
Lightweight Probabilistic Deep Networks

Jochen Gast Stefan Roth

Department of Computer Science, TU Darmstadt

Abstract

Even though probabilistic treatments of neural networks

have a long history, they have not found widespread use in

practice. Sampling approaches are often too slow already

for simple networks. The size of the inputs and the depth

of typical CNN architectures in computer vision only com-

pound this problem. Uncertainty in neural networks has

thus been largely ignored in practice, despite the fact that it

may provide important information about the reliability of

predictions and the inner workings of the network. In this

paper, we introduce two lightweight approaches to making

supervised learning with probabilistic deep networks prac-

tical: First, we suggest probabilistic output layers for clas-

sification and regression that require only minimal changes

to existing networks. Second, we employ assumed density

filtering and show that activation uncertainties can be prop-

agated in a practical fashion through the entire network,

again with minor changes. Both probabilistic networks re-

tain the predictive power of the deterministic counterpart,

but yield uncertainties that correlate well with the empir-

ical error induced by their predictions. Moreover, the ro-

bustness to adversarial examples is significantly increased.

1. Introduction

In recent years, deep convolutional networks have be-

come the workhorse for many applications, such as image

classification [20], object detection [15], semantic labeling

[37], or optical flow estimation [10]. While details of the

employed architectures differ, there is typically the common

notion that activations and predictions are represented as

point estimates. In practice, this means that most architec-

tures do not exhibit an explicit representation of uncertainty

– network predictions are agnostic of whether they are reli-

able or not. Even worse, predictive distributions of common

classification models relying on the softmax are not well

calibrated and tend to be overconfident [4, 13, 19]. Addi-

tionally, they can be easily fooled even with imperceptible

changes made to the input image [40]. While the focus on

application performance may be desired from the perspec-

...

y

z(1)

x

...

!
y

x

...

x, "
n

z(1)

!
y

!
z1

(a) Determ. (b) ProbOut (c) ADF

Figure 1. Uncertainties in CNNs: (a) Traditional deep networks

represent both activations and outputs as deterministic point esti-

mates. (b) In this work, we explore the replacement of outputs

by probabilistic output layers. (c) To go one step further, we also

consider replacing all intermediate activations by distributions.

tive of benchmark comparisons, there are many other real-

world settings where the robustness and reliability of pre-

dictive distributions is much more important, e.g. in medi-

cal applications [52] or autonomous driving [2]. Here, un-

certainties are crucial, since they enable us to treat highly

uncertain predictions with particular care. It is interesting

to note that prominent cases where modern AI systems fail

increasingly make headlines in mainstream media, e.g. [9].

More recently, interest in becoming more Bayesian

in deep learning has picked up momentum, c.f . [5, 6].

Bayesian methods, despite being principled, often compli-

cate inference [18], or require expensive test-time sampling

[13]. In this work, we extend deep neural networks to prob-

abilistic predictions, while at the same time making mini-

mal changes to existing network architectures and keeping

inference fast and efficient. Hence, we propose to not “go

down the full Bayesian road”, but obtain uncertainties in a

lightweight manner, which can be applied to well-proven

networks. In a first step, we rely on probabilistic output

layers, termed ProbOut for brevity, which replace standard

point predictions from deterministic networks by distribu-

tions over the output (Fig. 1, a–b). Subsequently, we go one

step further by replacing intermediate activations by distri-

butions as well (Fig. 1, b–c). Building on classical Gaus-

sian belief networks [12], we use assumed density filtering

3369

(ADF) [7] to propagate activation uncertainties through the

network in a single pass. In contrast to full Bayesian net-

works, which treat parameters probabilistically, we only re-

place the activations, enabling us to keep existing networks

without a significant increase in the number of parameters.

Concretely, we propose general power exponential out-

puts for regression problems, which we demonstrate with

an optical flow application using FlowNet [10]. For classi-

fication problems, we suggest a Dirichlet layer, which al-

lows assessing the uncertainty of class predictions. Both

approaches are trained by standard conditional maximum

likelihood estimation. The resulting probabilistic networks

keep the predictive power and efficiency of the determinis-

tic counterpart, but know when their predictions are not re-

liable. Moreover, the probabilistic treatment renders classi-

fication networks more resilient to adversarial attacks [17].

2. Related Work

Latent generative representations. Perhaps among the

first probabilistic neural networks are the works relating

undirected graphical models to neural networks via Boltz-

mann machines [3, 24]; similarly, links are established for

deep belief nets (DBN) via sigmoid belief nets [23, 41].

Later, [12, 22] introduce Gaussian units to represent latent

variables that are nonlinearly propagated through network

layers. Note that these classic forms of directed or undi-

rected networks essentially recover hidden, generative rep-

resentations of the data. A more recent approach to latent,

generative modeling is the reparametrization trick used in

variational autoencoders [32], or conditional autoencoders

[30, 46]. In this work, we do not consider generative mod-

eling, but address supervised learning tasks that are widely

used in vision, e.g. [10, 15, 37]. However, we build upon the

layerwise transformations of Gaussian distributions by Hin-

ton and Frey [12] in the context of nonlinear Gaussian belief

networks, and repurpose them here for the representation of

activation uncertainties in deep supervised learning.

Bayesian approaches. One way towards probabilistic pre-

dictions is the Bayesian treatment of parameters, e.g. recov-

ering tractable distributions of weights [5, 14, 18, 21, 44].

While a Bayesian treatment recovers model uncertainties in

a principled way, it also increases the number of parameters,

as weights are represented by means of a parametric model.

Monte Carlo estimates are commonly computed, e.g. to ap-

proximate variational bounds, increasing the computational

burden at test time. To address this, Korattikara et al. [33]

train a student to reproduce the behavior of a teacher net-

work trained in the full Bayesian setting. We do not require

separate networks and require only minor changes to well-

established procedures for loss-based supervised training.

