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Abstract

We present a new loss function, namely Wing loss, for ro-

bust facial landmark localisation with Convolutional Neu-

ral Networks (CNNs). We first compare and analyse dif-

ferent loss functions including L2, L1 and smooth L1. The

analysis of these loss functions suggests that, for the train-

ing of a CNN-based localisation model, more attention

should be paid to small and medium range errors. To this

end, we design a piece-wise loss function. The new loss

amplifies the impact of errors from the interval (-w, w) by

switching from L1 loss to a modified logarithm function.

To address the problem of under-representation of sam-

ples with large out-of-plane head rotations in the training

set, we propose a simple but effective boosting strategy, re-

ferred to as pose-based data balancing. In particular, we

deal with the data imbalance problem by duplicating the

minority training samples and perturbing them by inject-

ing random image rotation, bounding box translation and

other data augmentation approaches. Last, the proposed

approach is extended to create a two-stage framework for

robust facial landmark localisation. The experimental re-

sults obtained on AFLW and 300W demonstrate the merits

of the Wing loss function, and prove the superiority of the

proposed method over the state-of-the-art approaches.

1. Introduction

Facial landmark localisation, or face alignment, aims at

finding the coordinates of a set of pre-defined key points

for 2D face images. A facial landmark usually has spe-

cific semantic meaning, e.g. nose tip or eye centre, which

provides rich geometric information for other face analy-

sis tasks such as face recognition [55, 40, 37, 67], emo-

tion estimation [69, 16, 57, 35] and 3D face reconstruc-

tion [15, 31, 26, 25, 48, 33, 19].

Thanks to the successive developments in this area of

research during the past decades, we are able to perform
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Figure 1. Our Wing loss function (Eq. 5) plotted with different

parameter settings, where w limits the range of the non-linear part

and ǫ controls the curvature. By design, we amplify the impact of

the samples with small and medium range errors to the network

training.

very accurate facial landmark localisation in constrained

scenarios, even using traditional approaches such as Ac-

tive Shape Model (ASM) [7], Active Appearance Model

(AAM) [8] and Constrained Local Model (CLM) [11]. The

existing challenge is to achieve robust and accurate land-

mark localisation of unconstrained faces that are impacted

by a variety of appearance variations, e.g. in pose, ex-

pression, illumination, image blurring and occlusion. To

this end, cascaded-regression-based approaches have been

widely used, in which a set of weak regressors are cascaded

to form a strong regressor [13, 63, 6, 18, 60, 58, 20]. How-

ever, the capability of cascaded regression is nearly satu-

rated due to its shallow structure. After cascading more

than four or five weak regressors, the performance of cas-

caded regression is hard to improve further [52, 17]. More

recently, deep neural networks have been put forward as

a more powerful alternative in a wide range of computer

vision and pattern recognition tasks, including facial land-

mark localisation [53, 72, 70, 39, 66, 59, 44].

To perform robust facial landmark localisation us-
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ing deep neural networks, different network types have

been explored, such as the Convolutional Neural Network

(CNN) [53], Auto-Encoder Network [71] and Recurrent

Neural Network (RNN) [56, 62]. In addition, different net-

work architectures have been extensively studied during the

recent years along with the development of deep neural net-

works in other AI applications. For example, the Fully Con-

volutional Network (FCN) [36] and hourglass network with

residual blocks have been found very effective [43, 66, 12].

One crucial aspect of deep learning is to define a loss

function leading to better-learnt representation from under-

lying data. However, this aspect of the design seems to be

little investigated by the facial landmark localisation com-

munity. To the best of our knowledge, most existing facial

landmark localisation approaches using deep learning are

based on the L2 loss. However, the L2 loss function is sensi-

tive to outliers, which has been noted in connection with the

bounding box regression problem in the well-known Fast

R-CNN algorithm [22]. Rashid et al. also notice this issue

and use the smooth L1 loss instead of L2 [45]. To further

address the issue, we propose a new loss function, namely

Wing loss (Fig. 1), for robust facial landmark localisation.

The main contributions of our work include:

• presenting a systematic analysis of different loss func-

tions that could be used for regression-based facial

landmark localisation with CNNs, which to our best

knowledge is the first such study carried out in connec-

tion with the landmark localisation problem. We em-

pirically and theoretically compare L1, L2 and smooth

L1 loss functions and find that L1 and smooth L1 per-

form much better than the widely used L2 loss.

• a novel loss function, namely the Wing loss, which is

designed to improve the deep neural network training

capability for small and medium range errors.

