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Abstract

This paper strives for pixel-level segmentation of actors

and their actions in video content. Different from existing

works, which all learn to segment from a fixed vocabulary

of actor and action pairs, we infer the segmentation from a

natural language input sentence. This allows to distinguish

between fine-grained actors in the same super-category,

identify actor and action instances, and segment pairs that

are outside of the actor and action vocabulary. We propose

a fully-convolutional model for pixel-level actor and action

segmentation using an encoder-decoder architecture opti-

mized for video. To show the potential of actor and action

video segmentation from a sentence, we extend two popular

actor and action datasets with more than 7,500 natural lan-

guage descriptions. Experiments demonstrate the quality of

the sentence-guided segmentations, the generalization abil-

ity of our model, and its advantage for traditional actor and

action segmentation compared to the state-of-the-art.

1. Introduction

The goal of this paper is pixel-level segmentation of an

actor and its action in video, be it a person that climbs, a

car that jumps or a bird that flies. Xu et al. [29] defined

this challenging computer vision problem in an effort to

lift video understanding beyond the more traditional work

on spatio-temporal localization of human actions inside a

tube, e.g. [19, 26, 32]. Many have shown since that joint

actor and action inference is beneficial over their indepen-

dent segmentation, e.g. [10, 28]. Where all existing works

learn to segment from a fixed set of predefined actor and ac-

tion pairs, we propose to segment actors and their actions in

video from a natural language sentence input, as illustrated

in Figure 1.

We are inspired by recent progress in vision and lan-

guage solutions for challenges like object retrieval [6, 7,

17], person search [14, 30, 34], and object tracking [15]. To

arrive at object segmentation from a sentence, Hu et al. [6]

rely on an LSTM network to encode an input sentence into a

vector representation, before a fully convolutional network

Figure 1: From a natural language input sentence our pro-

posed model generates a pixel-level segmentation of an ac-

tor and its action in video content.

extracts a spatial feature map from an image and outputs an

upsampled response map for the target object. Li et al. [15]

propose object tracking from a sentence. Without specify-

ing a bounding box, they identify a target object from the

sentence and track it throughout a video. The target local-

ization of their network is similar to Hu et al. [6], be it that

they introduce a dynamic convolutional layer to allow for

dynamic adaptation of visual filters based on the input sen-

tence. In effect making the textual embedding convolutional

before the matching. Like [6, 15] we also propose an end-

to-end trainable solution for segmentation from a sentence

that embeds text and images into a joint model. Rather than

relying on LSTMs we prefer a fully-convolutional model

from the start, including dynamic filters. Moreover, we op-

timize our model for the task of segmenting an actor and

its action in video, rather than in an image, allowing us to

exploit both RGB and Flow.

The first and foremost contribution of this paper is the

new task of actor and action segmentation from a sentence.

As a second contribution we propose a fully-convolutional

model for pixel-level actor and action segmentation using
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an encoder-decoder neural architecture that is optimized for

video and end-to-end trainable. Third, to show the potential

of actor and action segmentation from a sentence we ex-

tend the A2D [29] and J-HMDB [9] datasets with more than

7,500 textual sentences describing the actors and actions ap-

pearing in the video content. And finally, our experiments

demonstrate the quality of the sentence-guided segmenta-

tions, the generalization ability of our model, and its advan-

tage for traditional actor and action segmentation compared

to the state-of-the-art. Before detailing our model, we first

discuss related work.

2. Related Work

2.1. Actor and action segmentation

Xu et al. [29] pose the problem of actor and action seg-

mentation in video and introduce the challenging Actor-

Action Dataset (A2D) containing a fixed vocabulary of 43

actor and action pairs. They build a multi-layer conditional

random field model and assign to each supervoxel from a

video a label from an actor-action product space. In [28],

Xu and Corso propose a grouping process to add long-

ranging interactions to the conditional random field. Yan

et al. [31] show a multi-task ranking model atop supervoxel

features allows for weakly-supervised actor and action seg-

mentation using only video-level tags for training. Rather

than relying on supervoxels, Kalogeiton et al. [10] propose

a multi-task network architecture to jointly train an actor

and action detector for a video. They extend their bounding

box detections to pixel-wise segmentations by using state-

of-the-art segmentation proposals [22] afterwards.

