(Ri) = 1.

Consider relaxing the rotation averaging problem by re-

moving the determinant constraint,

(P ′) min −tr
(

RR̃RT
)

s.t. R ∈ O(3)n.
(12)

The constraint R ∈ O(3)n still requires the Ri’s to be or-

thogonal. The orthogonal matrices consist of two disjoint,

non-connected sets, with determinants 1 and −1 respec-

tively. Hence, any local minimizer to the problem (P ) also

has to be a local minimizer, and therefore a KKT point, to

(P ′). We note that orthogonality can be enforced by re-

stricting the 3× 3 diagonal blocks of the symmetric matrix

RTR to be identity matrices. If

Λ =











Λ1 0 0 . . .
0 Λ2 0 . . .
0 0 Λ3 . . .
...

...
...

. . .











(13)

is a symmetric matrix then the Lagrangian can be written

L(R,Λ) = −tr
(

RR̃RT
)

− tr
(

Λ(I −RTR)
)

= tr
(

R(Λ− R̃)RT
)

− tr (Λ) .
(14)

Taking derivatives gives the KKT equations

(Stationarity) (Λ∗ − R̃)R∗T

= 0 (15a)

(Primal feasibility) R∗ ∈ SO(3)n. (15b)

Equation (15a) states that the rows of a local minimizer R∗

will be eigenvectors of the matrix Λ∗ − R̃ with eigenvalue

zero. This allows us to compute the optimal Lagrange mul-

tiplier Λ∗ from a given minimizer R∗. By (15a) we see that

Λ∗
iR

∗T
i =

∑

j 6=i

aijR̃ijR
∗T
j ⇐⇒ Λ∗

i =
∑

j 6=i

aijR̃ijR
∗T
j R∗

i

(16)

for i = 1, . . . , n.

Lemma 3.1. For a stationary point R∗ to the primal prob-

lem (P ), we can compute the corresponding Lagrangian

multiplier Λ∗ in closed form via (16).

3.2. Sufficient Global Optimality Conditions

We begin this section by deriving the Lagrange dual of

(P ) which is a semidefinite program that we will use for

optimization in later sections. The dual problem is defined

by

max
Λ−R̃�0

min
R

L(R,Λ). (17)

Since the (unrestricted) optimum of minR L(R,Λ) is either

−tr (Λ), when Λ− R̃ � 0, or −∞ otherwise, we get

(D) max
Λ−R̃�0

−tr (Λ) . (18)

It is clear (through standard duality arguments) that (D)

gives a lower bound on (P ). Furthermore, if R∗ is a sta-

tionary point with corresponding Lagrangian multiplier Λ∗

that satisfies Λ∗ − R̃ � 0 then Λ∗ is feasible in (D) and by

(16), −tr (Λ∗) = −tr
(

R∗R̃R∗T
)

, which shows that there
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is no duality gap between (P ) and (D). Thus, the convex

program (D) provides a way of solving the non-convex (P )

when Λ∗ − R̃ � 0.

It also follows that for the stationary point R∗ we have

tr
(

R∗Λ∗R∗T ) = tr
(

R∗R̃R∗T
)

due to (15a). We further

note that if Λ∗ − R̃ � 0 then by definition it is true that

xT
(

Λ∗ − R̃
)

x ≥ 0, (19)

for any 3n-vector x. In particular, for any R ∈ O(3)n,

0 ≤ tr
(

R(Λ∗ − R̃)RT
)

= tr (Λ∗)− tr
(

RR̃RT
)

= tr
(

R∗Λ∗R∗T )− tr
(

RR̃RT
)

,

(20)

which shows that −tr
(

R∗R̃R∗T
)

≤ −tr
(

RR̃RT
)

for all

R ∈ O(3)n, that is, R∗ is the global optimum.

Lemma 3.2. If a stationary point R∗ with corresponding

Lagrangian multiplier Λ∗ fulfills Λ∗ − R̃ � 0 then:

1. There is no duality gap between (P ) and (D).

2. R∗ is a global minimum for (P ).

In the remainder of this paper we will study under which

conditions Λ∗ − R̃ � 0 holds and derive an efficient imple-

mentation for solving (D).

