
A Two-Step Disentanglement Method

Naama Hadad

Tel Aviv University

Lior Wolf

Facebook AI Research and Tel Aviv University

Moni Shahar

Tel Aviv University

Abstract

We address the problem of disentanglement of factors

that generate a given data into those that are correlated

with the labeling and those that are not. Our solution

is simpler than previous solutions and employs adversar-

ial training. First, the part of the data that is correlated

with the labels is extracted by training a classifier. Then,

the other part is extracted such that it enables the recon-

struction of the original data but does not contain label

information. The utility of the new method is demonstrated

on visual datasets as well as on financial data. Our code

is available at https://github.com/naamahadad/

A-Two-Step-Disentanglement-Method.

1. Introduction

The problem of identifying complementary factors and

separating them from each other is ubiquitous. In face recog-

nition and in object recognition, one would like to separate

illumination and pose from identity or label. In handwrit-

ing recognition, we would like to separate the factors that

define the content of the text written from those that define

its style. The separation between what is spoken and who

is the speaker in automatic speech recognition and multi-

speaker speech synthesis is similar in nature. In each of

these domains, specialized solutions have emerged, often-

times emphasizing recognition and eliminating the other

factors and sometimes employing compound labels from

orthogonal domains. However, the task of separating the

factors that generated the observations, which is called dis-

entanglement, is also being studied as an abstract pattern

recognition problem.

In this work, we present a new algorithm for disentangle-

ment of factors, where the separation is based on whether the

factors are relevant to a given classification problem. Follow-

ing the terminology used in [14], we call the factors that are

relevant for the classification task specified factors, and those

which are not unspecified factors. In order to perform disen-

tanglement, we present a new adversarial technique. First,

a classifier S is trained to predict the specified factors. The

activations of S are then used to capture the specified compo-

nent of the samples. A second network Z is then trained to

recover the complimentary component. A first loss on Z en-

sures that the original sample can be reconstructed from the

output of both networks together (S and Z). A second loss

on Z, which is based on an adversarial network, ensures that

Z does not encode the specified factors. The algorithm has

the advantage that is makes very weak assumptions about

the distribution of the specified and the unspecified factors.

We focus our experiments on the image-based bench-

marks used in previous work. In addition to image data,

we also evaluate our model on financial data. A simplified

model for stock price changes is that the price change can

be decomposed into two factors, market movement and id-

iosyncratic movement. A common assumption is that the

market return is a Geometric Brownian motion and cannot

be predicted. However, since different stocks have different

correlations with the market, one can neutralize the market

factor from her portfolio. In real-life trading, the correlations

are non-stationary and there are other effects such as trading

costs that should be taken into account. Despite all that,

the disentanglement of driving factors is relevant both for

prediction purposes as well as for data generation.

1.1. Related work

Disentanglement was studied in many contexts and has a

vast literature. Early attempts to separate text from graphics

using basic computer vision tools were made in [5]. In [18]

voice data was analyzed. It was assumed that the data was

generated by two sources and separation was done using

a bilinear model. Manifold learning methods was used by

ElGammal and Lee in order to separate the body configu-

ration from the appearance [4]. In recent years, few papers

tackled this problem using neural networks. What-where

encoders [8] combine the reconstruction criteria with the dis-

crimination in order to separate the factors that are relevant

for the labels. In [10] variational auto encoders were used

to separate the digit from the style. However their approach

can not generalized to unseen identities. This restriction

was relaxed in [14], where they trained a conditional genera-

tive model by using an adversarial network to remove label

information from the unspecified part of the encoding.