Sampling-based approaches. Bouchacourt et al. [6] in-

troduce DISCO networks, that, given injected noise, min-

imize the dissimilarity coefficient between the network

model distribution and the true data distribution. Laksh-

minarayanan et al. [35] obtain predictive uncertainties from

an ensemble of M networks; however, while training mul-

tiple networks may be viable for small architectures, it is

not practical for large networks used, e.g., in vision, neither

at training nor at test time. Gal et al. [13] train networks

under Bernoulli units, which are then kept at test-time to

compute Monte Carlo estimates of the uncertainties. One

limitation is the possibility to construct examples, where

test-time dropout does not calibrate its predicted uncertainty

to the observed variance in the data [43]. [13] can be com-

bined with variational dropout [31] to improve predictions

by effectively learning dropout rates from data.

Kendall et al. [28] combine model uncertainty from

Monte Carlo sampling, termed epistemic uncertainty, with

noise from the observation model, termed aleatoric, het-

eroscedastic uncertainty. In this terminology our approach

falls under the category of aleatoric, heteroscedastic uncer-

tainty. Kendall et al. argue that for many vision tasks model

uncertainty is less important than uncertainty from obser-

vation noise, since it is a source of entropy that cannot be

explained away by more evidence. Hence, in this work we

disregard model uncertainty and aim for a highly practical

and fast approach to treating aleatoric uncertainty.

Common to methods that sample at test time to obtain

uncertainties is that, at least currently, they are too slow for a

number of important applications, e.g. autonomous driving.

Uncertainty propagating architectures. Abdelaziz et al.

[1] apply sampling to propagate uncertainties in speech en-

hancement networks. Su et al. [48] use a truncated Gaus-

sian graphical model in an expectation maximization frame-

work. While elegant, the assumption of truncated variables

appears difficult to be generalized to a wide range of non-

linear transformations such as max pooling, for instance.

Wang et al. [51] propose natural parameter networks

(NPN), which treat the inputs, targets, weights, and neu-

rons probabilistically by exponential-family distributions,

e.g. assuming a Gaussian distribution for both weights and

activations. In contrast to these assumptions, we aim for a

lightweight approach without the Gaussian treatment of the

parameters, which would increase the number of parame-

ters significantly. Instead, we argue that probabilistic acti-

vations or even just a probabilistic output and loss suffice to

reap some of the benefits of a probabilistic treatment.

By employing Gaussian activations, Jin et al. [27] show

an improvement of classification robustness for adversar-

ial inputs [17, 50]. While we also apply uncertainty prop-

agating layers using Gaussians, there are some significant

differences: Building upon standard maximum conditional

likelihood learning [34], our work concentrates on proba-

bilistic outputs. Combining it with uncertainty propagation

throughout all layers is optional. Note that while in [27] un-

3370

certainties are dropped at the softmax layer, we provide an

alternative classification layer that can be used in conjunc-

tion with maximum conditional likelihood learning.

3. Uncertainty Prediction in Supervised CNNs

We first describe the key ingredients that allow us to not

only perform prediction with deep networks, but also assess

predictive uncertainties. Thereby, we aim to alter existing

networks as little as possible to ease adoption and aid prac-

ticality. We present two approaches: The first and simplest

consists of solely replacing the output layer of well-proven

networks with a probabilistic one. The second goes beyond

this by considering activation uncertainties also within the

network by means of deep uncertainty propagation.

3.1. CNNs with probabilistic outputs

Predictions from standard CNNs can be regarded as

point estimates. While this is clearly true for regression net-

works, e.g. [10, 11], to some extent this also holds for classi-

fication networks with a softmax layer, e.g. [37, 45]. While

the softmax yields class probabilities, it is mostly a conve-

nient, smooth approximation to an argmax. The softmax
predicts whether classes are more likely in relation to each

other, but does not predict how certain the network is in that

assessment. Consequently, softmax outputs are known not

to be well calibrated [4, 13, 19].

Notation. Assume that we can formalize a deep neural net-

work as a cascade of nonlinear layers

y = f(x;θ) = f (l)

(
f (l−1)

(
· · · f (1)

(
x;θ(1)

))
)
, (1)

where l is the number of layers, x are the inputs given to the

network, and y are the predictions, which can be discrete or

continuous. Each layer f (i)(z(i−1);θ(i)) corresponds to a

nonlinear transformation of intermediate activations z(i−1)

(with z(0) = x), possibly parameterized by θ(i). For brevity

we summarize parameters of all layers with the vector θ.

Probabilistic output layers. Intuitively, one way to render

Eq. (1) into an architecture with probabilistic outputs is to

replace the point predictions y by probability distributions

f(x;θ) ≡ p(· |x), (2)

which assign a probability (density) to all possible outputs

y. For tractability, we restrict the predictive distribution

p(y |x) to be parametric, i.e. p(y |x) ≡ p(y |x;ϑy), and

let the last network layer f (l) predict the parameters ϑy in-

stead. The parameters ϑy encode a predicted output and its

associated uncertainty. For instance, we may choose the pa-

rameters to be the (central) moments of a Gaussian with the

variance corresponding to the uncertainty around the mean.

Discussion. Such a network still effectively predicts points

in some sense. These points are not the outputs y directly,

but the parameters ϑy of a distribution over the outputs.

While this is a simple change over standard deep networks,

we show it to have significant practical benefits.