4. Main Result

In this section, we will state our main result which gives

error bounds that guarentee that that strong duality holds

for our primal and dual problems. From a practical point of

view, the result means that it is possible to solve a convex

semidefinite program and obtain the globally optimal solu-

tion to our non-convex problem, which is quite remarkable.

4.1. Strong Duality Theorem

Returning to our initial, primal rotation averaging prob-

lem (7). The goal is to find rotations Ri and Rj such that

the sum of the residuals ‖RiR̃ij −Rj‖2F is minimized. For

strong duality to hold, we need to bound the residual error.

Theorem 4.1 (Strong Duality). Let R∗
i , i = 1, . . . , n denote

a stationary point to the primal problem (P ) for a connected

camera graph G with Laplacian LG. Let αij denote the

angular residuals, i.e., αij = ∠(R∗
i R̃ij , R

∗
j ). Then R∗

i ,

i = 1, . . . , n will be globally optimal and strong duality

will hold for (P ) if

|αij | ≤ αmax ∀(i, j) ∈ E, (21)

where

αmax = 2arcsin





√

1

4
+

λ2(LG)

2dmax
− 1

2



 , (22)

and dmax is the maximal vertex degree.

Figure 2: A complete graph (left) and a cycle graph (right),

both with 6 vertices.

Note that any local minimizer that fulfills this error

bound will be global, and conversely there are no non-

global minimizers with error residuals fulfilling (21). It

is clear that (22) will give a positive bound αmax for any

graph. Thus for any given problem instance, αmax gives

an explicit bound on the error residuals for which strong

duality is guaranteed to hold. The strength of the bound

will depend on the particular graph connectivity encapsu-

lated by the Fiedler value λ2(LG) and the maximal vertex

degree dmax. We will see that for tightly connected graphs

the bound ensures strong duality under surprisingly gener-

ous noise levels. In [28] it was observed that local convexity

at a point holds under similar circumstances.

Example. Consider a graph with n = 3 vertices that are

connected, and all degrees are equal, dmax = 2. Now from

the Laplacian matrix LG, one easily finds that λ2 = 3. This

gives αmax = π
3 rad = 60◦. So, any local minimizer which

has angular residuals less than 60◦ is also a global solution.

Complete graphs. Let us turn to a more general class

of graphs, namely complete graphs with n vertices, see

Fig. 2. As every pair of vertices is connected, it follows

that dmax = n − 1. Further, it is well-known (and easy

to show) that λ2(LG) = n, see [13]. Again, for n = 3,

we retrieve αmax = π
3 rad. As n becomes larger, we get a

decreasing series of upper bounds which in the limit tends

to 2 arcsin(
√
3−1
2 ) ≈ 0.749rad = 42.9◦. Hence, as long

as the residual angular errors are less than 42.9◦ - which is

quite generous from a practical point of view - we can com-

pute the optimal solution via a convex program. Also note

that this bound holds independently of n.

Corollary 4.1. For a complete graph G with n vertices,

the residual upper bound αmax = 2arcsin(
√
3−1
2 ) ≈

0.749rad = 42.9◦ ensures global optimality and strong du-

ality for any n.

Cycle graphs. Now consider the other spectrum in

terms of graph connectivity, namely cycle graphs. A cy-

cle graph has a single cycle, or in other words, every

vertex in the camera graph has degree two (dmax = 2)

and the vertices form a closed chain (Fig. 2). From the

literature, we have that the Fiedler value λ2 = 2(1 −
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cos 2π
n
). Inserting into (22) and simplifying, we get αmax =

2arcsin
(
√

1
4 + sin2(π

n
)− 1

2

)

. Again, for n = 3, we re-

trieve αmax = π
3 rad. For larger values of n, the upper

bound decreases rapidly. In fact, the upper bound is quite

conservative and it is possible to show a much stronger up-

per bound using a different analysis. In the appendix, we

prove the following theorem.

Theorem 4.2. Let R∗
i , i = 1, . . . , n denote a stationary

point to the primal problem (P ) for a cycle graph with n
vertices. Let αij denote the angular residuals, i.e., αij =

∠(R∗
i R̃ij , R

∗
j ). Then, R∗

i , i = 1, . . . , n will be globally

optimal and strong duality will hold for (P ) if |αij | ≤ π
n

for

all (i, j) ∈ E.