• a data augmentation strategy, i.e. pose-based data bal-

ancing, that compensates the low frequency of occur-

rence of samples with large out-of-plane head rotations

in the training set.

• a two-stage facial landmark localisation framework for

performance boosting.

The paper is organised as follows. Section 2 presents a

brief review of the related literature. The regression-based

facial landmarking problem with CNNs is formulated in

Section 3. The properties of common loss functions (L1 and

L2) are discussed in Section 4 which also motivate the in-

troduction of the novel Wing loss function. The pose-based

data balancing strategy is the subject of Section 5. The two-

stage localisation framework is proposed in Section 6. The

advocated approach is validated experimentally in Section 7

and the paper is drawn to conclusion in Section 8.

2. Related work

Network Architectures: Most deep-learning-based fa-

cial landmark localisation approaches are regression-based.

For such a task, the most straightforward way is to use a

CNN model with regression output layers [53, 45]. The in-

put for a regression CNN is usually an image patch enclos-

ing the whole face region and the output is a vector con-

sisting of the 2D coordinates of facial landmarks. Besides

the classical CNN architecture, newly developed CNN sys-

tems have also been used for facial landmark localisation

and shown promising results, e.g. FCN [36] and the hour-

glass network [43, 66, 12, 3, 4]. Different from traditional

CNN-based approaches, FCN and hourglass network out-

put a heat map for each landmark. These heat maps are of

the same size as the input image. The value of a pixel in

a heat map indicates the probability that its location is the

predicted position of the corresponding landmark. To re-

duce false alarms of a generated 2D sparse heat map, Wu

et al. propose a distance-aware softmax function that facili-

tates the training of their dual-path network [61].

Thanks to the extensive studies of different deep neural

networks and their use cases in unconstrained facial land-

mark localisation, the development of the area has been

greatly promoted. However, the current research lacks a

systematic analysis on the use of different loss functions. In

this paper, we close this gap and design a new loss function

for CNN-based facial landmark localisation.

Dealing with Pose Variations: Extreme pose varia-

tions bring many difficulties to unconstrained facial land-

mark localisation. To mitigate this issue, different strate-

gies have been explored. The first one is to use multi-

view models. There is a long history of the use of multi-

view models in landmark localisation, from the earlier

studies on ASM [47] and AAM [10] to recent work on

cascaded-regression-based [64, 75, 21] and deep-learning-

based approaches [12]. For example, Feng et al. train multi-

view cascaded regression models using a fuzzy membership

weighting strategy, which, interestingly, outperforms even

some deep-learning-based approaches [21]. The second

strategy, which has become very popular in recent years, is

to use 3D face models [76, 28, 2, 38, 29]. By recovering the

3D shape and estimating the pose of a given input 2D face

image, the issue of extreme pose variations can be allevi-

ated to a great extent. In addition, 3D face models have also

been widely used to synthesise additional 2D face images

with pose variations for the training of a pose-invariant sys-

tem [41, 17, 76]. Last, multi-task learning has been adopted

to address the difficulties posed by image degradation, in-

cluding pose variations. For example, face attribute estima-

tion, pose estimation or 3D face reconstruction can jointly

be trained with facial landmark localisation [72, 65, 44].

The collaboration of different tasks in a multi-task learn-

ing framework can boost the performance of individual sub-
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tasks.

Different from these approaches, we treat the challenge

as a training data imbalance problem and advocate a pose-

based data balancing strategy to address this issue.

Cascaded Networks: In the light of the coarse-to-fine

cascaded regression framework, multiple networks can be

stacked to form a stronger network to boost the perfor-

mance. To this end, shape- or landmark-related features

should be used to satisfy the training of multiple networks

in cascade. However, a CNN using a global face image as

input cannot meet this requirement. To address this issue,

one solution is to extract CNN features from local patches

around facial landmarks. This idea is advocated, for ex-

ample, by Trigeorgis et al. who use the Recurrent Neural

Network (RNN) for end-to-end model training [56]. As an

alternative, we can train a network based on the global im-

age patch for rough facial landmark localisation. Then, for

each landmark or a composition of multiple landmarks in a

specific region of the face, a network is trained to perform

fine-grained landmark prediction [54, 14, 39, 65]. For an-

other example, Yu et al. propose to inject local deformations

to the estimated facial landmarks of the first network using

thin-plate spline transformations [68].