In practice, replacing deterministic outputs (Eq. 1) with

a probabilistic output layer (Eq. 2) is rather straightforward

once a parametric model is chosen. Importantly, the number

of network parameters increases only in a minor way, in

particular only by those from predicting ϑy instead of y in

the last layer f (l). A Gaussian output layer, for instance,

requires two minimal changes: (i) the number of outputs of

the last layer has to be doubled accounting for both mean

and variance, and (ii) since variances should be positive, we

predict in log space, i.e. ϑy = (µ, v̂) with v = exp(v̂).
The derivatives required for learning using SGD or variants

are conveniently obtained by automatic differentiation.

3.2. Deep uncertainty propagation using ADF

While Eq. (2) accounts for uncertainty in the outputs, it

does not allow for a probabilistic interpretation of interme-

diate activations, see Fig. 1. Intermediate activations z(i)

take a role in predicting the output activations, e.g. µ, their

associated uncertainties, e.g. v, or a mixture thereof. To put

it differently, one cannot query intermediate layers on how

certain they are about the presence of a feature, since this

is encoded concurrently into their states. While this can be

beneficial (we allow ultimate flexibility in modeling proba-

bilistic outputs), a clearer separation of within-network ac-

tivations and uncertainties may be desirable. Consequently,

we apply the paradigm of replacing activations with distri-

butions over activations to all layers. Similar to probabilis-

tic outputs, each intermediate layer f (i), i = 1, . . . , l − 1,
then also outputs a distribution represented by some param-

eters ϑzi rather than a point estimate z(i).

Variational uncertainty propagation. We now introduce

our approach for propagating activation uncertainty in deep

networks. To define a principled mechanism that can re-

place the standard activation propagation (Eq. 1) of the in-

termediate layers, we rely on a form of expectation propa-

gation (EP) [39]. To keep the computation lightweight, we

will restrict the EP framework to assumed density filtering

(ADF) [7], which consists of a single EP forward pass. To

formalize the deep probabilistic model, we start from a stan-

dard architecture that propagates point activations. Specifi-

cally, the joint density of all activations is given by

p(z(0:l)) = p(z(0))

l∏

i=1

p(z(i) | z(i−1)), (3a)

p(z(i) | z(i−1)) = δ
[
z(i) − f (i)(z(i−1))

]
, (3b)

where δ[·] denotes the Dirac delta. Note that inputs p(z(0))

3371

in a deterministic network correspond to Dirac delta distri-

butions. However, since inputs are never perfect, we assume

them to be corrupted by white Gaussian noise

p(z(0)) =
∏

j

N
(
z
(0)
j |xj , σ

2
n

)
. (4)

To propagate this aleatoric uncertainty through the network,

we proceed to apply ADF to the network activations. The

overall goal of the ADF framework is to find a tractable

approximation of the network activations

p(z(0:l)) ≈ q(z(0:l)) = q(z(0))

l∏

i=1

q(z(i)), (5)

incorporating one factor (or layer) of p(z(0:l)) at a time.

Starting from the independent Gaussian input activations

(q(z(0)) = p(z(0))), we approximate subsequent layer ac-

tivations repeatedly by independent Gaussian distributions:

q
(
z(i)
)
=
∏

j

N
(
z
(i)
j |µ(i)

j , v
(i)
j

)
, (6)

where
(
µ
(i)
j , v

(i)
j

)
corresponds to the activation value and

activation variance of neural unit j, respectively. For brevity

we will summarize these independent activation distribu-

tions with vectors ϑz(i) =
(
µ(i),v(i)

)
from now on.

The underlying process here is that subsequent layers

f (i) take an activation distribution q(z(i−1)) and transform

it nonlinearly into an output distribution with a joint prob-

ability density p(z(i) | z(i−1))q(z(i−1)) that can take com-

plex forms and is not necessarily independent anymore.

ADF assumes that previous factors in the variational dis-

tribution correspond to a reasonable approximation, i.e.

p̃(z(0:i)) = p(z(i) | z(i−1))

i−1∏

j=0

q(z(j)). (7)

Under this assumption, ADF then performs incremental up-

dates of the variational approximation by solving

argmin
q̃(z(0:i))

KL
(
p̃(z(0:i)) ‖ q̃(z(0:i))

)
. (8)

This layerwise approximation yields a canonical recipe en-

abling us to convert any layer with point activations (Eq. 1)

into a layer that propagates uncertainties around their acti-

vations. Minka [39] has shown that the solution of Eq. (8)

requires moment matching between p̃(z(0:i)) and q̃(z(0:i)).
Assuming Eqs. (3a) and (6), this results in the following

recipe: A layer z(i) = f (i)(z(i−1);θ) can be converted into

an uncertainty propagation layer by simply matching first

and second-order central moments:

µ(i)
z = Eq(z(i−1))

[
f (i)(z(i−1);θ(i))

]
(9a)

v(i)
z = Vq(z(i−1))

[
f (i)(z(i−1);θ(i))

]
, (9b)

where E[·] and V[·] denote expectation and variance. In

the final inference scheme, we pass through the neural net-

work once, applying the local variational approximation

from Eq. (8) at each subsequent layer. By doing so, ADF

performs a greedy optimization of the global variational ob-

jective argminq(z(0:l)) KL(p(z(0:l)) ‖ q(z(0:l))) [39].

Note that the true posterior of network activations can

be multimodal. Here, the ADF framework approximates

the density spanned by multiple modes [39], which con-

trasts variational inference methods that tend to be “mode

greedy”. While [14, 21] also apply ADF in a Bayesian con-

text, they in contrast approximate the distribution of weights

rather than the activation distributions. Our method only

approximates activations, leading to a simple, yet effective

method with a smaller computational footprint.