Concurrently with our work, the Fader Networks [11]

1772

https://github.com/naamahadad/A-Two-Step-Disentanglement-Method
https://github.com/naamahadad/A-Two-Step-Disentanglement-Method


employ an architecture that is closely related to the second

step of our two-step architecture. While in our model a

classifier is trained to capture the specified factors, in the

architecture of [11], the labels are used directly. The main

advantage of our architecture in comparison to the one step

alternative, is its support of novel labels at test time, i.e., it

is not limited to the set of labels seen during training. This

quality of our architecture is crucial for the Norb and Sprites

datasets we present later, where we use the disentanglement

for new identities at test time. In the modeling of the financial

data this quality also comes into effect. For this data, the

specified factors (the labels) denote the market regime during

train years, whereas during test years there may be different

market regimes.

Generative Adversarial Networks GAN [7] is a method to

train a generator network G that synthesizes samples from

a target distribution given noisy inputs. In this approach, a

second network called the discriminator D is jointly trained

to distinguish between generated samples and data samples.

This “competition” between the generator and the discrimina-

tor, induces a zero-sum game whose equilibrium is reached

when the discriminator can no longer distinguish between

the generated samples and the empirical ones. Since this

approach was published, many variations on this idea has

appeared, see for example [15, 3, 2].

2. Method

The Problem of Disentanglement We are given a set of

labeled inputs X with the matching labels Y . Our goal is to

represent the data using two disjoint parts of a code, S, and

Z. We require S to contain all the information relevant for

the class ids Y , and Z to contain only the unspecified factors

of the data. For the example of handwriting recognition, if

Y is the text written in the image samples X , then S will

contain the information about the textual content Y , whereas

Z will only contain information about the style of writing.

The Model For the encoding, we chose S and Z to be

vectors of real numbers rather than a one-hot vector. This

idea, presented in [14], enables the network to generalize to

identities that did not appear in the training set.

We define a new network architecture for the disentangle-

ment of the factors. It is simpler and more straightforward

than the one presented in [14]. The network contains two

deterministic encoders to map X to its specified and un-

specified components S = EncS(X) and Z = EncZ(X)
accordingly. To train the S encoder EncS , we first use a sub-

network for the classification task and train the S-classifier

concurrently with EncS . This sub-network accepts X as its

input, encodes it to a vector S, and then runs the S-classifier

on S to obtain the labels Y , see Fig. 1(a). The result of

this network is an encoding of the data that contains the

information needed in order to predict the class identity.

(a)

(b)
Figure 1. Network architecture: (a) We train the S encoder and its

classification network on a pure classification task. (b) Once S is

given, we freeze its weights and train the Enc-Dec network and the

adversarial classifier alternatively

In a second step EncS is kept fixed. To train the Z-

encoder to ignore the specified factors and contain data only

on the unspecified factors, we use a new variation of adver-

sarial networks. The configuration of the network is given

in Fig 1(b), and it is composed out of two network branches.

The adversarial classifier (see the bottom part of the figure) is

being trained to minimize the classification loss given Z, Y

as input, namely, it is trained to classify Z to Y . The Enc-

Dec network (the rest of the network) is trained to minimize

the sum of two terms: (i) the reconstruction error (given S

and Z), and (ii) minus the adversarial network loss.

More formally, let θZ be the parameters of EncZ(X)
and let θX be the parameters of the reconstruction network

with output X̃ = Dec(S,Z). Let θA be the parameters

of the adversarial network. We define Ladv({(Z, Y )}, θA)
to be the classification loss of the adversarial network and

Lrec({S,Z,X}, θX) to be the reconstruction loss of X̃ .

When optimizing θA, Ladv is minimized. When optimizing

the two other networks, θZ and θX , the objective is to simul-

taneously minimize Lrec and maximize Ladv. Hence, our

objective is:

min
θZ ,θX ,θA

{Lrec − λ ∗ Ladv}, λ > 0 (1)

Note that while GANs are typically used in order to im-

prove the quality of generated output such as images, here

we use an adversarial configuration to encourage the encod-

ing to "forget" information about the labels, which, in turn,

leads to the disentanglement.

Training the S encoder together with the Z encoder and

773



the subsequent decoder, could lead the network to converge

to a degenerated solution, where all information is encoded

in S, whereas Z holds no information on any factor. By train-

ing the S network in the first stage with a limited capacity,

and then fixing the values of its parameters, this scenario is

avoided. Since S has a limited capacity it ignores most of the

information on the unspecified factors, which is irrelevant

for its goal.