The above works are limited to model interactions be-

tween actors and actions from a fixed predefined set of label

pairs. Our work models the joint actor and action space us-

ing an open set of labels as rich as language. This has the ad-

vantage that we are able to distinguish between fine-grained

actors in the same super-category, e.g. a parrot or a duck

rolling, and identify different actor and action instances.

Thanks to a pre-trained word embedding, our model is also

able to infer the segmentation from words that are outside of

the actor and action vocabulary but exist in the embedding.

Instead of generating intermediate supervoxels or segmen-

tation proposals for a video, we follow a pixel-level model

using an encoder-decoder neural architecture that is com-

pletely end-to-end trainable.

2.2. Actor localization from a sentence

Recently, works appeared that localize a human actor

from an image [14] or video [30] based on a sentence.

In [14], Li et al. introduce a person description dataset with

sentence annotations and person samples from five existing

person re-identification datasets. Their accompanying neu-

ral network model captures word-image relations and esti-

mates the affinity between a sentence and a person image.

Closer to our work is [30], where Yamaguchi et al. pro-

pose spatio-temporal person search in video. They supple-

ment thousands of video clips from the ActivityNet dataset

[1] with person descriptions. Their person retrieval model

first proposes candidate tubes, ranks them based on a query

in a joint visual-textual embedding and then outputs a fi-

nal ranking. Similar to [14, 30], we also supplement ex-

isting datasets with sentence descriptions, in our case A2D

[29] and J-HMDB [9], but for the purpose of actor and ac-

tion segmentation. Where [30] demonstrates the value of

sentences describing human actors for action localization

in video, we generalize to actions performed by any actor.

Additionally, where [14, 30], simplify their localization to a

bounding box around the human actor of interest, we output

a pixel-wise segmentation of both actor and action in video.

2.3. Action localization from a sentence

Both Gao et al. [4] and Hendricks et al. [5] consider re-

trieving a specific temporal interval containing actions via

a sentence. In contrast, our work offers a unique opportu-

nity to study spatio-temporal segmentation from a sentence,

with a diverse set of actors and actions. Jain et al. [8] follow

a zero-shot protocol and demonstrate spatio-temporal ac-

tion localization is feasible from just a sentence describing

a (previously unknown) action class. They first generate a

set of action tubes, encode each of them by thousands of ob-

ject classifier responses, and compute a word2vec similarity

between the high-scoring object categories inside an action

proposal and the action query. Mettes and Snoek [18] also

follow a zero-shot regime and match sentences to actions in

a word2vec space, but rather than relying on action propos-

als and object classifiers, they prefer object detectors only,

allowing to query for spatio-temporal relations between hu-

man actors and objects. Different from their zero-shot set-

ting, we operate in a supervised regime. We also aim for

spatio-temporal localization of actions in video, but rather

than generating bounding boxes, we prefer a pixel-wise seg-

mentation over actions performed by any actor.

3. Model

Given a video and a natural language sentence as a query,

we aim to segment the actor and its action in each frame of

the video as specified by the query. To achieve this, we pro-

pose a model which combines both video and language in-

formation to perform pixel-wise segmentation according to

the input query. We do so by generating convolutional dy-

namic filters from the textual representation and convolving

them with the visual representation of different resolutions

to output a segmentation mask. Our model consists of three

main components: a textual encoder, a video encoder and a

decoder, as illustrated in Figure 2.
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Figure 2: Our RGB model for actor and action video segmentation from a natural language sentence consists of three main

components: a convolutional neural network to encode the expression, a 3D convolutional neural network to encode the

video, and a decoder that performs a pixel-wise segmentation by convolving dynamic filters generated from the encoded

textual representation with the encoded video representation. The same model is applied to the Flow input.