Variational approximation of common layers. Applying

Eqs. (9a) and (9b) to create uncertainty propagation layers

can often be done in closed form. Dense layers, convo-

lutions, and deconvolutions are linear operations (f(z) =
Wz+b) and as such their moments are given by E[f(z)] =
Wµz + b and V[f(z)] = (W ◦ W)vz , where ◦ is an ele-

mentwise product. Note that in such linear layers, the mean

prediction and its variance do not interact. Other layers,

e.g. pooling layers, do not necessarily have closed-form so-

lutions, and adequate approximations for Eqs. (9a) and (9b)

have to be found. For maxpool layers, a closed form solu-

tion exists for a two-element input, i.e. mean and variance

of the max of two Gaussian distributed inputs can be analyt-

ically derived [25]. Jin et al. [27] generalize the two-input

solution to more dimensions by folding the max operation

across all elements inside the pooling region and applying

the max operator in ascending order of the magnitude of the

means. While such an ordering reduces the approximation

error, we found this not to affect the resulting performance

significantly. For this reason we simply fold the analytical

solution first in horizontal and then in vertical direction to

maximize the number of parallel operations.

ReLU nonlinearities relu(x) = max(0, x) lead to closed

form solutions, on the other hand. Frey and Hinton [12]

showed that the moments of rectifiers under Gaussian acti-

vations with mean µ and variance v are given by

µrelu(µ, v) = µ · Φ
(µ
σ

)
+ σ · φ

(µ
σ

)
(10a)

vrelu(µ, v) = (µ+v) · Φ
(µ
σ

)
+ µσ · φ

(µ
σ

)
− µ2

relu(µ, v),

(10b)

where σ =
√
v and φ(x),Φ(x) are the standard normal and

cumulative normal distribution, respectively. Note that in

this nonlinear layer, mean and variance do interact.

Leaky ReLU. More recently, alternative nonlinear activa-

tion functions have emerged [20]. As an example, we derive

3372

the uncertainty propagation layer for the leaky ReLU:

leaky relu(x; c) = max(c · x, x), 0 < c ≪ 1. (11)

Eq. (11) can be reformulated by means of common ReLUs:

leaky relu(x; c) = relu(x)− c relu(−x). (12)

Equipped with Eqs. (10a) and (10b) we can show that

µleaky relu(µ, v) = µrelu(µ, v)− c µrelu(−µ, v) (13a)

vleaky relu(µ, v) = vrelu(µ, v) + c2 vrelu(−µ, v)

+ 2c µrelu(µ, v)µrelu(−µ, v). (13b)

In the supplemental material we give a comprehensive

overview and some implementation details on the uncer-

tainty propagation layers used in this work. Note that for

numerical reasons we add a small constant (1e−4) to all ac-

tivation uncertainties in all layers.

Discussion. In contrast to the simple probabilistic output

layers from Sec. 3.1, uncertainty propagation layers based

on ADF (Eqs. 9a, 9b) require no additional parameters

(other than the input noise variance σ2
n). This is because the

last layer before the loss function already outputs a distri-

bution by design. Moreover, no changes in the model archi-

tecture are required. Each layer can simply be replaced by

its probabilistic counterpart in a drop-in fashion. All such

layers are compatible by construction, i.e. they take in two

values per neural unit and output two values.

4. Supervised Probabilistic Training

We now discuss how the probabilistic networks of Sec. 3

can be trained. We first note that it is always possible to ob-

tain a point estimate at test time from the predictive distri-

bution, e.g. by computing ŷ = argmax
y
p(y |x). Hence, if

the point estimate ŷ can be differentiated w.r.t. the parame-

ters, we could apply standard loss-based training. However,

we argue that a training objective solely based on a point

estimate has disadvantages compared to a training objective

using the probability (density) from Eqs. (2) and (3a).

Maximum conditional likelihood learning. Let D =
{x(n), t(n)}Nn=1 be a dataset with multivariate inputs x and

targets t. Assuming i. i. d. data, maximum conditional like-

lihood learning [34] finds the parameters by maximizing the

conditional likelihood of the data under a predictive model

θMCLE = argmax
θ

N∏

n=1

p(t(n) |x(n);θ). (14)

For numerical reasons, learning is performed by minimizing

the negative log-likelihood. To gain insight into the differ-

ences to standard loss-based training, we compare the con-

ditional log-likelihood for a Gaussian output layer

CLLH(θ |D) =
N∑

n=1

∑

j

(
t
(n)
j − µ

(n)
j

)2

v
(n)
j

+ log v
(n)
j (15)

to a sum of squared differences

SSD(θ;D) =

N∑

n=1

∑

j

(
t
(n)
j − y

(n)
j

)2
. (16)

Here, the conditional log-likelihood amounts to the squared

error weighted by its predicted precision plus an additional

term that ensures that the overall predicted variance stays

low. Intuitively, a network predicting ϑy = (µ,v) has two

options to reduce the loss: First, it can improve its mean

prediction, or, second, it can instead predict a high variance

for outputs where it suspects the mean prediction to produce

large errors. While such relationships between standard loss

functions and conditional likelihoods are quite well known,

they are used surprisingly rarely in practice. We here advo-

cate the practical benefits of taking the probabilistic view.

To that end, we discuss two concrete instantiations of this

principle for regression and classification.

4.1. Regression with power exponential outputs

In regression problems in vision [10, 11], commonly a

Lp-loss is applied, often p=1 or 2. We now aim to provide

a probabilistic analog. To that end, we employ the gen-

eral power exponential distribution family introduced by

Gómez et al. [16], a multivariate probability density with d
dimensions (here, outputs per pixel) parametrized by three

parameters (µ,Σ, k). When k = 1/2, the power exponen-

tial distribution equals a multivariate Laplacian, which we

use when a per-pixel L2-norm is desired. To keep inference

tractable, we restrict Σ to be diagonal, i.e. β = diagΣ. The

power exponential output layer is then given by

p(y |µ,β) ∝
d∏

j=1

β
−

1
2

j exp

{
− 1

2

(
d∑

j=1

(yj − µj)
2

βj

)k}
.