In this paper, we use a two-stage CNN-based landmark

localisation framework. The first CNN is a very simple one

that can perform rough facial landmark localisation very

quickly. The aim of the first network is to mitigate the diffi-

culties posed by inaccurate face detection and in-plane head

rotations. Then the second CNN is used to perform fine-

grained landmark localisation.

3. CNN-based facial landmark localisation

The target of CNN-based facial landmark localisation is

to find a nonlinear mapping:

Φ : I → s, (1)

that outputs a shape vector s ∈ R
2L for a given input colour

image I ∈ R
H×W×3. The input image is usually cropped

using the bounding box output by a face detector. The shape

vector is in the form of s = [x1, ..., xL, y1, ..., yL]
T , where

L is the number of pre-defined 2D facial landmarks and

(xl, yl) are the coordinates of the lth landmark. To ob-

tain this mapping, first, we have to define the architecture

of a multi-layer neural network with randomly initialised

parameters. In fact, the mapping Φ = (φ1 ◦ ...◦φM )(I) is a

composition of M functions, in which each function stands

for a specific layer in the network.

Given a set of labelled training samples Ω = {Ii, si}
N
i=1

,

the target of CNN training is to find a Φ that minimises:

N
∑

i=1

loss(Φ(Ii), si), (2)

In:64x64x3     32x32x32    16x16x64    8x8x128  4x4x256  2x2x512  FC:1024  Out:2L 
: 3x3 Convolution, Relu and Max Pooling (/2)

Figure 2. Our simple CNN-6 network consisting of 5 convolutional

and 1 fully connected layers followed by an output layer.

where loss() is a pre-defined loss function that measures the

difference between a predicted shape vector and its ground

truth. In such a case, the CNN is used as a regression model

learned in a supervised manner. To optimise the above ob-

jective function, optimisation algorithms such as Stochastic

Gradient Descent (SGD) can be used.

To empirically analyse different loss functions, we use

a simple CNN architecture, in the following termed CNN-

6, for facial landmark localisation, to achieve high speed in

model training and testing. The input for this network is a

64×64×3 colour image and the output is a vector of 2L real

numbers for the 2D coordinates of L landmarks. As shown

in Fig. 2, our CNN-6 has five 3 × 3 convolutional layers, a

fully connected layer and an output layer. After each con-

volutional and fully connected layer, a standard Relu layer

is used for nonlinear activation. A Max pooling after each

convolutional layer is used to downsize the feature map to

half of the size.

To boost the performance, more powerful network archi-

tectures can be used, such as our two-stage landmark local-

isation framework presented in Section 6 and the recently

proposed ResNet architecture [24]. We will report the re-

sults of these advanced network architectures in Section 7.

It should be highlighted that, to the best of our knowledge,

this is the first time that such a deep residual network, i.e.

ResNet-50, is used for facial landmark localisation.

4. Wing loss

The design of a proper loss function is crucial for CNN-

based facial landmark localisation. However, mainly the L2

loss has been used in existing deep-neural-network-based

facial landmarking systems. In this paper, to the best of

our knowledge, we are the first to analyse different loss

functions for CNN-based facial landmark localisation and

demonstrate that the L1 and smooth L1 loss functions per-

form much better than the L2 loss. Motivated by our anal-

ysis, we propose a new loss function, namely Wing loss,

which further improves the accuracy of CNN-based facial

landmark localisation systems.

4.1. Analysis of different loss functions

Given a training image I and a network Φ, we can pre-

dict the facial landmarks as a vector s′ = Φ(I). The loss is
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Figure 3. Plots of the L1, L2 and smooth L1 loss functions.

defined as:

loss(s, s′) =

2L
∑

i=1

f(si − s′i), (3)

where s is the ground-truth shape vector of the facial land-

marks. For f(x) in the above equation, L1 loss uses

L1(x) = |x| and L2 loss uses L2(x) = 1

2
x2. The smooth

L1 loss function is piecewise-defined as:

smoothL1(x) =

{

1

2
x2 if |x| < 1

|x| − 1

2
otherwise

, (4)

which is quadratic for small values of |x| and linear for large

values [22]. More specifically, smooth L1 uses L2(x) for

x ∈ (−1, 1) and shifted L1(x) elsewhere. Fig. 3 depicts

the plots of these loss functions. It should be noted that the

smooth L1 loss is a special case of the Huber loss [27]. The

loss function that has widely been used in facial landmark

localisation is the L2 loss function. However, it is well-

known that the L2 loss is sensitive to outliers. This is the

main reason why, e.g., Girshick [22] and Rashid et al. [45]

use the smooth L1 loss function for their localisation tasks.

