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Figure 1: Dense pose estimation aims at mapping all human pixels of an RGB image to the 3D surface of the human body.

We introduce DensePose-COCO, a large-scale ground-truth dataset containing manually annotated image-to-surface corre-

spondences for 50K images, and train DensePose-RCNN to densely regress UV coordinates at multiple frames per second.

Left: The image and the regressed correspondence by DensePose-RCNN. Middle: DensePose-COCO Dataset annotations.

Right: Partitioning and UV parametrization of the body surface.

Abstract

In this work we establish dense correspondences be-

tween an RGB image and a surface-based representation

of the human body, a task we refer to as dense human pose

estimation. We gather dense correspondences for 50K per-

sons appearing in the COCO dataset by introducing an ef-

ficient annotation pipeline. We then use our dataset to train

CNN-based systems that deliver dense correspondence ‘in

the wild’, namely in the presence of background, occlusions

and scale variations. We improve our training set’s effec-

tiveness by training an inpainting network that can fill in

missing ground truth values and report improvements with

respect to the best results that would be achievable in the

past. We experiment with fully-convolutional networks and

region-based models and observe a superiority of the latter.

We further improve accuracy through cascading, obtaining

a system that delivers highly-accurate results at multiple

frames per second on a single gpu. Supplementary mate-

rials, data, code, and videos are provided on the project

page http://densepose.org.

1. Introduction

This work aims at pushing further the envelope of human

understanding in images by establishing dense correspon-
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dences between a 2D image and a 3D, surface-based repre-

sentation of the human body. We can understand this task as

involving several other problems, such as object detection,

pose estimation, part and instance segmentation either as

special cases or prerequisites. Addressing this task has ap-

plications in problems that require going beyond plain land-

mark localization, such as graphics, augmented reality, or

human-computer interaction, and could also be a stepping

stone towards general 3D-based object understanding.

The task of establishing dense correspondences from an

image to a surface-based model has been addressed mostly

in the setting where a depth sensor is available [43, 34, 46].

Instead, we establish dense image-to-surface correspon-

dences using as sole input the RGB values of a single image.

Several other works have recently aimed at recovering

dense correspondences between pairs [3] or sets of RGB im-

ages [50, 10] in an unsupervised setting. More recently, [44]

used the equivariance principle in order to align sets of im-

ages to a common coordinate system, while following the

general idea of groupwise image alignment, e.g. [24, 22].

While these works target general categories, ours is fo-

cused on arguably the most important one, humans. For

humans one can simplify the task by exploiting paramet-

ric deformable surface models, such as the Skinned Multi-

Person Linear (SMPL) model [2], or the more recent Adam

model [15] obtained through controlled 3D surface acqui-

sition. Turning to the task of image-to-surface mapping,
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Figure 2: We annotate dense correspondence between images and a 3D surface model by asking the annotators to first

segment the image into semantic regions and then localize each of the sampled points on any of the rendered part images.

The surface coordinates of the rendered views are used to localize the collected 2D points on the 3D model.

in [2], the authors propose a two-stage method of detecting

human landmarks and fitting a parametric deformable sur-

face model to the image through iterative minimization. In

parallel to our work, [21] extend [2] to operate end-to-end,

incorporating the iterative reprojection error minimization

as a module of a deep network that recovers 3D camera pose

and the low-dimensional body parametrization.

Our methodology differs from all these works in that

we take a full-blown supervised learning approach and

gather ground-truth correspondences between images and

a detailed, accurate parametric surface model of the hu-

man body [28]: rather than using the SMPL model at test

time we only use it as a means of defining our problem

during training. Our approach can be understood as the

next step in the line of works on human pose estimation

[27, 1, 20, 7, 42, 19, 29]. Human part segmentation masks

have been provided in a number of datasets [48, 6, 13];

these can be understood as providing a coarsened version

of image-to-surface correspondence, where rather than con-

tinuous coordinates one predicts discretized part labels [35].

Surface-level supervision was only recently introduced for

synthetic images in [45], while in [23] a dataset of 8515 im-

ages is annotated with keypoints and semi-automated fits of

3D models to images. In this work instead of compromis-

ing the extent and realism of our training set we introduce

a novel annotation pipeline that allows us to gather ground-

truth correspondences for 50K images of COCO, yielding

our new DensePose-COCO dataset.