Requiring that the angular residuals |αij | must be less

than π/n for the global solution may seem like a restriction,

but it is actually not. To see this, note that a non-optimal

solution to the rotation averaging problem can be obtained

by choosing R1 such that the first residual α12 is zero, and

then continuing in the same fashion such that all but the last

residual α1n in the cycle is zero. In the worst case, α1n = π.

However, this is (obviously) non-optimal. A better solution

is obtained if we distribute the angular residual error evenly

so that αij = α = α1n

n
(which is always possible, see The-

orem 23 in [10]). In conclusion, the angular residuals |αij |
of the globally optimal solution for a cycle graph is always

less than or equal to π
n

, and conversely, if the angular resid-

ual is larger than π
n

for a local minimizer, then it does not

correspond to the global solution.

In Fig. 1, we have a real example of an orbital camera

motion which is close to a cycle. It may seem hard to de-

termine if the camera motion consists of one or more loops

around the object - we give three different local minima for

this example. Still, applying formula (22) for this instance

gives αmax = 8.89◦ which is typically sufficient in prac-

tice to ensure that the optimal solution can be obtained by

solving a convex program. Before developing an actual al-

gorithm, we shall prove our main result on strong duality.

4.2. Proof of Theorem 4.1

Recall that a sufficient condition for strong duality to

hold is that Λ∗ − R̃ � 0 (Lemma 3.2). To prove Theo-

rem 4.1 we will show that this is true under the conditions

of the theorem.

To simplify the presentation we denote the residual rota-

tions Eij = R∗
i R̃ijR

∗T
j and define

DR∗ =











R∗
1 0 0 . . .
0 R∗

2 0 . . .
0 0 R∗

3 . . .
...

...
...

. . .











. (23)

Then DR∗(Λ∗ − R̃)DT
R∗ =











∑

j 6=1 a1jE1j −a12E12 −a13E13 . . .

−a12ET
12

∑

j 6=2 a2jE2j −a23E23 . . .

−a13ET
13 −a23ET

23

∑

j 6=3 a3jE3j . . .
...

...
...

. . .











.

(24)

Note that
∑

j 6=i aijEij = 1
2

∑

j 6=i aij(Eij+ET
ij) by symme-

try of Λ∗. Since DR∗ is orthogonal, the matrix Λ∗ − R̃ is

positive semidefinite if and only if DR∗(Λ∗ − R̃)DT
R∗ is.

In the noise free case we note that the residual rotations

will fulfill Eij = I and therefore

DR∗(Λ∗ − R̃)DT
R∗ = LG ⊗ I3. (25)

In the general noise case our strategy will therefore be to

bound the eigenvalues of DR∗(Λ∗ − R̃)DT
R∗ by those of

LG for which well-known estimates exist. Thus, we will

analyze the difference and define the matrix

∆ = DR∗(Λ∗ − R̃)DT
R∗ − LG ⊗ I3. (26)

The following results characterize the eigenvalues of ∆.

Lemma 4.1. Let ∆ij , i = 1, ..., n, j = 1, ..., n be the 3× 3
sub-blocks of ∆. If λ is an eigenvalue of ∆ then

|λ| ≤
n
∑

j=1

‖∆ij‖ for some i = 1, . . . , n. (27)

Proof. The proof is similar to that of Gerschgorin’s theorem

[12]. Let ∆x = λx, with ‖x‖ = 1. Then λxi =
∑

j ∆ijxj .
Now pick i such that ‖xi‖ ≥ ‖xj‖ for all j. Then

|λ| =
∥

∥

∥

∥

λ
xi

‖xi‖

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

n
∑

j=1

∆ij

xj

‖xi‖

∥

∥

∥

∥

∥

∥

≤
n
∑

j=1

‖∆ij‖. (28)

Lemma 4.2. Denote αmax the largest (absolute) residual

angle of all Eij and assume 0 ≤ αmax ≤ π
2 . Then

‖∆ii‖ ≤ 2di sin
2(
αmax

2
) ∀i = 1, . . . n, (29)

where di is the degree of vertex i.