(17)

In practice, we minimize

− log p(y |µ,β) ∝
d∑

j=1

log βj +

(
d∑

j=1

(yj − µj)
2

βj

)k

.

(18)

Note that the per-pixel output dimensions in Eq. (18) are not

independent, unlike in other recent work employing proba-

bilistic outputs [42]. While other generalizations of a Lapla-

cian to higher dimensions exist, we found the power expo-

nential unit (with k = 1/2) to perform particularly well, e.g.,

for the endpoint error in optical flow.

3373

P
ro

b
O

u
t

A
D

F

(a) Inputs (b) GT (c) Predicted mean (d) Predicted uncertainty (e) Empirical EPE

Figure 2. Probabilistic regression of optical flow. Our lightweight probabilistic CNNs, FlowNetADF and FlowNetProbOut, yield uncer-

tainties for predictions while staying competitive w.r.t. the endpoint error (EPE). The uncertainties are highly correlated with the EPE.

4.2. Classification with Dirichlet outputs

In classification tasks a common output layer is the

softmax, which normalizes point activations to obtain prob-

abilities. The training loss is given by the average cross en-

tropy between the predicted distribution and the empirical

data distribution. Intuitively, the softmax and cross entropy

allow to express some form of uncertainty: The network can

produce low entropy, peaky distributions when it is confi-

dent; its predictions are driven towards high entropy, uni-

form distributions, when it is uncertain. However, probabil-

ity distributions from a softmax are not well calibrated and

high entropy distributions do not necessarily correlate with

the actual error (c.f . Sec. 5.2). To address this issue, we use

a continuous density defined on the probability simplex.

Class uncertainties with Dirichlet distributions. In this

work, we use the Dirichlet distribution Dir(y |α) with con-

centration parameters αj>0, a categorical distribution over

the probability simplex
∑

j yj = 1, yj > 0. Note that for

ADF it is not immediate how to propagate Gaussian activa-

tions (n means and n variances) to n Dirichlet concentration

parameters. Hence, inspired by [38], we reparametrize the

Dirichlet distribution as

s =
(∑

j
αj

)
−1

, m = sα, s,mj > 0, (19)

where ϑ = (m, s) are n location and a scale parame-

ter, respectively. The location m with
∑

j mj = 1 corre-

sponds to a point prediction on the probability simplex, and

s is a scalar “second order central moment” indicating how

stretched or squeezed the density is around m.

Dirichlet outputs. To only require minimal changes to ex-

isting networks, we avoid predicting the scale s directly. In-

stead, we equip each neuron with its individual uncertainty

as before. To aggregate the n uncertainties into the required

scale s, we define a variance pooling mechanism. We for-

malize the Dirichlet output layer as

p(· | z) = Dir(· |α(µz,vz)) with α(µz,vz) =
m

s
(20)

and

m = softmax(µz), s = c1 + c2

√∑
j
mj vj , (21)

where c1 > 0 controls how peaky the resulting distribu-

tions on the simplex can become and c2 > 0 is an amplifi-

cation factor for converting uncertainties into the Dirichlet

scale. Note that the Dirichlet scale s is computed from the

weighted uncertainty of individual neurons; hence the in-

fluence of an individual uncertainty depends on its softmax
activation. Thus, the variance we care most about is the one

contributing most to the softmax activation.

Details. We may now directly predict ϑz = (µz,vz)
and perform maximum conditional likelihood learning, i.e.

maximizing Eq. (14) under the Dirichlet distribution. The

Dirichlet distribution only supports continuous vectors on

the unit simplex; hence we render the discrete ground truth

labels into continuous multinomial parameters by applying

Laplace smoothing [26] with a small δ (1e−3) to the labels.

The smoothing parameter requires a trade-off between ro-

bustness and accuracy and is chosen such that networks

are as robust as possible, while still performing competi-

tively. The training objective is then the maximum condi-

tional likelihood of these ‘ground truth’ multinomial param-

eters under the predictive Dirichlet distribution.

Discussion. Note that while it may seem natural to apply a

conjugate Dirichlet-Multinomial instead of a Dirichlet with

smoothed labels here, this is not an option. The issue is that

for a single trial this would fall back to a softmax and cross

entropy. On the other hand, a network with the proposed

Dirichlet output can decide to output a fairly peaky point

prediction m when it is certain that the resulting class is

likely a specific one, yet at the same time output a high scale

parameter s. One may wonder when this may make sense.

An answer lies in the fact that the network can only pick

classes from a restricted set that it knows from training [4].

Hence the network may predict that one class is more likely

than the others, but that it is overall not that confident.

5. Experiments

5.1. Probabilistic regression with FlowNet

To demonstrate the benefits of the proposed probabilis-

tic framework for a regression task, we conduct experi-

ments with optical flow. While various energy-based meth-

3374

Table 1. Endpoint error of optical flow regression using sev-

eral variants of FlowNet. “fps” denotes the test-time speed (GTX

1080 Ti) in frames per second with batches of size one.

Sintel clean Sintel final Chairs

Network fps train test train test test

FlowNetS [10] – (4.50) (7.42) (5.45) (8.42) (2.71)
FlowNetS (PT) 106 4.58 7.66 5.72 8.53 2.38

FlowNetADF (ours) 38 4.39 7.46 5.69 8.53 2.19

FlowNetProbOut (ours) 101 4.52 7.47 5.58 8.30 2.15

FlowNetDropOut 3 4.56 7.65 5.70 8.49 2.39

ods have been proposed that typically exploit the brightness

constancy assumption [49], Dosovitskiy et al. [10] intro-

duced FlowNet, a CNN architecture that learns to predict

optical flow from data directly. The CNN is discrimina-

tively trained on the synthetic FlyingChairs dataset using

the endpoint error (EPE) as loss. We take their FlowNetS

architecture and convert it into two different probabilis-

tic versions: The first architecture, FlowNetADF, consists

of translating each layer into its uncertainty propagation

counterpart (c.f . Sec. 3.2), where we set the input noise

to σn = 0.01. Note that the input noise parameter is not

too sensitive as long as it is small in relation to the inputs.