Our work is closest in spirit to the recent DenseReg

framework [14], where CNNs were trained to establish

dense correspondences between a 3D model and images ‘in

the wild’. That work focused mainly on faces, and pro-

vided evaluations on datasets with moderate pose variabil-

ity. Here, however, we are facing new challenges, due to the

higher complexity and flexibility of the human body, as well

as the larger scale variation. We address these challenges

by designing appropriate architectures (Sec. 3) that yield

substantial improvements over a DenseReg-type fully con-

volutional architecture. By combining our approach with

the recent Mask-RCNN system of [16] we show that a dis-

criminatively trained model can efficiently recover highly-

accurate correspondence fields for complex scenes involv-

ing tens of persons: on a GTX 1080 GPU our system op-

erates at 20-26 fps for a 240×320 image or 4-5 fps for a

800×1100 image.

Our contributions can be summarized in three points.

Firstly, as described in Sec. 2, we introduce the first

manually-collected ground truth dataset for the task,

by gathering dense correspondences between the SMPL

model [28] and persons appearing in the COCO dataset.

This is accomplished through a novel annotation pipeline

that exploits 3D surface information during annotation.

Secondly, as described in Sec. 3, we use the resulting

dataset to train CNN-based systems that deliver dense cor-

respondence ‘in the wild’ by regressing body surface co-

ordinates at any image pixel. We experiment with both

fully-convolutional architectures, relying on Deeplab [4],

and also with region-based systems, relying on Mask-

RCNN [16], observing a superiority of the latter. We also

consider cascading variants of our approach, yielding fur-

ther improvements over existing architectures.

Thirdly, we explore different ways of exploiting our con-

structed ground truth information. Our supervision signal is

defined over a randomly chosen subset of image pixels per

training sample. We use these sparse correspondences to

train a teacher network that can inpaint the supervision sig-

nal in the rest of the image domain. Using this inpainted

signal results in better performance when compared to ei-

ther sparse points, or any other existing dataset, as shown

experimentally in Sec. 4.

Our experiments indicate that dense human pose estima-

tion is to a large extent feasible, but still has space for im-

provement. Our code and the data will be made publicly

available at http://densepose.org.
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Figure 3: Visualization of annotations: Image (left), U (middle) and V (right) values for the collected points.

2. DensePose-COCO Dataset

Gathering rich, high-quality training sets has been a cat-

alyst for progress in the classification [40], detection and

segmentation [8, 27] tasks. There currently exists no manu-

ally collected ground-truth for dense human pose estimation

for real images. The works of [23, 45] can be used as surro-

gates, but as we show in Sec. 4 provide worse supervision.

In this Section we introduce DensePose-COCO, a large-

scale dataset for dense human pose estimation. DensePose-

COCO provides ground-truth for 50K humans and contains

more than 5 million manually annotated pairs. We first

present our annotation pipeline, since our design choices

may be useful for general 3D annotation. We then analyze

the accuracy of the collected ground-truth, and finally intro-

duce evaluation metrics for dense pose estimation.

2.1. Annotation System

In this work we use human annotators to establish dense

correspondences from 2D images to surface-based repre-

sentations of the human body. If done naively this would

require manipulating a surface through rotations to find the

vertices corresponding to every 2D image point, which is

time-demanding and inefficient. Instead, we construct an

annotation pipeline through which we can efficiently gather

annotations for image-to-surface correspondence.

As shown in Fig. 2, in the first stage we ask annotators to

delineate regions corresponding to visible, semantically de-

fined body parts. These include Head, Torso, Lower/Upper

Arms, Lower/Upper Legs, Hands and Feet. In order to sim-

plify the UV parametrization we design the parts to be iso-

morphic to a plane, partitioning the upper and lower limbs

and torso into frontal-back parts. For head, hands and

feet, we use the manually obtained UV fields provided in

the SMPL model [28]. For other parts we obtain the un-

wrapping via multi-dimensional scaling applied to pairwise

geodesic distances. The UV fields for the resulting 24 parts

are visualized in Fig. 1 (right).