Proof. It is easy to see that by applying a change of coordi-

nates Eij can be written

Eij = Vij





cos(αij) − sin(αij) 0
sin(αij) cos(αij) 0

0 0 1



V T
ij , (30)

and therefore

1

2
(Eij + ET

ij) = Vij





cos(αij) 0 0
0 cos(αij) 0
0 0 1



V T
ij . (31)
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This gives

(cos(αij)− 1)I � 1

2
(Eij + ET

ij)− I � 0, (32)

and since ∆ii =
∑

j 6=i aij
(

1
2 (Eij + ET

ij)− I
)

we get

di(cos(αmax)− 1)I � ∆ii � 0. (33)

Thus ‖∆ii‖ ≤ di(1− cos(αmax)) = 2di sin
2(αmax

2 ).

Lemma 4.3. If 0 ≤ αmax ≤ π
2 and i 6= j then

‖∆ij‖ ≤ 2aij sin(
αmax

2
). (34)

Proof. To estimate the off-diagonal blocks ‖∆ij‖ =
aij‖I − Eij‖ we note that for a unit vector v we have

√

‖v − Eijv‖2 =
√

‖v‖2 − 2 cos∠(v, Eijv) + ‖Eijv‖2

≤
√

2(1− cos(αij)), (35)

where ∠(v, Eijv) is the angle between v and Eijv. Further-

more, we will have equality if v is perpendicular to the ro-

tation axis of Eij . Therefore

‖∆ij‖ = aij

√

2(1− cos(αij)) ≤ 2aij sin(
αmax

2
). (36)

Summarizing the results in Lemmas 4.1- 4.3 we get that

the eigenvalues λ of ∆ fulfill

|λ(∆)| ≤ 2di sin
2(
αmax

2
) +

∑

j 6=i

2aij sin(
αmax

2
)

≤ 2dmax sin(
αmax

2
)
(

1 + sin(
αmax

2
)
)

,

(37)

where dmax is the maximal vertex degree. Note that the

same bound holds for all eigenvalues of ∆, in particular, the

one with the largest magnitude λmax(∆).
Now returning to our goal of showing that DR∗(Λ∗ −

R̃)DT
R∗ � 0. Let N =

[

I I . . .
]T

. The columns of N

will be in the nullspace of DR∗(Λ∗ − R̃)DT
R∗ . Therefore

DR∗(Λ∗ − R̃)DT
R∗ is positive semidefinite if DR∗(Λ∗ −

R̃)DT
R∗ + µNNT is, and hence it is enough to show that

λ1

(

DR∗(Λ∗ − R̃)DT
R∗ + µNNT

)

≥ 0 (38)

for sufficiently large µ. The Laplacian LG is positive

semidefinite with smallest eigenvalue λ1 = 0 and corre-

sponding eigenvector v =
(

1 1 . . . 1
)T

. Furthermore,

as N = v ⊗ I3, it is clear that for sufficiently large µ we

have λ1(LG⊗I3+µNNT ) = λ1(LG+µvvT ) = λ2(LG).
Since

DR∗(Λ∗ − R̃)DT
R∗ + µNNT = LG ⊗ I3 + µNNT +∆,

(39)

we therefore get

λ1(DR∗(Λ∗ − R̃)DT
R∗ + µNNT ) ≥ λ2(LG)− |λmax(∆)|.

(40)

If the right-hand side is positive, then so is the left-hand

side. Using (37) for λmax(∆) yields the following result.

Lemma 4.4. The matrix Λ∗ − R̃ is positive semidefinite if

λ2(LG)− 2dmax sin(
αmax

2
)
(

1 + sin(
αmax

2
)
)

≥ 0. (41)

By completing squares, one obtains the equivalent con-

dition
(

sin(
αmax

2
) +

1

2

)2

≤ λ2(LG)

2dmax
+

1

4
, (42)

which proves Theorem 4.1.

What these results show, is that if there is a KKT point in

(P ), then it is also a KKT point to (P ′). If this KKT point

fulfills the prescribed error conditions it will be globally op-

timal in (P ′) and strong duality holds. But a solution that

is globally optimal in (P ′) and feasible in (P ) will also be

globally optimal in (P ) since the objective functions are the

same. Thus, as long as there is a solution to (P ) with with

small enough errors the programs (P ),(P ′) and (D) will all

yield the same objective value.

5. Solving the Rotation Averaging Problem

The dual problem (D) is a convex semidefinite program,

and although it is theoretically sound and provably solvable

in polynomial time by interior point methods [4], in practice

such problems quickly become intractable as the dimension

of the entering variables grow.