3.1. Textual Encoder

Given an input natural language sentence as a query that

describes the actor and action, we aim to encode it in a

way that enables us to perform segmentation of the spec-

ified actor and action in video. Different from [6, 15] who

aim to train word embeddings from scratch on the ReferIt

Dataset [12], we rely on word embeddings obtained from

a large collection of text documents. Particularly, we are

using a word2vec model pre-trained on the Google News

Dataset [20]. It enables us to handle words beyond the ones

of the sentences in the training set. In addition, we are us-

ing a simple 1D convolutional neural network instead of an

LSTM to encode input sentences, which we will further de-

tail in our ablation study.

Details. Each word of the input sentence is represented

as a 300-dimensional word2vec embedding, without any

further preprocessing. All the word embeddings are fixed

without fine-tuning during training. The input sentence is

then represented as a concatenation of its individual word

representations, e.g. a 10-word sentence is represented by

a 10 × 300 matrix. Each sentence is additionally padded

to have the same size. The network consists of a single 1D

convolutional layer with a temporal filter size equal to 2 and

with the same output dimension as the word2vec represen-

tation. After the convolutional layer we apply the ReLU ac-

tivation function and perform max-pooling to obtain a rep-

resentation for the whole sentence.

3.2. Video Encoder

Given an input video, we aim to obtain a visual represen-

tation that encodes both the actor and action information,

while preserving the spatial information that is necessary

to perform pixel-wise segmentation. Different from [6, 15]

who use a 2D image-based model our model takes advan-

tage of the temporal dynamics of the video as well. Re-

cently, Carreira and Zisserman [2] proposed to inflate the

2D filters of a convolutional neural network to 3D filters

(I3D) to better exploit the spatio-temporal nature of video.

By pre-training on both image object dataset ImageNet [23]

and video action dataset Kinetics [11] their model achieves

state-of-the-art results for action classification. We adopt

the I3D model to obtain a visual representation from video.

Moreover, we also follow the well-known two-stream

approach [24] to combine appearance and motion infor-

mation, which was successfully applied earlier to a wide

range of video understanding tasks such as action classifi-
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cation [3, 27] and detection [21, 33]. We study the effect of

having RGB and Flow inputs for actor and action segmen-

tation in our ablation study.

Details. Frames of all videos are padded to have the

same size. As visual feature representation for both the

RGB and Flow input, we use the output of the inception

block before the last max-pooling layer of the I3D network

followed by an average pooling over the temporal dimen-

sion. To obtain a more robust descriptor at each spatial lo-

cation, L2-normalization is applied to every spatial position

in the feature map. Following [6, 15], we also append the

spatial coordinates of each position as extra channels to the

visual representation to allow learning spatial qualifiers like

“left of” or “above”.

3.3. Decoding with dynamic filters

To perform pixel-wise segmentation from a natural lan-

guage sentence we rely on dynamic convolutional filters, as

earlier proposed in [15]. Unlike static convolutional filters

that are used in conventional convolutional neural networks,

dynamic filters are generated depending on the input, in our

case on the encoded sentence representation. It enables us

to transfer textual information to the visual domain. Differ-

ent from [15], we notice better results with a tanh activation

function and L2-normalization on the features. In addition,

we generate dynamic filters for several resolutions with dif-

ferent network parameters.

Given a sentence representation T , we generate dynamic

filters fr for each resolution r ∈ R with a separate single

layer fully-connected network:

fr = tanh(W r
f T + brf ), (1)

where tanh is the hyperbolic tangent function and fr has

the same number of channels as representation V r
t for video

input at timestep t and resolution r. Then the dynamic filters

are convolved with V r
t to obtain a pixel-wise segmentation

response map for resolution r at timestep t:

Sr
t = fr ∗ V r

t , (2)

To obtain a segmentation mask with the same resolution as

the input video, we further employ a deconvolutional neural

network. Different from [6, 15], who apply deconvolution

on the segmentation response maps, we use the deconvolu-

tional layers on the video representation V r
t directly. It en-

ables us to better handle small objects and output smoother

segmentation predictions. In addition, it helps to obtain

more accurate segmentations for high overlap values as we

will show in the experiments.