We instruct the annotators to estimate the body part be-

hind the clothes, so that for instance wearing a large skirt

will not complicate the subsequent correspondence anno-

tations. In the second stage we sample every part region

with a set of roughly equidistant points obtained by run-

ning k-means over the coordinates occupied by each part

and request the annotators to bring these points in corre-

spondence with the surface. The number of sampled points

varies based on the size of the part and the maximum num-

ber of sampled points per part is 14. In order to simplify

this task we ‘unfold’ the part surface by providing six pre-

rendered views of the same body part and allow the user

to place landmarks on any of them. This allows the anno-

tator to choose the most convenient viewpoint by selecting

one among six options instead of manually rotating the sur-

face. As the user indicates a point on any of the rendered

part views, its surface coordinates are used to simultane-

ously show its position on the remaining views – this gives

a global overview of the correspondence. We show indica-

tive visualizations of the gathered annotations in Fig. 3.

2.2. Accuracy of human annotators

A common concern when gathering ground-truth is the

accuracy of the human annotations, which is often seen as

an upper bound of what vision algorithms can deliver. In

pose estimation one typically asks multiple annotators to

label the same landmark, which is then used to assess the

variance in position, e.g. [27, 38]. In our case we can di-

rectly compare to the true mesh coordinates used to render

a pixel, rather than first estimating a ’consensus’ landmark

location among multiple human annotators.

In particular, we provide annotators with synthetic im-

ages generated through the rendering system and textures

of [45]. We ask the annotators to bring the synthesized im-

ages into correspondence with the surface using our anno-

tation tool, and for every image k estimate the geodesic dis-

tance di,k between the correct surface point, i and the point

estimated by human annotators îk:

di,k = g(i, îk), (1)

g(·, ·) is the geodesic distance between two surface points.

For any image k, we annotate and estimate the error on a

randomly sampled set of surface points Sk and interpolate

the errors on the remainder of the surface. Finally, we aver-

age the errors across all examples given to the annotators.

As shown in Fig. 4 the annotation errors are substantially

smaller on small surface parts with distinctive features that

could help localization (face, hands, feet), while on larger

uniform areas that are typically covered by clothes (torso,

back, hips) the annotator errors can get larger.
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2.3. Evaluation Metrics

We consider two different ways of summarizing corre-

spondence accuracy over the whole human body, including

pointwise and per-instance evaluation.

Pointwise evaluation. This approach evaluates corre-

spondence accuracy over the whole image domain through

the Ratio of Correct Point (RCP) correspondences, where a

correspondence is declared correct if the geodesic distance

is below a certain threshold. As the threshold t varies, we

obtain a curve f(t), whose area provides us with a scalar

summary of the correspondence accuracy. For any given

image we have a varying set of points coming with ground-

truth signals. We summarize performance on the ensemble

of such points, gathered across images. We evaluate the

area under the curve (AUC), AUCa = 1

a

∫ a

0
f(t)dt, for two

different values of a = 10cm, 30cm yielding AUC10 and

AUC30 respectively, where AUC10 is understood as being

an accuracy measure for more refined correspondence. This

performance measure is easily applicable to both single-

and multi-person scenarios and can deliver directly com-

parable values. In Fig. 5 we provide the per-part pointwise

evaluation of the human annotator performance on synthetic

data, which can be seen as an upper bound for the perfor-

mance of our systems.

Per-instance evaluation. Inspired by the object keypoint

similarity (OKS) measure used for pose evaluation on the

COCO dataset [27, 38], we introduce geodesic point simi-

larity (GPS) as a correspondence matching score:

GPSj =
1

|Pj |

∑

p∈Pj

exp

(

−g(ip, îp)
2

2κ2

)

, (2)

where Pj is the set of ground truth points annotated on per-

son instance j, ip is the vertex estimated by a model at

point p, îp is the ground truth vertex p and κ is a normal-

izing parameter. We set κ=0.255 so that a single point has

a GPS value of 0.5 if its geodesic distance from the ground

truth equals the average half-size of a body segment, cor-

responding to approximately 30 cm. Intuitively, this means

that a score of GPS≈ 0.5 can be achieved by a perfect part

segmentation model, while going above that also requires a

more precise localization of a point on the surface.
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Figure 4: Average human annotation error on the surface.