In this section we present a first-order method for solving

semidefinite programs with constant block diagonals. Our

approach solves the dual of (D) and consists of two sim-

ple matrix operations only, matrix multiplication and square

roots of 3 × 3 symmetric matrices, the latter which can be

solved in closed form. Consequently, these two operations

permit a simple and efficient implementation without the

need for dedicated numerical libraries.

The dual of (D) is given by

min
Y�0

max
Λ

−tr (Λ) + tr
(

Y (Λ− R̃)
)

. (43)

Let the matrix Y be partitioned as follows,

Y =







Y11 Y12 ... Y1n

Y T

12
Y22 ... Y2n

...
...

. . .
...

Y T

1n
... ... Ynn






(44)
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where each block Yij ∈ R
3×3 for i, j = 1, . . . , n. Since Λ

is block-diagonal (13) it is clear that the inner maximization

is unbounded when Yii − I3×3 6= 0 and zero otherwise. We

therefore get

(DD) min
Y

−tr
(

R̃Y
)

s.t. Yii = I3, i = 1, ..., n,
Y � 0.

(45)

Since Y � 0 it is clear that

−tr (Λ) + tr (Y (Λ−R∗)) ≥ −tr (Λ) ,

for all Λ of the form (13). Therefore (DD) ≥ (D) and

assuming strong duality holds (D) = (P ). Furthermore

if R∗ is the global optimum of (P ) then Y = R∗TR∗ is

feasible in (45) which shows that (DD) = (P ).
Thus, when strong duality holds, recovering a primal so-

lution to (P ) is then achieved by simply reading off the first

three rows of Y ∗ and choosing their signs to ensure positive

determinants of the resulting rotation matrices, see supple-

mentary material for further details.

5.1. Block Coordinate Descent

In this section we present a block coordinate descent

method for solving semidefinite programs with block diag-

onal constraints on the form (45). This method is a general-

ization of the row-by-row algorithms derived in [27].

Consider the following semidefinite program,

min
S∈R

3n×3

tr
(

WTS
)

s.t.
[

I ST

S B

]

� 0.
(46)

This is a subproblem that arises when attempting to solve

(DD) in (45) using a block coordinate descent approach,

i.e., by fixing all but one row and column of blocks in (44)

and reordering as necessary. It turns out that this subprob-

lem has a particularly simple, closed form solution, estab-

lished by the following lemma.

Lemma 5.1. Let B be a positive semidefinite matrix. Then,

the solution to (46) is given by,

S∗ = −BW

[

(

WTBW
)

1

2

]†
. (47)

Here † denotes the Moore–Penrose pseudoinverse.

Proof. See supplementary material.

6. Experimental Results

In this section we present an experimental study aimed

at characterizing the performance and computational effi-

ciency of the proposed algorithm compared to existing stan-

dard numerical solvers.

Algorithm 1 A block coordinate descent algorithm for the

semidefinite relaxation (DD) in (45).

input: R̃, Y (0) � 0, t = 0.
repeat

· Select an integer k ∈ [1, . . . , n],
·Bk: the result of eliminating the kth row and column

from Y t.

·Wk: the result of eliminating the kth column and all

but the kth row from R̃.

· S∗
k = −BkWk

[(

WT
k BkWk

)
1

2

]†
as in (47).

· Y t =
[

I S∗T

k

S∗

k
Bk

]

, (succeeded by the appropriate

reordering).

· t = t+ 1
until convergence

Synthetic data. In our first set of experiments we

compared the computational efficiency of the Levenberg-

Marquardt (LM) algorithm [29], a standard nonlinear opti-

mization method, Algorithm 1 and that of SeDuMi [24], a

publicly available software package for conic optimization.

We constructed a large number of synthetic problem in-

stances of increasing size, perturbed by varying levels of

noise. Each absolute rotation was obtained by rotation

about the z-axis by 2π/n rad and by construction, forming a

cycle graph. The relative rotations were perturbed by noise

in the form of a random rotation about an axis sampled from

a uniform distribution on the unit sphere with angles nor-

mally distributed with mean 0 and variance σ. The absolute

rotations were initialized (if required) in a similar fashion

but with the angles uniformly distributed over [0, 2π] rad.