For evaluation, the AFLW-Full protocol has been

used [75]1. This protocol consists of 20k training images

and 4386 test images. Each image has 19 facial landmarks.

We use three state-of-the-art algorithms [75, 21, 39] as our

baseline for comparison. The first one is the Cascaded

Compositional Learning algorithm (CCL) [75], which is

a multi-view cascaded regression model based on random

forests. The second one is the Two-stage Re-initialisation

Deep Regression Network (TR-DRN) [39]. The last base-

line algorithm is a multi-view approach based on cascaded

shape regression, namely DAC-CSR [21].

We train the CNN-6 network on AFLW using three dif-

ferent loss functions and report the results in Table 1. The

L2 loss function, which has been widely used for facial

landmark localisation, performs well. The result is better

than CCL in terms accuracy but worse than DAC-CSR and

TR-DRN. Surprisingly, when we use L1 or smooth L1 for

1The AFLW dataset is introduced in Section 7.2.1.
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Figure 4. CED curves comparing different loss functions on the

AFLW dataset, using the AFLW-Full protocol.

Table 1. A comparison of different loss functions with the three

baseline algorithms in terms of the average error normalised by

face size. Each training has been performed for 120k iterations.

The learning rate is reduced from 3 × 10
−6 to 3 × 10

−8 for L2,

and from 3× 10
−5 to 3× 10

−7 for the other loss functions.

method average normalised error

CCL (CVPR2016) [75] 2.72×10
−2

DAC-CSR (CVPR2017) [21] 2.27×10
−2

TR-DRN (CVPR2017) [39] 2.17×10
−2

CNN-6 (L2) 2.41×10
−2

CNN-6 (L1) 2.00×10
−2

CNN-6 (smooth L1) 2.02×10
−2

CNN-6 (Wing loss) 1.88×10
−2

the CNN-6 training, the performance in terms of accuracy

improves significantly and outperforms all the state-of-the-

art baseline approaches, despite the CNN network’s sim-

plicity.

4.2. The proposed Wing loss

We compare the results obtained on the AFLW dataset

using the simple CNN-6 network in Fig. 4 by plotting the

Cumulative Error Distribution (CED) curves. We can see

that all the loss functions analysed in the last section per-

form well for large errors. This indicates that the training

of a neural network should pay more attention to the sam-

ples with small or medium range errors. To achieve this

target, we propose a new loss function, namely Wing loss,

for CNN-based facial landmark localisation.

In order to motivate the new loss function, we provide

an intuitive analysis of the properties of the L1 and L2 loss

functions (Fig. 3). The magnitude of the gradients of these

two functions is 1 and |x| respectively, and the magnitude

of the corresponding optimal step sizes should be |x| and

1. Finding the minimum in either case is straightforward.

However, the situation becomes more complicated when

we try to optimise simultaneously the location of multiple

points, as in our problem of facial landmark localisation for-
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mulated in Eq. (3). In both cases the update towards the so-

lution will be dominated by larger errors. In the case of L1,

the magnitude of the gradient is the same for all the points,

but the step size is disproportionately influenced by larger

errors. For L2, the step size is the same but the gradient will

be dominated by large errors. Thus in both cases it is hard

to correct relatively small displacements.

The influence of small errors can be enhanced by an al-

ternative loss function, such as lnx. Its gradient, given by

1/x, increases as we approach zero error. The magnitude

of the optimal step size is x2. When compounding the con-

tributions from multiple points, the gradient will be domi-

nated by small errors, but the step size by larger errors. This

restores the balance between the influence of errors of dif-

ferent sizes. However, to prevent making large update steps

in a potentially wrong direction, it is important not to over-

compensate the influence of small localisation errors. This

can be achieved by opting for a log function with a positive

offset.

This type of loss function shape is appropriate for deal-

ing with relatively small localisation errors. However, in

facial landmark detection of in-the-wild faces we may be

dealing with extreme poses where initially the localisation

errors can be very large. In such a regime the loss function

should promote a fast recovery from these large errors. This

suggests that the loss function should behave more like L1

or L2. As L2 is sensitive to outliers, we favour L1.