Once the matching is performed, we follow the COCO

challenge protocol [27, 39] and evaluate Average Precision

(AP) and Average Recall (AR) at a number of GPS thresh-

olds ranging from 0.5 to 0.95, which corresponds to the

range of geodesic distances between 0 and 30 cm. We use

the same range of distances to perform both per-instance

and per-point evaluation.

3. Learning Dense Human Pose Estimation

We now turn to the task of training a deep network that

predicts dense correspondences between image pixels and

surface points. Such a task was recently addressed in the

Dense Regression (DenseReg) system of [14] through a

fully-convolutional network architecture [4]. In this Sec-

tion we introduce improved architectures by combining

the DenseReg approach with the Mask-RCNN architec-

ture [16], yielding our ‘DensePose-RCNN’ system. We de-

velop cascaded extensions of DensePose-RCNN that fur-

ther improve accuracy and describe a training-based inter-

polation method that allows us to turn a sparse supervision

signal into a denser and more effective variant.

3.1. Fully­convolutional dense pose regression

Since the human body has a complicated structure, we

break it into multiple independent pieces and parametrize

each piece using a local two-dimensional coordinate sys-

tem, that identifies the position of any node on this surface

part.

Using the surface representation, a simple choice for

dense image-to-surface correspondence estimation consists

in using a fully convolutional network (FCN) that combines

a classification and a regression task, similar to DenseReg.

In a first step, we classify a pixel as belonging to either

background or one among the surface parts. In a second

step, a regression system indicates the exact coordinates of

the pixel within the part. Intuitively, we can say that we first

use appearance to make a coarse estimate of where the pixel

belongs to and then align it to the exact position through

some small-scale correction.

Concretely, coordinate regression at an image position i
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Figure 5: Human annotation error distribution within parts.
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Figure 6: DensePose-RCNN architecture: we use a cascade

of region proposal generation and feature pooling, followed

by a fully-convolutional network that densely predicts dis-

crete part labels and continuous surface coordinates.

can be formulated as follows:

c∗ = argmaxcP (c|i), [U, V ] = Rc∗(i) (3)

where in the first stage we assign position i to the body

part c∗ that has highest posterior probability, as calculated

by the classification branch, and in the second stage we use

the regressor Rc∗ that places the point i in the continuous

U, V coordinates parametrization of part c∗. In our case, c
can take 25 values (one is background), meaning that Px is a

25-way classification unit, and we train 24 regression func-

tions Rc, each of which provides 2D coordinates within its

respective part c. While training, we use a cross-entropy

loss for part classification and a smooth L1 loss [12] for

each part-specific regression function. The regression loss

for a part is only considered for pixels occupied by that part.

3.2. Region­based Dense Pose Regression

Using an FCN makes the system particularly easy to

train, but loads the same deep network with too many

tasks, including part segmentation and pixel localization,

while at the same time requiring scale-invariance, which

becomes challenging for humans in COCO. Here we adopt

the region-based approach of [36, 16], which consists in a

cascade of proposing regions-of-interest (ROI), extracting

region-adapted features through ROI pooling [17, 16] and

feeding the resulting features into a region-specific branch.

Region-based architectures decompose the complexity of

the task into controllable modules and implement a scale se-

lection mechanism through ROI-pooling. At the same time,

they can be jointly trained in an end-to-end manner [36].

We adopt the settings introduced in [16], involving the

construction of Feature Pyramid Network [26] features, and

ROI-Align pooling, which have been shown to be important

for tasks that require spatial accuracy. We adapt this archi-

tecture to our task, so as to obtain dense part labels and

coordinates within each of the selected regions.

As shown in Fig. 6, on top of ROI-pooling we introduce

an FCN that is entirely devoted to these two tasks, gen-

erating a classification and a regression head that provide

the part assignment and part coordinate predictions, as in

+

+

DensePose head

refined output
(DensePose)

DensePose losses

output
(masks / keypoints) DensePose

masks
keypoints

GT

GT

refined output
(masks / keypoints)

512×512×1×1

512×512×1×1

512×512×1×1

512×512×1×1

mask / keypoint
head

RoIAlign mask / keypoint losses

[1/17]×512×1×1

output
(DensePose)

75×512×1×1

Figure 7: Cross-cascading architecture: The RoIAlign out-

put in Fig. 6 feeds into the DensePose network and aux-

iliary networks for other tasks (masks, keypoints). Once

first-stage predictions are obtained from all tasks, they are

combined and fed into a second-stage refinement unit.