Details. Each of our deconvolutional networks consists

of two blocks with one deconvolutional layer with kernel

size 8 × 8 and stride 4, followed by a convolutional layer

with a kernel size of 3×3 and a stride of 1. We use only the

highest-resolution response map for the final segmentation

prediction.

3.4. Training

Our training sample consists of an input video clip, an

input sentence and a binary ground truth segmentation mask

Y r for each resolution r ∈ R of the frame in the middle of

each input video clip. For each training sample we define a

loss, while taking into account multiple resolutions, which

helps for better flow of gradients in the model similar to a

skip-connection approach:

L =
∑

r∈R

αrL
r (3)

Lr =
1

r2

r∑

i=1

r∑

j=1

Lr
ij (4)

where αr is a weight for resolution r. In this paper we con-

sider R = {32, 128, 512} and we further discuss the impor-

tance of using losses of all resolutions in our ablation study.

The pixel-wise Lr
ij loss is a logistic loss defined as fol-

lows:

Lr
ij = log(1 + exp (−Sr

ijY
r
ij)) (5)

where Sr
ij is a response value of our model at pixel (i, j)

for resolution r and Y r
ij is a binary label at pixel (i, j) for

resolution r.

Details. We train our model using the Adam opti-

mizer [13] with a learning rate of 0.001 and other param-

eters of the optimizer set to the default values. We divide

the learning rate by 10 every 5, 000 iterations and train for

15, 000 iterations in total. We finetune only the last incep-

tion block of the video encoder.

4. Datasets

4.1. A2D Sentences

The Actor-Action Dataset (A2D) by Xu et al. [29] serves

as the largest video dataset for the general actor and action

segmentation task. It contains 3,782 videos from YouTube

with pixel-level labeled actors and their actions. The dataset

includes eight different actions, while a total of seven actor

classes are considered to perform those actions. We fol-

low [29], who split the dataset into 3,036 training videos

and 746 testing videos.

As we are interested in pixel-level actor and action seg-

mentation from sentences, we augment the videos in A2D

with natural language descriptions about what each actor

is doing in the videos. Following the guidelines set forth

in [12], we ask our annotators for a discriminative refer-

ring expression of each actor instance if multiple objects
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are considered in a video. The annotation process resulted

in a total of 6,656 sentences, including 811 different nouns,

225 verbs and 189 adjectives. Our sentences enrich the ac-

tor and action pairs from the A2D dataset with finer gran-

ularities. For example, the actor adult in A2D may be an-

notated with man, woman, person and player in our sen-

tences, while action rolling may also refer to flipping, slid-

ing, moving and running when describing different actors in

different scenarios. Our sentences contain on average more

words than the ReferIt dataset [12] (7.3 vs 4.7), even when

we leave out prepositions, articles and linking verbs (4.5 vs

3.6). This makes sense as our sentences contain a variety

of verbs while existing referring expression datasets mostly

ignore verbs.

4.2. J­HMDB Sentences

J-HMDB [9] contains 928 video clips of 21 different ac-

tions annotated with a 2D articulated human puppet that

provides scale, pose, segmentation and a coarse viewpoint

for the humans involved in each action. We augment the

videos with sentences following the same protocol as for

A2D Sentences. We ask annotators to return a natural lan-

guage description of what the target object is doing in each

video. We obtain 928 sentences, including 158 different

nouns, 53 verbs and 23 adjectives. The most popular ac-

tors are man, woman, boy, girl and player, while shooting,

pouring, playing, catching and sitting are the most popular

actions.

We show sentence-annotated examples of both

datasets in Figure 3 and provide more details on

the datasets in the supplemental material. The sen-

tence annotations and the code of our model will be

available at https://kgavrilyuk.github.io/

publication/actor_action/.

5. Experiments

5.1. Ablation Study

In the first set of experiments we study the impact of

individual components on our proposed model.

Setup. We select A2D Sentences for these set of experi-

ments and use the train split for training and the test split for

evaluation. The input to our model is a sentence describing

what to segment and a video clip of N RGB frames around

the frame to be segmented.

Evaluation. We adopt the widely used intersection-

over-union (IoU) metric to measure segmentation quality.