The above intuitive argument points to a loss function

which for small errors should behave as a log function with

an offset, and for larger errors as L1. Such a composite loss

function can be defined as:

wing(x) =

{

w ln(1 + |x|/ǫ) if |x| < w
|x| − C otherwise

, (5)

where the non-negative w sets the range of the nonlin-

ear part to (−w,w), ǫ limits the curvature of the nonlin-

ear region and C = w − w ln(1 + w/ǫ) is a constant that

smoothly links the piecewise-defined linear and nonlinear

parts. Note that we should not set ǫ to a very small value

because it makes the training of a network very unstable

and causes the exploding gradient problem for very small

errors. In fact, the nonlinear part of our Wing loss function

just simply takes the curve of ln(x) between [ǫ/w, 1+ ǫ/w)
and scales it along both the X-axis and Y-axis by a factor

of w. Also, we apply translation along the Y-axis to allow

wing(0) = 0 and to impose continuity on the loss function.

From Fig. 4, we can see that our Wing loss outperforms

L2, L1 and smooth L1 in terms of accuracy. The Wing loss

further reduces the average normalised error from 2× 10−2

to 1.88 × 10−2, which is 6% lower than the best result ob-

tained in the last section (Table 1) and 13% lower than the

best state-of-the-art deep-learning baseline approach, i.e.

Table 2. A comparison of different parameter settings (w and ǫ) for

the proposed Wing loss function, measured in terms of the average

normalised error (×10
−2) on AFLW using our CNN-6 network.

ǫ

w

4 6 8 10 12 14

0.5 1.95 1.92 1.92 1.94 1.97 1.94

1 1.95 1.91 1.91 1.90 1.90 1.95

2 1.98 1.92 1.91 1.88 1.90 1.98

3 2.02 1.96 1.93 1.91 1.89 2.02

-100 -50 0 50 100
0

200

400

600

Figure 5. Distribution of the pose coefficients of the AFLW train-

ing samples by projecting their shapes to the 1-D pose space.

TR-DRN. In our experiments, we set the parameters of the

Wing loss as w = 10 and ǫ = 2. For the results of different

parameter settings, please refer to Table 2.

5. Pose-based data balancing

Extreme pose variations are very challenging for robust

facial landmark localisation in the wild. To mitigate this is-

sue, we propose a simple but very effective Pose-based Data

Balancing (PDB) strategy. We argue that the difficulty for

accurately localising faces with large poses is mainly due

to data imbalance, which is a well-known problem in many

computer vision applications [51]. For example, given a

training dataset, most samples in it are likely to be near-

frontal faces. The neural network trained on such a dataset

is dominated by frontal faces. By over-fitting to the frontal

pose it cannot adapt well to faces with large poses. In fact,

the difficulty of training and testing on merely frontal faces

should be similar to that on profile faces. This is the main

reason why a view-based face analysis algorithm usually

works well for pose-varying faces. As an evidence, even the

classical view-based Active Appearance Model can localise

faces with large poses very well (up to 90◦ in yaw) [9].

To perform PDB, we first align all the training shapes to

a reference shape using Procrustes Analysis, with the mean

shape as the reference shape. Then we apply PCA to the

aligned training shapes and project the original shapes to

the one dimensional space defined by the shape eigenvector

(pose space) controlling pose variations. The distribution of

projection coefficient of the training samples is represented

by a histogram with K bins, plotted in Figure 5. With this

histogram, we balance the training data by duplicating the
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Table 3. A comparison of different loss functions using our PDB

strategy and two-stage landmark localisation framework, mea-

sured in terms of the average normalised error (×10
−2) on AFLW.

The method CNN-6/7 indicates the proposed two-stage localisa-

tion framework using CNN-6 as the first network and CNN-7 as

the second network (Section 6). For CNN-7, the learning rate is

reduced from 1× 10
−6 to 1× 10

−8 for L2, and from 1× 10
−5 to

1× 10
−7 for the L1, smooth L1 and Wing loss functions.

method

loss
L2 L1 smooth L1 Wing

CNN-6 2.41 2.00 2.02 1.88

CNN-6 + PDB 2.23 1.89 1.91 1.83

CNN-6/7 2.06 1.82 1.84 1.71

CNN-6/7 + PDB 1.94 1.73 1.76 1.65

samples falling into the bins of lower occupancy. We mod-

ify each duplicated sample by performing random image

rotation, bounding box perturbation and other data augmen-

tation approaches introduced in Section 7.1. To deal with

in-plane rotations, we use a two-stage facial landmark lo-

calisation framework that will be introduced in Section 6.

The results obtained by the CNN-6 network with PDB are

shown in Table 3. It should be noted that PDB improves the

performance of CNN-6 on the AFLW dataset for all differ-

ent types of loss functions.