DenseReg. For simplicity, we use the exact same architec-

ture used in the keypoint branch of Mask-RCNN, consist-

ing of a stack of 8 alternating 3×3 fully convolutional and

ReLU layers with 512 channels. At the top of this branch

we have the same classification and regression losses as in

the FCN baseline, but we now use a supervision signal that

is cropped within the proposed region.

3.3. Multi­task cascaded architectures

Inspired by the success of recent pose estimation mod-

els based on iterative refinement [47, 31] we experiment

with cascaded architectures. Cascading can improve per-

formance both by providing context to the following stages,

and also through the benefits of deep supervision [25].

As shown in Fig. 7 we do not confine ourselves to cas-

cading within a single task, but also exploit information

from related tasks, such as keypoint estimation and instance

segmentation, which have successfully been addressed by

the Mask-RCNN architecture [16]. This allows us to ex-

ploit task synergies and the complementary merits of differ-

ent sources of supervision.

3.4. Distillation­based ground­truth interpolation

Even though we aim at dense pose estimation at test

time, in every training sample we annotate only a sparse

subset of the pixels, approximately 100-150 per human.

This does not necessarily pose a problem during train-

ing, since we can make our classification/regression losses

oblivious to points where the ground-truth correspondence

was not collected, simply by not including them in the sum-

mation over the per-pixel losses [41]. However, we have

observed that we obtain better results by “inpainting” the

values of the supervision signal on positions that were not

originally annotated. For this we adopt a learning-based ap-
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proach where we firstly train a “teacher” network to recon-

struct the ground-truth values wherever these are observed,

and then deploy it on the full image domain, yielding a

dense supervision signal.

As shown in Fig. 8, we use human segmentation maps

available in COCO in order to get the most accurate super-

vision signal possible by (a) replacing background struc-

tures with a common gray value and (b) ignoring the net-

work’s predictions outside the human region. The perfor-

mance of the teacher network can therefore be understood

as an upper bound on what an algorithm can deliver on real

data, since we remove false positives, normalize scale and

remove background variation during both training and test-

ing.

4. Experiments

In all experiments we assess the methods on a test set of

1.5K images containing 2.3K humans and use 48K humans

in the training set. Our test set coincides with the COCO

keypoints-minival partition used by [16] and the training set

with the COCO-train partition.

Before assessing dense pose estimation in the wild

(Sec. 4.2), we start in Sec. 4.1 with the ‘Single-Person’ set-

ting where the input images are cropped around ground-

truth boxes. This factors out the effects of detection per-

formance and provides us with a controlled setting to assess

the usefulness of the DensePose-COCO dataset.

4.1. Single­Person Dense Pose Estimation

In Sec. 4.1.1 we compare the DensePose-COCO dataset

to other sources of supervision for dense pose estimation. In

Sec. 4.1.2 we compare the performance of the model-based

system of [2] with ours. We note that the system of [2] was

not trained with the same amount of data as our model; this

comparison therefore serves primarily to show the merit of

our large-scale dataset for discriminative training.

4.1.1 Manual supervision versus surrogates

We start by assessing whether DensePose-COCO improves

the accuracy of dense pose estimation with respect to the

prior semi-automated, or synthetic supervision signals.

Teacher Network
(FCNN)

Figure 8: We train a ‘teacher network’ with our collected

sparse supervision signal and use it to ‘inpaint’ a dense su-

pervision signal used to train our region-based system.

A semi-automated method is used for the ‘Unite the Peo-

ple’ (UP) dataset of [23], where human annotators verified

the results of fitting the SMPL 3D deformable model [28] to

2D images. However, model fitting often fails in the pres-

ence of occlusions, or extreme poses, and is never guaran-

teed to be entirely successful – for instance, even after re-

jecting a large fraction of the fitting results, the feet are still

often misaligned in [23].

Synthetic ground-truth can be established by rendering

images using surface-based models [33, 32, 37, 11, 5, 30].