As aggregation metric we consider overall IoU, which is

computed as total intersection area of all test data over the

total union area.

Results on A2D Sentences. We first evaluate the in-

fluence of the number of input frames on our visual en-

coder and the segmentation result. We run our model with

“small white fluffy puppy biting the cat”

“yellow car is flipping over onto its roof”

“red ball is rolling on a bowling floor”

A2D Sentences

“man standing up from the sofa”

“man in white top and black pants throwing darts”

“boy in gray shirt and black shorts swinging baseball”

J-HMDB Sentences

Figure 3: A2D Sentences and J-HMDB Sentences example

videos, ground truth segments and sentence annotations.

N = 1, 4, 8, 16 and we get 48.2%, 52.2%, 52.8%, and

53.6% respectively in terms of overall IoU. It reveals the

important role of the large temporal context for actor and

action video segmentation. Therefore, we choose N = 16
for all remaining experiments.

Next we compare our 1D convolutional textual encoder

with an LSTM encoder. We follow the same setting for

LSTM as in [6, 15], we use a final hidden state of LSTM as

textual representation for the whole sentence. The dimen-

sion of the hidden state is set to 1, 000. We represent words

by the same word2vec embedding model for both models.

We observe that our simple 1D convolutional textual en-

coder outperforms LSTM in terms of overall IoU: 53.6%
for our encoder and 51.8% for LSTM. We also experi-

mented with bidirectional LSTM which slightly improves

results over vanilla LSTM to 52.1%. Therefore, we select

the convolutional neural network to encode the textual input
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Overlap mAP IoU

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

Hu et al. [6] 7.7 3.9 0.8 0.0 0.0 2.0 21.3 12.8

Li et al. [15] 10.8 6.2 2.0 0.3 0.0 3.3 24.8 14.4

Hu et al. [6] ⋆ 34.8 23.6 13.3 3.3 0.1 13.2 47.4 35.0

Li et al. [15] ⋆ 38.7 29.0 17.5 6.6 0.1 16.3 51.5 35.4

This paper: RGB 47.5 34.7 21.1 8.0 0.2 19.8 53.6 42.1

This paper: RGB + Flow 50.0 37.6 23.1 9.4 0.4 21.5 55.1 42.6

Table 1: Segmentation from a sentence on A2D Sentences. Object segmentation baselines [6, 15] as proposed in the original

papers, or fine-tuned on the A2D Sentences train split (denoted by ⋆). Our model outperforms both baselines for all metrics.

Incorporating Flow in our video model further improves results.

in the remaining experiments.

We further investigate the importance of our multi-

resolution loss. We compare the setting when we are us-

ing all three resolutions to compute the loss (αr = 1, r ∈
{32, 128, 512}) with the setting when only the highest res-

olution is used (α32,128 = 0, α512 = 1). In terms of over-

all IoU the multi-resolution setting performs 53.6% while

single resolution performs 49.4%. This demonstrates the

benefit of the multi-resolution loss in our model.

In the last experiment we study the impact of the two-

stream [24] approach for our task. We make a comparison

for two type of inputs - RGB and Flow. For both streams

we use 16 frames as input. The RGB stream produces bet-

ter results than Flow: 53.6% for RGB and 49.5% for Flow.

We then explore a fusion of RGB and Flow streams by com-

puting a weighted average of the response maps from each

stream. When we set the weight for RGB 2 times larger

than Flow, it further improves our results to 55.1%.

5.2. Segmentation from a sentence

In this experiment, we segment a video based on a given

natural language sentence on the newly annotated A2D Sen-

tences and J-HMDB Sentences datasets and compare our

proposed model with the baseline methods.