6. Two-stage landmark localisation

Besides the out-of-plane head rotations, the accuracy of

a facial landmark localisation algorithm can be degraded by

other factors, such as in-plane head rotations and inaccurate

bounding boxes output from a poor face detector. To miti-

gate this issue, we advocate the use of a two-stage landmark

localisation framework.

In the proposed two-stage localisation framework, we

use a very simple network, i.e. the CNN-6 network with

64× 64× 3 input images, as the first network. The CNN-6

network is very fast (400 fps on an NVIDIA GeForce GTX

Titan X Pascal), hence it will not slow down the speed of

our facial landmark localisation algorithm too much. The

landmarks output by the CNN-6 network are used to re-

fine the input image for the second network by remov-

ing the in-plane head rotation and correcting the bound-

ing box. Also, the input image resolution for the second

network is increased for fine-grained landmark localisation

from 64× 64× 3 to 128× 128× 3, with the addition of one

set of convolutional, Relu and Max pooling layers. Hence,

the term ‘CNN-7’ is used to denote the second network. The

CNN-7 network has a similar architecture to the CNN-6 net-

work in Fig. 2. The difference is that CNN-7 has 6 convolu-

tional layers which resize the feature map from 128×128×3
to 2× 2× 512. In addition, for the first convolutional layer

in CNN-7, we double the number of 3 × 3 kernels from 32
to 64. We use the term ‘CNN-6/7’ for our two-stage facial

landmark localisation framework and compare it with the

CNN-6 network in Table 3. As reported in the table, the

use of our two-stage landmark localisation framework fur-

ther improves the accuracy, regardless of the type of loss

function used.

7. Experimental results

In this section, we evaluate our method on the Anno-

tated Facial Landmarks in the Wild (AFLW) dataset [32]

and the 300 Faces in the Wild (300W) dataset [49]. We first

introduce our implementation details and experimental set-

tings. Then we compare our algorithm with state-of-the-art

approaches on AFLW and 300W. Last, we analyse the per-

formance of different networks in terms of both accuracy

and speed.

7.1. Implementation details

In our experiments, we used Matlab 2017a and the Mat-

ConvNet toolbox2. The training and testing of our networks

were conducted on a server running Ubuntu 16.04 with 2×
Intel Xeon E5-2667 v4 CPU, 256 GB RAM and 4 NVIDIA

GeForce GTX Titan X (Pascal) cards. Note that we only use

one GPU card for measuring the run time. We set the weight

decay to 5×10−4, momentum to 0.9 and batch size to 8 for

network training. Each model was trained for 120k itera-

tions. We did not use any other advanced techniques in our

CNN-6 and CNN-7 networks, such as batch normalisation,

dropout or residual blocks. The standard ReLu function

was used for nonlinear activation, and Max pooling with

the stride of 2 was used to downsize feature maps. For the

convolutional layer, we used 3×3 kernels with the stride of

1. All our networks, except ResNet-50, were trained from

scratch without any pre-training on any other dataset. For

the proposed PDB strategy, the number of bins K was set

to 17 for AFLW and 9 for 300W.

For CNN-6, the input image size is 64 × 64 × 3. We

reduced the learning rate from 3 × 10−6 to 3 × 10−8 for

the L2 loss, and from 3 × 10−5 to 3 × 10−7 for the other

loss functions. The parameters of the Wing loss were set

to w = 10 and ǫ = 2. For CNN-7, the input image size is

128× 128× 3. We reduced the learning rate from 1× 10−6

to 1× 10−8 for the L2 loss, and from 1× 10−5 to 1× 10−7

for the other loss functions. The parameters of the Wing

loss were set to w = 15 and ǫ = 3.

To perform data augmentation, we randomly rotated

each training image between [−30, 30] degrees for CNN-

6 and between [−10, 10] degrees for CNN-7. In addition,

we randomly flipped each training image with the proba-

bility of 50%. For bounding box perturbation, we applied

random translations to the upper-left and bottom-right cor-

ners of the face bounding box within 5% of the bounding

2http://www.vlfeat.org/matconvnet/
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Figure 6. A comparison of the CED curves on the AFLW dataset.

We compare our method with a set of state-of-the-art approaches,

including SDM [63], ERT [30], RCPR [5], CFSS [74], LBF [46],

GRF [23], CCL [75], DAC-CSR [21] and TR-DRN [39].

box size. Last, we randomly injected Gaussian blur (σ = 1)

to each training image with the probability of 50%.