In our second architecture, termed FlowNetProbOut, we do

not propagate uncertainties, but apply probabilistic output

layers alone (c.f . Sec. 3.1). For both networks, we replace

the endpoint error (of the standard FlowNetS) by a Lapla-

cian output layer. Here, we use the power exponential layer

(c.f . Sec. 4.1) with k = 1/2.

As a probabilistic baseline, we implemented a version

with variational Gaussian dropout [31] at the bottleneck

(FlowNetDropOut). Note that additional dropout layers re-

sulted in a decrease in accuracy. We perform sampling (with

30 samples) and use their average as mean prediction. To

obtain a predictive density, we perform kernel density es-

timation with a Gaussian kernel, where the bandwidth has

been optimized w.r.t. the FlyingChairs validation set.

Implementation. As gradients of our ADF network are

quite involved, we rely on automatic differentiation and

reimplemented FlowNetS in PyTorch (FlowNetS (PT)). Our

probabilistic networks and our reimplementation are trained

with similar parameters (216 epochs of Adam [29]) on the

FlyingChairs dataset, which allows a fair comparison.

Results. Fig. 2 shows how the probabilistic networks per-

form on select images from the Sintel [8] dataset. The two

rightmost columns visualize the differential entropy of the

predicted distributions and the endpoint error, respectively.

Our predicted uncertainties are highly correlated with the

actual endpoint error, which suggests that our probabilistic

approach is able to assess where it fails and where it suc-

ceeds, c.f . supplemental for further results. Table 1 shows

quantitative results for the Sintel datset and for a hold-out

Table 2. Avg. log likelihoods of probabilistic flow regression.

Sintel clean Sintel final Chairs

Network train train test

FlowNetADF (ours) −3.878 −4.186 −3.348

FlowNetProbOut (ours) −6.888 −7.621 −3.591

FlowNetDropOut −7.106 −10.820 −6.176

set from FlyingChairs (640 images); predictions of prob-

abilistic networks are given by the means. We report the

execution speed on a Nvidia GTX 1080 Ti.

FlowNetS (PT) yields better results on FlyingChairs than

the original, but slightly worse results on Sintel likely due

to minor differences in training. The probabilistic baseline

FlowNetDropOut performs slightly better than FlowNetS

(PT), but is an order of magnitude slower than our prob-

abilistic networks. More importantly, our probabilistic

networks perform competitive w.r.t. our reimplementation

of FlowNetS; notably FlowNetADF outperforms the de-

terministic counterpart with a 4% improvement on Sintel

clean. Hence, the predictive power of our probabilistic net-

works is as good or better than the corresponding determin-

istic architecture, making them attractive as a drop-in re-

placement. Their benefit is that they allow to assess the un-

certainty of their prediction, i.e. they know when and where

they fail. Table 2 shows the average log likelihoods of the

probabilistic networks on Sintel and FlyingChairs, where

FlowNetADF clearly outperforms both FlowNetProbOut

and FlowNetDropOut. Our lightweight probabilistic net-

works are highly practical and do not add much to the exe-

cution time (c.f . frames per second in Table 1) in contrast to

other approaches, such as test-time dropout [13]. The speed

difference between FlowNetProbOut and FlowNetS (PT) is

minimal. The uncertainty propagation of FlowNetADF ren-

ders its speed to roughly a third due to doubling the number

of activations in every layer with additional nonlinearities.

5.2. Probabilistic classification

We perform classification experiments on CIFAR10 and

MNIST. For MNIST we use the LeNet architecture [36],

while we use a fully convolutional architecture (All-CNN-

C) [47] for CIFAR10. We compare 4 different architectures:

(Determ.) The deterministic baseline network; (ProbOut)

our probabilistic model where the layer before the softmax
is a Gaussian layer as in Sec. 3.1; (ADF) the uncertainty

propagation network from Sec. 3.2 (with σn = 0.01); and

(Dropout) test-time dropout [13] with p = 0.5. Determ. and

Dropout are trained via the standard cross-entropy (XE).

For the probabilistic networks, we apply 3 different training

paradigms: (SM mean + XE) We directly feed the mean-

prediction into a softmax as suggested by [27] and use the

cross-entropy loss; (SM approx + XE) we apply the second-

order softmax approximation of [44] with a cross-entropy

loss; (Dir + CLLH) our Dirichlet output layer from Sec. 4.2

3375

0 0.5 1 1.5 2
Entropy of predicted categorical distribution

0

0.5

1

1.5

2

C
ro

s
s
 e

n
tr

o
p
y

Distribution of cross entropy loss for Dirichlet output layer

0 0.5 1 1.5 2
Entropy of predicted categorical distribution

0

0.5

1

1.5

2

C
ro

s
s
 e

n
tr

o
p
y

Distribution of cross entropy loss for a softmax layer

Figure 3. Assessment of predictive classification distributions

on CIFAR10: Entropy of the categorical distribution (x-axis) vs.

cross-entropy of the data (y-axis). While the softmax (bottom)

shows a weak correlation between its uncertainty and the empirical

error, the Dirichlet output layer (top) shows a strong correlation.

trained by conditional likelihood maximization. Despite us-

ing a different loss for the Dirichlet output layer, we can

compare the classification accuracy and the cross-entropy

of the class predictive distributions.