The results, averaged over 50 runs, can be seen in Ta-

ble 1. As expected, the LM algorithm significantly outper-

forms our algorithm as well as SeDuMi, but it only man-

ages to obtain the global optima in about 30 − 70% of the

time. As predicted by Theorem 4.2 and the discussion in

Section 4.1 on cycle graphs, both Algorithm 1 and SeDuMi

produce globally optimal solutions at every single problem

instance, independent of the noise level and independent on

the number of cameras. From this table we also observe

that Algorithm 1 does appear to outperform SeDuMi quite

significantly with respect to computational efficiency.

Real-world data. In our second set of experiments we

compared the computational efficiency on a number of pub-

licly available real-world datasets [11]. The results, again

averaged over 50 runs, are presented in Table 2. Here, as

in the previous experiment, both methods correctly produce

the global optima at each instance. Algorithm 1 again sig-

nificantly outperforms SeDuMi in computational cost, pro-

viding further evidence of the efficiency of the proposed al-

gorithm. It can further be seen that Theorem 4.1 provides
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LM [29] Alg. 1 SeDuMi [24]

n σ [rad] avg.error (%) time[s] avg.error time[s] avg.error time[s]

20 0.2 1.49 (0.48) 0.012 9.34e-10 0.028 4.30e-09 0.501

0.5 0.56 (0.73) 0.008 3.94e-08 0.023 3.72e-09 0.553

50 0.2 0.55 (0.50) 0.026 1.3e-09 0.17 6.85e-09 5.91

0.5 0.17 (0.58) 0.017 1.83e-07 0.33 2.00e-09 6.32

100 0.2 0.15 (0.55) 0.042 1.46e-07 8.89 5.31e-09 47.0

0.5 0.15 (0.45) 0.039 6.64e-08 7.97 7.41e-10 49.51

200 0.2 0.099 (0.40) 0.082 4.02e-08 17.01 4.15e-10 419.04

0.5 0.031 (0.33) 0.071 6.79e-08 29.4 6.91e-10 391.23

Table 1: Comparison of running times and resulting errors on synthetic data. Here the errors are given with respect to the

lowest feasible objective function value found. The fraction of the times the global optima was reached by the LM algorithm

is indicated along side the average error.

Figure 3: Images and reconstructions of the datasets in Table 2.

time[s]

Dataset n Alg. 1 SeDuMi |αij | αmax

Gustavus 57 3.25 8.28 6.33◦ 8.89◦

Sphinx 70 3.87 14.40 6.14◦ 12.13◦

Alcatraz 133 12.73 117.19 7.68◦ 43.15◦

Pumpkin 209 9.23 688.65 8.63◦ 3.59◦

Buddha 322 16.71 1765.72 7.29◦ 14.01◦

Table 2: The average run time and largest resulting angu-

lar residual (|αij |) and bound (αmax) on five different real-

world datasets.

bounds sufficiently large to guarantee strong duality, and

hence global optimality, in all the real-world instances ex-

cept for one, the Pumpkin dataset. Although strong dual-

ity does indeed hold in this case, the resulting certificate is

less than the largest angular residual obtained. The cam-

era graph is comprised both of densely as well as sparsely

connected cameras, resulting in a large value of dmax in

combination with a small value of dmin (minimum degree).

Since λ2 ≤ dmin a limited bound on αmax follows directly

from (22). This instance serves as a representative example

of when the bounds of Theorem 4.1, although still valid and

strictly positive, become too conservative in practice.

7. Conclusions

In this paper we have presented a theoretical analysis of

Lagrangian duality in rotation averaging based on spectral

graph theory. Our main result states that for this class of

problems strong duality will provably hold between the pri-

mal and dual formulations if the noise levels are sufficiently

restricted. In many cases the noise levels required for strong

duality not to hold can be shown to be quite severe. To the

best of our knowledge, this is the first time such practically

useful sufficient conditions for strong duality have been es-

tablished for optimization over multiple rotations.

A scalable first-order algorithm, a generalization of coor-

dinate descent methods for semidefinite cone programming,

was also presented. Our empirical validation demonstrates

the potential of this proposed algorithm, significantly out-

performing existing general purpose numerical solvers.
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