Training details We employ MSE for the Lrec loss, and

use categorical cross-entropy loss for both the S classifier’s

loss and Ladv. The λ for each dataset was chosen indepen-

dently using few iterations on validation data.

For the training of the S-network and the Enc-Dec net-

work, we apply the Adam optimization method [9] with a

learning rate of 0.001 and beta of 0.9. For the adversarial

classifier, we used SGD with a learning rate of 0.001.

While training the Z-network, we have noticed that the

adversarial part requires more steps to stabilize, since it

should solve a complicated classification task on a changing

input. Therefore, we run, at each iteration, one mini-batch to

train the Enc-Dec network, followed by three mini-batches

to train the adversarial network.

2.1. Comparison to [14] on Toy Data

To illustrate the advantages of our approach in compar-

ison to the more involved method of [14], we generated

images of a gray rectangle in ten possible locations on a

white or black background. We refer to the background

color as the unspecified factor Z, whereas the location of

the rectangle is the specified factor S. We denote the ten

possible values of S by {s0, . . . , s9}. All possible twenty

images were drawn with equal probability.

We also generated similar images, where the unspecified

factor consists of two binary variables - the first controls

the upper half background color and the second controls the

lower half background color. Where similar to the first case

all forty images were drawn with equal probability.

We refer to the sets as Synth1 and Synth2. For the en-

coding, we chose both S and Z to be vectors of size 4. We

run our network and the network in [14] to obtain S,Z for

Synth1 and Synth2. We then used a neural network classifier

with three dense layers of size 8 on S to find the label. The

obtained accuracy was 100% for both networks.

We then examined the Z vectors that were obtained from

both methods of disentanglement on Synth1 and Synth2. First

we verified using a classifier that the background color can

be inferred from Z perfectly, whereas inferring the location

of the rectangle from Z leads to accuracy that is close to

random. Next we turned to examining the distribution of

Z for Synth1 and Synth2, these distributions are presented

in Fig. 2,3 respectively. The figures show the values of the

components Z0, . . . , Z3 for all of the data points. Each color

Synth1

PCA component: 1 2 3 4

Our model 1.000

[14] 0.252 0.251 0.25 0.247

Synth2

PCA component: 1 2 3 4

Our model 0.610 0.390

[14] 0.263 0.249 0.248 0.240

Table 1. The ratio of the variance of the Z-encoding projected on its

PCA components. Note that the autoencoder split the information

between all the components, whereas our encoding expressed the

information using the minimum number of dimensions.

represents a different value of the latent variable Z. Note

that since the method in [14] defines Z to be a random vector

drawn from a normal distribution specified by µ, σ, we show

a sample of the drawn Z vectors.

For the binary case (Synth1, Fig. 2) our encoding shows

two narrow peaks well separated in Z3, whereas all other

components have one peak (the coordinate that contains the

information is completely arbitrary since all coordinates are

treated the same way). In the VAE encoder, the information

was separated only for Z0, but even the best classifier (which

is LDA in this case) will have some error, since the peaks

were not disjoint. This simple experiment also demonstrates

that our results are simpler to understand.

The gap in the explicitness of the results as encoded in

Z is more apparent on Synth2. In Fig. 3, we see that our

encoding of Z is well separated on Z0 and Z1 while in the

other method, one cannot tell the number of values without

further analysis or prior knowledge about Z. Moreover,

applying standard PCA on the sampled Z vector of the auto

encoder, gave four components with similar variance, as

shown in Tab. 1.

3. Experiments

We evaluate our method on the visual disentanglement

benchmarks used in previous work, as well as on simulated

and real financial data. The detailed network architecture

used for each of the experiments is described in Tab. 2.