Evaluation Metric: For evaluation of a facial landmark

localisation algorithm, we adopted the widely used Nor-

malised Mean Error (NME). For the AFLW dataset using

the AFLW-Full protocol, the given face bounding box of a

test sample is a square [75]. To calculate the NME of a test

sample, the AFLW-Full protocol uses the width (or height)

of the face bounding box as the normalisation term. For the

300W dataset, we followed the protocol used in [46]. This

protocol uses the inter-pupil distance as the normalisation

term, which is different from the standard 300W protocol

that uses the outer eye corner distance.

7.2. Comparison with state of the art

7.2.1 AFLW

We first evaluated our algorithm on the AFLW dataset [32],

using the AFLW-Full protocol [75]. AFLW is a very chal-

lenging dataset that has been widely used for benchmark-

ing facial landmark localisation algorithms. The images in

AFLW consist of a wide range of pose variations in yaw

(from −90◦ to 90◦), as shown in Fig. 5. The AFLW-Full

protocol contains 20,000 training and 4,386 test images, and

each image has 19 manually annotated facial landmarks.

We compare the proposed method with state-of-the-art

approaches in terms of accuracy in Fig. 6 using the Cumu-

lative Error Distribution (CED) curve. In our experiments,

we used our two-stage facial landmark localisation frame-

work by stacking the CNN-6 and CNN-7 networks (denoted

by CNN-6/7), as introduced in Section 6. In addition, the

proposed Pose-based Data Balancing (PDB) strategy was

adopted, as presented in Section 5. We report the results of

the proposed approach using four different loss functions.

Table 4. A comparison of the proposed approach with the state-

of-the-art approaches on the 300W dataset in terms of the NME

averaged over all the test samples. We follow the protocol used

in [46]. Note that the error is normalised by the inter-pupil dis-

tance, rather than the outer eye corner distance.

method

subset
Com. Challenge Full

RCPR [5] 6.18 17.26 8.35

CFAN [71] 5.50 16.78 7.69

ESR [6] 5.28 17.00 7.58

SDM [63] 5.60 15.40 7.52

ERT [30] - - 6.40

CFSS [74] 4.73 9.98 5.76

TCDCN [73] 4.80 8.60 5.54

LBF [46] 4.95 11.98 6.32

3DDFA (CVPR16) [76] 6.15 10.59 7.01

3DDFA + SDM 5.53 9.56 6.31

DDN (ECCV16) [68] - - 5.65

RAR (ECCV16) [62] 4.12 8.35 4.94

DeFA (ICCVW17) [38] 5.37 9.38 6.10

TR-DRN (CVPR17) [39] 4.36 7.56 4.99

CNN-6/7 + PDB (L2) 4.18 8.19 4.97

CNN-6/7 + PDB (L1) 3.58 7.02 4.26

CNN-6/7 + PDB (smooth L1) 3.57 7.08 4.26

CNN-6/7 + PDB (Wing) 3.27 7.18 4.04

As shown in Fig. 6, our CNN-6/7 network outperforms

all the other approaches even when trained with the com-

monly used L2 loss function (magenta solid line). This val-

idates the effectiveness of the proposed two-stage localisa-

tion framework and the PDB strategy. Second, by simply

switching the loss function from L2 to L1 or smooth L1,

the performance of our method has been improved signifi-

cantly (red solid and black dashed lines). Last, the use of

our newly proposed Wing loss function further improves

the accuracy (black solid line). The proportion of test sam-

ples (Y-axis) associated with a small to medium normalised

mean error (X-axis) is increased.

7.2.2 300W

The 300W dataset is a collection of multiple face datasets,

including LFPW [1], HELEN [34], AFW [77] and

XM2VTS [42]. The face images involved in 300W

have been semi-automatically annotated by 68 facial land-

marks [50]. To perform the evaluation on 300W, we fol-

lowed the protocol used in [46]. The protocol uses the full

set of AFW and the training subsets of LFPW and HELEN

as the training set, which contains 3148 training samples in

total. The test set of the protocol includes the test subsets

of LFPW and HELEN, as well as 135 IBUG face images

newly collected by the managers of the 300W dataset. The

final size of the test set is 689. The test set is further divided

into two subsets for evaluation, i.e. the common and chal-

lenging subsets. The common subset has 554 face images

from the LFPW and HELEN test subsets and the challeng-

ing subset constitutes the 135 IBUG face images.

2241



Table 5. A comparison of our simple network with ResNet-50, in

terms of accuracy on AFLW-Full and 300W.