Results. Table 3 shows quantitative results on CIFAR10

and MNIST. While classification performance is similar for

networks trained with the same loss, Dir + CLLH outper-

forms the softmax based losses. Interestingly, a lower cross

entropy does not always yield a better classification accu-

racy. Test-time dropout performs slightly better in terms

of cross entropy on CIFAR, but is not very practical, as it

requires many, often hundreds forward passes through the

network. As for regression, we find that our lightweight

probabilistic networks retain the predictive power of their

deterministic counterpart. To analyze the predicted distri-

butions, we measure the entropy of the networks’ predic-

tion vs. the actual error. Fig. 3 shows the cross-entropy

loss vs. the entropy of the predictive categorical distribution

for the test data of CIFAR10, for both the Dirichlet output

layer (ADF) well as a softmax layer (Determ.). Intuitively,

the cross-entropy loss should be positively correlated with

the entropy of the predictive categorical distribution, i.e. the

network outputs a high entropy for a large empirical error.

While for the Dirichlet output layer the empirical error is

clearly correlated with the predictive entropy, only a weak

correlation can be observed for the softmax. Hence, while

the softmax yields high accuracy predictions, it does not

calibrate well for the actual uncertainties contained in the

prediction. Since our Dirichlet output layer is more flexible

in modeling the predictive distribution, it allows for a better

calibration, while still achieving similar or better accuracy.

Adversarial GSM attack. To evaluate the robustness of

networks against adversarial attacks, we apply the gradient

sign method (GSM) of [17] to the architectures from above.

Table 4 shows the classification performance for various

Table 3. Classification accuracy (in %) and cross-entropy (XE).

CIFAR10 test MNIST test

Network Output / Loss Acc. XE Acc. XE

Determ. SM + XE 90.62 0.369 99.39 0.0229

Dropout SM + XE 90.88 0.327 99.40 0.0222

ADF SM approx + XE 89.25 0.431 99.41 0.0263

ProbOut SM approx + XE 89.62 0.460 99.22 0.0223

ADF SM mean + XE 89.16 0.467 99.30 0.0241

ADF Dir + CLLH (ours) 91.51 0.450 99.50 0.0247

ProbOut Dir + CLLH (ours) 91.87 0.366 99.48 0.0202

Table 4. Adversarial FGSM attack on CIFAR10. Accuracy (in

%) after an attack using the gradient sign method from [17].

ǫ

Network Output / Loss 0.1 0.05 0.01

Determ. SM + XE 23.99 35.79 46.66

Dropout SM + XE 22.48 31.08 42.24

ADF SM approx + XE 5.04 4.48 19.10

ProbOut SM approx + XE 4.90 4.60 22.47

ADF SM mean + XE 6.05 6.74 20.63

ADF DIR + CLLH (ours) 25.20 43.03 55.91

ProbOut DIR + CLLH (ours) 23.20 46.26 66.49

networks and three different attack strengths ǫ. We observe

that the Dirichlet layer is more robust against this attack

than the softmax layer, which highlights the strength of our

lightweight probabilistic approach. We finally performed

an attack to the test-time dropout architecture by backprop-

agating the gradients through the samples. While test-time

dropout yields high accuracy and low cross-entropy, it ap-

pears more prone to adversarial attacks than Dir + CLLH.

6. Conclusion

In this paper we have proposed a lightweight treatment

of probabilities in supervised deep networks. We suggested

probabilistic output layers and introduced a deep uncer-

tainty propagation procedure derived from assumed density

filtering. We showed how regression problems can be for-

mulated with a general power exponential layer, and clas-

sification tasks can be approached with a Dirichlet layer.

Both can be trained by conditional likelihood maximization.

We demonstrated how these models can be used as efficient

drop-in replacements for deep networks in vision. They re-

tain the predictive power and (most of the) computational

efficiency of the original architecture, but allow for assess-

ing the uncertainty of the prediction, which is highly cor-

related to the empirical error. Classification networks addi-

tionally become more robust against adversarial attacks.

Acknowledgments. The research leading to these results has re-

ceived funding from the European Research Council under the

European Union’s Seventh Framework Programme (FP/2007–

2013)/ERC Grant agreement No. 307942.

3376

References

[1] A. H. Abdelaziz, S. Watanabe, J. R. Hershey, E. Vincent, and

D. Kolossa. Uncertainty propagation through deep neural

networks. In Interspeech, pages 3561–3565, 2015.

[2] E. Ackerman. How Drive.ai is mastering autonomous driv-

ing with deep learning. IEEE Spectrum Magazine, Mar.

2017.

[3] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learn-

ing algorithm for Boltzmann machines. Cognitive Science,

9(1):147–169, 1985.

[4] A. Bendale and T. E. Boult. Towards open set deep networks.

In CVPR, pages 1563–1572, 2016.

[5] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wier-

stra. Weight uncertainty in neural networks. In ICML, pages

1613–1622, 2015.

[6] D. Bouchacourt, P. K. Mudigonda, and S. Nowozin. DISCO

nets: DISsimilarity COefficient networks. In NIPS*2016,

pages 352–360.

[7] X. Boyen and D. Koller. Tractable inference for complex

stochastic processes. In UAI, pages 33–42, 1998.

[8] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.

In ECCV, volume 4, pages 611–625. 2012.

[9] J. Clark. Systems smart enough to know when they’re not

smart enough. https://bigmedium.com/ideas/systems-smart-

enough-to-know-theyre-not-smart-enough.html, Mar. 2017.

[10] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş,

V. Golkov, P. v.d. Smagt, D. Cremers, and T. Brox. FlowNet:

Learning optical flow with convolutional networks. In ICCV,

pages 2758–2766, 2015.

[11] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. In

NIPS*2014, pages 2366–2374.