This has recently been applied to human pose in the SUR-

REAL dataset of [45], where the SMPL model [28] was

rendered with the CMU Mocap dataset poses [29]. How-

ever, domain shift can emerge because of the different

statistics of rendered and natural images.

Since both of these two methods use the same SMPL

surface model as the one we use in our work, we can di-

rectly compare results, and also combine datasets. We ren-

der our dense coordinates and our dense part labels on the

SMPL model for all 8514 images of UP dataset and 60k

SURREAL models for comparison.

In Fig. 10 we assess the test performance of ResNet-

101 FCNs of stride 8 trained with different datasets, us-

ing a Deeplab-type architecture. During training we aug-

ment samples from all of the datasets with scaling, crop-

ping and rotation. We observe that the surrogate datasets

lead to weaker performance, while their combination yields

improved results. Still, their performance is substantially

lower than the one obtained by training on our Dense-

Pose dataset, while combining the DensePose with SUR-

REAL results in a moderate drop in network performance.

Based on these results we rely exclusively on the Dense-

Pose dataset for training in the remaining experiments, even

though domain adaptation [9] could be used in the future to

exploit synthetic sources of supervision.

The last line in the table of Fig. 10 (’DensePose∗’) indi-

cates the additional performance boost that we get by using

the teacher network settings described in Sec. 3.4. Clearly,

the results are not directly comparable with those of other

methods, since we use additional information to remove

background structures. Still, the resulting predictions are

substantially closer to human performance – we can there-

fore confidently use our teacher network to obtain dense su-

pervision for the experiments in Sec. 4.2.

4.1.2 FCNN- vs Model-based pose estimation

In Fig. 9 we compare our method to the SMPLify pipeline

of [2], which fits the 3D SMPL model to an image based

on a pre-computed set of landmark points. We use the code

provided by [23] with both DeeperCut pose estimation land-

mark detector [18] for 14-landmark results and with the 91-

landmark alternative proposed in [23].
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Method AUC10 AUC30

Full-body images

UP-SMPLify-91 0.155 0.306

SMPLify-14 0.226 0.416

DensePose 0.429 0.630

All images

SMPLify-14 0.099 0.19

DensePose 0.378 0.614

Human Performance 0.563 0.835

Figure 9: Qualitative comparison

between model-based single-person

pose estimation of SMPLify [2] and

our FCN-based result, in the ab-

sence (‘full-body images’) and pres-

ence (‘all images’) of occlusions.

Method AUC10 AUC30

SR 0.124 0.289

UP 0.146 0.319

SR + UP 0.201 0.424

DensePose + SR 0.357 0.592

DensePose 0.378 0.614

DensePose∗ 0.445 0.711

Human Performance 0.563 0.835

Figure 10: Single-person performance

for different kinds of supervision

signals used for training: Dense-

Pose leads to substantially more ac-

curate results than surrogate datasets.

DensePose∗ uses a figure-ground ora-

cle at both training and test time.

Method AUC10 AUC30 IoU

DP-FCN 0.253 0.418 0.66

DP-RCNN (points only) 0.315 0.567 0.75

DP-RCNN (distillations) 0.381 0.645 0.79

DP-RCNN (cascade) 0.390 0.664 0.81

DP∗ 0.417 0.683 −

Human Performance 0.563 0.835 −

Figure 11: Results of multi-person dense

correspondence labelling. Here we

compare the performance of our pro-

posed DensePose-RCNN system against

the fully-convolutional alternative on real-

istic images from the COCO dataset in-

cluding multiple persons with high vari-

ability in scales, poses and backgrounds.

Since the whole body is visible in the MPII dataset used

for training the landmark detectors, for a fair comparison we

separately evaluate on images where 16/17 or 17/17 land-

marks are visible and on the whole test set. We observe

that while being orders of magnitude faster (0.04-0.25” vs

60-200”) our bottom-up method largely outperforms the it-

erative, model fitting result. As mentioned above, this dif-

ference in accuracy indicates the merit of having at our dis-

posal DensePose-COCO for discriminative training.

4.2. Multi­Person Dense Pose Estimation

Having established the merit of the DensePose-COCO

dataset, we now turn to examining the impact of network ar-

chitecture on dense pose estimation in-the-wild. In Fig. 11

we summarize our experimental findings using the same

RCP measure used in Fig. 10.