AFLW
300W

Com. Challenge Full

CNN-6 + PDB (Wing) 1.83 3.35 7.20 4.10

CNN-6/7 + PDB (Wing) 1.65 3.27 7.18 4.04

ResNet-50 + PDB (Wing) 1.47 3.01 6.01 3.60

Table 6. A comparison in accuracy of ResNet-50 using different

loss functions, evaluated on AFLW-Full.
Loss Function L2 L1 smooth L1 Wing

NME (×10
−2) 1.68 1.51 1.52 1.47

Similar to the experiments conducted on the AFLW

dataset, we used the two-stage localisation framework with

our PDB strategy. The results obtained by our approach

with different loss functions are reported in Table 4.

As shown in Table 4, our two-stage landmark localisa-

tion framework with the PDB strategy and the newly pro-

posed Wing loss function outperforms all the other state-

of-the-art algorithms on the 300W dataset in accuracy. The

error has been reduced by almost 20% as compared to the

current best result reported by the RAR algorithm [62].

7.3. Run time and network architectures

Facial landmark localisation has been widely used in

many real-time practical applications, hence the speed to-

gether with accuracy of an algorithm is crucial for the de-

ployment of the algorithm in commercial use cases.

To analyse the performance of our Wing loss on more

advanced network architectures, we evaluated ResNet [24]

for the task of landmark localisation on AFLW and 300W.

We used the ResNet-50 model that was pre-trained on the

ImageNet ILSVRC classification problem3. We fine-tuned

the model on the training sets of AFLW and 300W sepa-

rately for landmark localisation. The input for ResNet is a

224 × 224 × 3 colour image. It should be highlighted that,

to our best knowledge, this is the first time that such a deep

network has been used for facial landmark localisation.

For both AFLW and 300W, by replacing the CNN-6/7

network with ResNet-50, the performance has been further

improved by around 10%, as shown in Table 5. However,

this performance boosting comes at the cost of much slower

training and inference of ResNet compared to CNN-6/7.

To validate the effectiveness of our Wing loss for large

capacity networks, we also conducted experiments using

ResNet-50 with different loss functions on AFLW. The re-

sults are reported in Table. 6. The results further demon-

strate the superiority of the proposed Wing loss over other

loss functions for large capacity networks, e.g. ResNet-50.

Last, we evaluated the speed of different networks on the

300W dataset with 68 landmarks for both GPU and CPU

devices. The results are reported in Table 7. According

3http://www.vlfeat.org/matconvnet/pretrained/

Table 7. A comparison of different networks, in the number of

model parameters, model size and speed.

network # params size
speed (fps)

GPU CPU

CNN-6 3.8 M 14 MB 400 150

CNN-6/7 12.3 M 46 MB 170 20

ResNet-50 25 M 99 MB 30 8

to the table, our simple CNN-6/7 network is roughly an

order of magnitude faster than ResNet-50 at the compro-

mise of 10% performance difference in accuracy. Also, our

CNN-6/7 model is much faster than most existing DNN-

based facial landmark localisation approaches such as TR-

DRN [39]. The speed of TR-DRN is 83 fps on an NVIDIA

GeForce GTX Titan X card. Even with a powerful GPU

card, it is hard to achieve video rate (60fps) with ResNet-

50. It should be noted that our CNN-6/7 still outperforms

the state-of-the-art approaches by a significant margin while

running at 170 fps on a GPU card, as shown in Fig. 6.

8. Conclusion

In this paper, we analysed different loss functions that

can be used for the task of regression-based facial landmark

localisation. We found that L1 and smooth L1 loss functions

perform much better in accuracy than the L2 loss function.

Motivated by our analysis of these loss functions, we pro-

posed a new, Wing loss performance measure. The key idea

of the Wing loss criterion is to increase the contribution of

the samples with small and medium size errors to the train-

ing of the regression network. To prove the effectiveness

of the proposed Wing loss function, extensive experiments

have been conducted using several CNN network architec-

tures. Furthermore, a pose-based data balancing strategy

and a two-stage landmark localisation framework were ad-

vocated to improve the accuracy of CNN-based facial land-

mark localisation further. By evaluating our algorithm on

multiple well-known benchmarking datasets, we demon-

strated the merits of the proposed approach.

It should be emphasised that the proposed Wing loss is

relevant to other regression-based computer vision tasks us-

ing convolutional neural networks. However, being con-

strained by the space limitations, we leave the discussion of

its extended use to future reports.
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