Setup. As there is no prior work for video segmentation

from a sentence, we select two methods [6, 15], which can

be used for the related task of image segmentation from a

sentence, as our baselines. To be precise, we compare with

the segmentation model of [6] and the lingual specification

model of [15]. We report baseline results in two training set-

tings. In the first one, the baselines are trained solely on the

ReferIt dataset [12], as indicated in the original papers. In

the second setting we further fine-tune the baseline models

using the training videos from A2D Sentences. We train our

model only on the train split of A2D Sentences. During test,

we follow [29] and evaluate the models on each frame of the

test videos for which segmentation annotation is available -

around one to three frames per video. The input to both

baseline models is an RGB frame with a sentence descrip-

tion. For our model, we use the same sentence as input but

instead of a single RGB frame we employ 16 frames around

the frame to be segmented as this setting shows the best re-

sults in our ablation study.

Evaluation. In addition to overall IoU, we also consider

mean IoU as aggregation. The mean IoU is computed as the

average over the IoU of each test sample. While the overall

IoU favors large segmented regions, mean IoU treats large

and small regions equally. In addition, following [6, 15], we

also measure precision at five different overlap values rang-

ing from 0.5 to 0.9 as well as the mean average precision

over .50 : .05 : .95 [16].

Results on A2D Sentences. In Table 1, we report the

results on the A2D Sentences dataset. The model of [6]

and [15], pretrained on ReferIt [12], performs modestly as

this dataset contains rich sentences describing objects, but it

provides less information about actions. Fine-tuning these

two baselines on A2D Sentences helps improve their per-

formance by incorporating the notion of actions into the

models. Our model outperforms both baselines for all met-

rics using RGB frames as input, bringing 3.5% absolute im-

provement in mAP , 2.1% in overall IoU and 6.7% in mean

IoU. Fusion of RGB and Flow streams further improves our

results. The larger improvement in mean IoU compared to

overall IoU indicates our model is especially better on seg-

menting small objects. The results in mAP show the benefit

of our model for larger overlap values. We visualize some of

the sentence-guided segmentation results in Figure 4. First

of all, our model can tackle the scenarios when the actor is

not in the frame, e.g. in the second video. The model stops

generating the segmentation once the man has left the cam-

era’s view. Our model can also tackle the scenarios when

the actor is performing an action which is different from the

one specified in the sentence, e.g. in the first video. The

model doesn’t output any segmentation for the frames in
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“car jumping into the water”

“man with a purple backpack walking on the right”

“woman in green dress is walking on the street”

“black and white dog rolling on the meadow”

“person is watching a dog”

“small white dog walking on the right”

Figure 4: Visualized segmentation results from our model on A2D Sentences. The first row shows a video with single actor

and action, while the video in the second row contains similar types of actors performing the same action. In the third row,

we illustrate a video with three sentences describing not only different actors, but also the same type of actor performing

different actions. The colored segmentation masks are generated from the sentence with the same color above each video.

which the car is not in the jumping state. It shows the po-

tential of our model for spatio-temporal video segmenta-

tion. Second, in contrast to segmentation from actor-action

labels, we can see from the second video that our segmen-

tation from a sentence enables to distinguish the instances

of the same actor-action pair by richer descriptions. In the

third video, our model confuses two dogs, still we easily

segment different types of actors.

Results on J-HMDB Sentences. We further evaluate

the generalization ability of our model and the baselines.

We test the models, finetuned or trained on A2D Sentences,

on all 928 videos of J-HMDB Sentences dataset without any

additional finetuning. For each video, we uniformly sample

three frames for evaluation following the same setting as in

the previous experiment. We report our results in Table 2.

J-HMDB Sentences focuses exclusively on human ac-

tions and 4 out of 21 actions overlap with actions in A2D

Sentences, namely climb stairs, jump, walk, and run. Con-

sistent with the results on A2D Sentences, our method pro-

vides a more accurate segmentation for higher overlap val-

ues which is shown by mAP. We attribute the better gener-

alization ability to two aspects. The baselines rely on the

VGG16 [25] model to represent images, while we are us-

ing the video-specific I3D model. The second aspect comes

from our textual representation, which can exploit similarity

in descriptions of A2D Sentences and J-HMDB Sentences.