We observe firstly that the FCN-based performance in-

the-wild (curve ‘DensePose-FCN’) is now substantially

lower than that of the DensePose curve in Fig. 11. Even

though we apply a multi-scale testing strategy that fuses

probabilities from multiple runs using input images of dif-

ferent scale [49], the FCN is not sufficiently robust to deal

with the variability in object scale.

We then observe in curve ‘DensePose-RCNN’ a big

boost in performance thanks to switching to a region-based

system. The networks up to here have been trained using

the sparse set of points that have been manually annotated.

In curve ‘DensePose-RCNN-Distillation’ we see that using

the dense supervision signal delivered by our DensePose∗

system on the training set yields a substantial improvement.

Finally, in ‘DensePose-RCNN-Cascade’ we show the per-

formance achieved thanks to the introduction of cascading:

Sec. 3.3 almost matches the ’DensePose∗’ curve of Fig. 10.

This is a remarkably positive result: as described in

Sec. 3.4, the ‘DensePose∗’ curve corresponds to a very priv-

ileged evaluation and can be understood as an upper bound

of what one can expect to obtain when operating in-the-

wild. We see that our best system is marginally below that

level of performance, which clearly reveals the power of the

three modifications we introduce, namely region-based pro-

cessing, inpainting the supervision signal, and cascading.

In Table 1 we report the AP and AR metrics described

in Sec. 2 as we change different choices in our architecture.

We have conducted experiments using both ResNet-50 and

ResNet-101 backbones and observed an only insignificant

boost in performance with the larger model (first two rows

in Table 1). The rest of our experiments are therefore based

on the ResNet-50-FPN version of DensePose-RCNN. The

following two experiments shown in the middle section of

Table 1 indicate the impact on multi-task learning.

Augmenting the network with the mask or keypoint

branches yields improvements with any of these two aux-

iliary tasks. The last section of Table 1 reports improve-

ments in dense pose estimation obtained through the cas-

cading setup from Fig. 7. Incorporating additional guidance

in particular from the keypoint branch significantly boosts

performance.

Our qualitative results in Fig. 12 indicate that our method

is able to handle large amounts of occlusion, scale, and pose

variation, regardless of the shape of the clothes.
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Figure 12: Qualitative evaluation of DensePose-RCNN. Left: input, Right: DensePose-RCNN estimates. Our system suc-

cessfully estimates body pose regardless of skirts or dresses, while handling a large variability of scales, poses, and occlusions.

Method AP AP50 AP75 APM APL AR AR50 AP75 ARM ARL

DensePose (ResNet-50) 51.0 83.5 54.2 39.4 53.1 60.1 88.5 64.5 42.0 61.3

DensePose (ResNet-101) 51.8 83.7 56.3 42.2 53.8 61.1 88.9 66.4 45.3 62.1

Multi-task learning

DensePose + masks 51.9 85.5 54.7 39.4 53.9 61.1 89.7 65.5 42.0 62.4

DensePose + keypoints 52.8 85.6 56.2 42.2 54.7 62.6 89.8 67.7 45.4 63.7

Multi-task learning with cascading

DensePose-ST 51.6 83.9 55.2 41.9 53.4 60.4 88.9 65.3 43.3 61.6

DensePose + masks 52.8 85.5 56.1 40.3 54.6 62.0 89.7 67.0 42.4 63.3

DensePose + keypoints 55.8 87.5 61.2 48.4 57.1 63.9 91.0 69.7 50.3 64.8

Table 1: Per-instance evaluation of DensePose-RCNN performance on COCO minival. All multi-task experiments are

based on ResNet-50. DensePose-ST applies cascading to the base, single-task network.

5. Conclusion

In this work we have addressed the task of dense hu-

man pose estimation using discriminatively trained models.

We introduce DensePose-COCO, a large-scale dataset of

ground-truth image-surface correspondences and develop

novel architectures for recovering highly-accurate dense

correspondences between images and the body surface in

multiple frames per second. We anticipate that this will lead

to novel augmented reality or graphics tasks, and we intend

to further pursue the association of images with semantic

3D object representations.
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