[12] B. J. Frey and G. E. Hinton. Variational learning in nonlinear

Gaussian belief networks. Neural Comput., 11(1):193–213,

Jan. 1999.

[13] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approxi-

mation: Representing model uncertainty in deep learning. In

ICML, pages 1050–1059, 2016.

[14] S. Ghosh, F. M. D. Fave, and J. Yedidia. Assumed density

filtering methods for learning Bayesian neural networks. In

AAAI, pages 1589–1595, 2016.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, pages 580–587, 2014.

[16] E. Gómez, M. A. Gómez-Villegas, and J. M. Marı́n. A multi-

variate generalization of the power exponential family of dis-

tributions. Comm. Statist. Theory Methods, 27(3):589–600,

July 1998.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and

harnessing adversarial examples. In ICLR, 2015.

[18] A. Graves. Practical variational inference for neural net-

works. In NIPS*2011, pages 2348–2356.

[19] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibra-

tion of modern neural networks. In ICML, pages 1321–1330,

2017.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rec-

tifiers: Surpassing human-level performance on ImageNet

classification. In ICCV, pages 1026–1034, 2015.

[21] J. M. Hernández-Lobato and R. P. Adams. Probabilistic

backpropagation for scalable learning of Bayesian neural

networks. In ICML, pages 1861–1869, 2015.

[22] G. E. Hinton and Z. Ghahramani. Generative models for

discovering sparse distributed representations. Philos. Trans.

R. Soc. B. Biol. Sci., 352(1358):1177–1190, Aug. 1997.

[23] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning

algorithm for deep belief nets. Neural Comput., 18(7):1527–

1554, July 2006.

[24] G. E. Hinton and T. J. Sejnowski. Optimal perceptual infer-

ence. In CVPR, pages 448–453, 1983.

[25] E. T. A. F. Jacobs and M. R. C. M. Berkelaar. Gate sizing

using a statistical delay model. In DATE, pages 283–290,

2000.

[26] F. Jelinek. Statistical Methods for Speech Recognition. Lan-

guage, Speech, and Communication. MIT Press, Cambridge,

MA, USA, 1997.

[27] J. Jin, A. Dundar, and E. Culurciello. Robust convolutional

neural networks under adversarial noise. In Workshop Pro-

ceedings of the ICLR, 2016.

[28] A. Kendall and Y. Gal. What uncertainties do we need in

Bayesian deep learning for computer vision? In NIPS*2017,

pages 5574–5584.

[29] D. P. Kingma and J. L. Ba. Adam: A method for stochastic

optimization. In ICLR, 2015.

[30] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling.

Semi-supervised learning with deep generative models. In

NIPS*2014, pages 3581–3589.

[31] D. P. Kingma, T. Salimans, and M. Welling. Varia-

tional dropout and the local reparameterization trick. In

NIPS*2015, pages 2575–2583.

[32] D. P. Kingma and M. Welling. Auto-encoding variational

Bayes. In ICLR, 2014.

[33] A. Korattikara, V. Rathod, K. Murphy, and M. Welling.

Bayesian dark knowledge. In NIPS*2015, pages 3438–3446.

[34] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Con-

ditional random fields: Probabilistic models for segmenting

and labeling sequence data. In ICML, pages 282–289, 2001.

[35] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple

and scalable predictive uncertainty estimation using deep en-

sembles. In NIPS*2017, pages 6402–6413.

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proc. IEEE,

86(11):2278–2324, Nov. 1998.

[37] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, pages 3431–

3440, 2015.

[38] T. P. Minka. Estimating a Dirichlet distribution. Technical

report, MIT, Cambridge, MA, USA, 2000.

[39] T. P. Minka. A Family of Algorithms for Approximate

Bayesian Inference. PhD thesis, MIT, Cambridge, MA,

USA, Jan. 2001.

[40] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and

P. Frossard. Universal adversarial perturbations. In CVPR,

pages 86–94, 2017.

3377

[41] R. M. Neal. Connectionist learning of belief networks. Artif.

Intell., 56(1):71–113, July 1992.

[42] D. Novotny, D. Larlus, and A. Vedaldi. Learning 3D object

categories by looking around them. In ICCV, 2017.

[43] I. Osband. Risk versus uncertainty in deep learning: Bayes,

bootstrap and the dangers of dropout. In Proceedings of the

NIPS*2016 Workshop on Bayesian Deep Learning.

[44] W. Roth and F. Pernkopf. Variational inference in neural

networks using an approximate closed-form objective. In

Proceedings of the NIPS*2016 Workshop on Bayesian Deep

Learning.

[45] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

[46] K. Sohn, X. Yan, and H. Lee. Learning structured output

representation using deep conditional generative models. In

NIPS*2015, pages 3483–3491.

[47] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-

miller. Striving for simplicity: The all convolutional net. In

Workshop proceedings of the ICLR, 2015.

[48] Q. Su, X. Liao, C. Chen, and L. Carin. Nonlinear statisti-

cal learning with truncated Gaussian graphical models. In

ICML, pages 1948–1957, 2016.

[49] D. Sun, S. Roth, and M. J. Black. A quantitative analysis of

current practices in optical flow estimation and the principles

behind them. Int. J. Comput. Vision, 106(2):115–137, Jan.

2014.

[50] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. J. Goodfellow, and R. Fergus. Intriguing properties of neu-

ral networks. In ICLR, 2014.

[51] H. Wang, X. Shi, and D.-Y. Yeung. Natural-parameter

networks: A class of probabilistic neural networks. In

NIPS*2016, pages 118–126.

[52] S. K. Zhou, H. Greenspan, and D. Shen, editors. Deep Learn-

ing for Medical Image Analysis. The Elsevier and MICCAI

Society Book Series. Academic Press, 1st edition, 2017.

3378