5.3. Segmentation from actor and action pairs

Finally, we segment a video from a predefined set of ac-

tor and action pairs and compare it with the state-of-the-art
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Overlap mAP IoU

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

Hu et al. [6] 63.3 35.0 8.5 0.2 0.0 17.8 54.6 52.8

Li et al. [15] 57.8 33.5 10.3 0.6 0.0 17.3 52.9 49.1

This paper 69.9 46.0 17.3 1.4 0.0 23.3 54.1 54.2

Table 2: Segmentation from a sentence on J-HMDB Sentences using best settings per model on A2D Sentences, demonstrat-

ing generalization ability. Our model generates more accurate segmentations for higher overlap values.

Actor Action Actor and Action

Class-Average Global Mean IoU Class-Average Global Mean IoU Class-Average Global Mean IoU

Xu et al. [29] 45.7 74.6 - 47.0 74.6 - 25.4 76.2 -

Xu et al. [28] 58.3 85.2 33.4 60.5 85.3 32.0 43.3 84.2 19.9

Kalogeiton et al. [10] 73.7 90.6 49.5 60.5 89.3 42.2 47.5 88.7 29.7

This paper 71.4 92.8 53.7 69.3 92.5 49.4 52.4 91.7 34.8

Table 3: Semantic segmentation results on the A2D dataset using actor, action and actor+action as input respectively. Even

though our method is not designed for this setting, it outperforms the state-of-the-art in most of the cases.

segmentation models on the original A2D dataset [29].

Setup. Instead of input sentences, we train our model on

the 43 valid actor and action pairs provided by the dataset,

such as adult walking and dog rolling. We use these pairs

as textual input to our model. Visual input is kept the same

as before. As our model explicitly requires a textual in-

put for a given video, we select a subset of pairs from all

possible pairs as queries to our model. For this purpose, we

finetune a multi-label classification network on A2D dataset

and select the pairs with a confidence score higher than 0.5.

We use this reduced set of pairs as queries to our model

and pick the class label with the highest response for each

pixel. The classification network contains an RGB and a

Flow I3D model where the number of neurons in the last

layer is set to 43 and the activation function is replaced by a

sigmoid for multi-label classification. During training, we

finetune the last inception block and the final layer of both

models on random 64-frame video clips. We randomly flip

each frame horizontally in the video clip and then extract

a 224 × 224 random crop. We train for 3, 000 iterations

with the Adam optimizer and fix the learning rate to 0.001.

During test, we extract 32-frame clips over the video and

average the scores across all the clips and across RGB and

Flow streams to obtain the final score for a given video. For

this multi-label classification we obtain mean average pre-

cision of 70%, compared to 67% in [29].

Evaluation. We report the class-average pixel accuracy,

global pixel accuracy and mean IoU as in [10]. Pixel ac-

curacy is the percentage of pixels for which the label is

correctly predicted, either over all pixels (global) or first

computed for each class separately and then averaged over

classes (class-average).

Results on A2D. We compare our approach with the

state-of-the-art in Table 3. Even though our method is not

designed for this setting, it outperforms all the competi-

tors for joint actor and action segmentation (last 3 columns

of Table 3). Particularly, we improve the state-of-the-art

by a margin of 4.9% in terms of class-average accuracy

and 5.1% in terms of Mean IoU. In addition to joint ac-

tor and action segmentation, we report results for actor and

action segmentation separately. For actor segmentation the

method by Kalogeiton et al. [10] is slightly better in terms

of class-average accuracy, for all other metrics and settings

our method sets a new state-of-the-art. Our improvement

is particularly notable on action segmentation where we

outperform the state-of-the-art by 8.8% in terms of class-

average accuracy and 7.2% in terms of Mean IoU. It vali-

dates that our method is suitable for both actor and action

segmentation, be it individually or combined.

6. Conclusion

We introduce the new task of actor and action video

segmentation from a sentence. Our encoder-decoder neu-

ral architecture for pixel-level segmentation explicitly takes

into account the spatio-temporal nature of video. To en-

able sentence-guided segmentation with our model, we ex-

tended two existing datasets with sentence-level annotations

describing actors and their actions in the video content. Ex-

periments show the feasibility and robustness, as well as the

model’s ability to adapt to the task of semantic segmentation

of actor and action pairs, outperforming the state-of-the-art.
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