3.1. Image Benchmarks

We followed a previous work [14] and tested our model

on four visual datasets - MNIST [12], NORB [13], Sprites

dataset [16] and the Extended-YaleB dataset [6].

For measures of performance on the visual datasets, we

also followed the ones suggested in [14]. Note that all these

measures are subjective.

• Swapping - In swapping, we generate an image using S

from one image, I1, and Z from a different image, I2. In

774



(a)

(b)
Figure 2. Synth1 data: The dimension of the unspecified factors is

1. (a) histogram of different Z components of our model (b) same

histogram for the encoding of [14]

a good disentanglement, the resultant image preserves the

S-qualities of I1 and the Z-qualities of I2.

• Interpolation - Interpolation of two source images is a

sequence of images generated by linearly interpolating

the S and Z components of the two different sources. The

measure is again done by visually judging the resultant

images. i.e., we expect to see "more" of the look of the

second image, the bigger its weight gets. Interpolation is

done in both the S space and the Z space.

• Retrieval - In order to assess the lack of correlation be-

tween the S and the Z components, we perform a query

based on either the S part or the Z part, where in each

case we retrieve its nearest neighbors in the corresponding

space.

(a)

(b)
Figure 3. Synth2 data: The dimesnion of the unspecified factors

is 2. (a) An histogram of the components of Z of our model. (b)

Same histogram for the encoding from the model of [14]

Image Datasets Stocks return

Encoders

S,Z

For MNIST and Sprites

three 5x5 convolotional, for

NORB and Extended YaleB three 3x3

convolutional layers.

All convolutional layers with stride 2

and a dense S/Z dimension layer.

all with ReLU non-linearities

4 dense layers of sizes

100,66,66,50 with ReLU

non-linearities

S classifier

For MNIST and Sprites dense layers

x 256 hidden units,

for NORB,Extended YaleB

x 16 hidden units

Batch Normalization, ReLU

and a softmax for the output

2 dense layers x

50 hidden units,

Batch Normalization,

ReLU and a softmax output

Decoder

Mirroring network to the encoders:

dense layer and three convolutional

network with upsampling

4 dense layers of sizes

70,66,66,100 with

ReLU non-linearities

Adversarial

Classifier

3 dense layers x 256 hidden units,

Batch Normalization,ReLU

and a softmax for the output

3 dense layers x 50

hidden units,

Batch Normalization, ReLU

and a softmax for the output

S, Z #dims
Mnist: 16,16, Sprites: 32,128,

NORB and Extended YaleB: 32,256
20,50

Table 2. Networks architectures

775



• Classification Score - In addition to the qualitative mea-

sures above, we try to quantify the amount of information

on the class that each part of the code (S and Z) contains

on the class. Since measuring this directly is a difficult

task, we approximate it by running a classification algo-

rithm. A good disentanglement is such that when running

the classifier on the S part it gives high accuracy, whereas

when running it on the Z part it gives nearly random

results.

MNIST - For the MNIST data, the S part is the digit and

the Z part is the style. In Fig. 4, we present the results for

swapping and interpolation. The rows of the table in the left

hand side of the figure shows the style (Z) and the columns

the digit. To the best of our judgment, the style looks well

separated from the content.

Sprites dataset - This dataset contains color images of

sprites [16]. Each sprite character is defined by body type,

gender, hair type, armor type, arm type and greaves type.

Overall there are 672 different characters, from which we

use 572 characters for the training set and 100 characters

for the test set. For each character, there are five animations

each from four viewpoints, each animation has between 6

and 13 frames. We use character’s identity as the specified

component. The results from swapping and interpolation

are shown in Figure 5. Our model learned to separate the

character from its position and weapon and generalizes the

separation to unseen characters.

Examining the retrieval results in Fig. 6, it is possible to

see that for the Z part (sub-figure (b)), the characters in any

row is random but its pose is kept. In the S part (sub-figure

(a)), the character is perfectly kept, whereas the pose is not.

In [14], it seems that Z holds some information on S because

the hair style and color rarely changes between characters.

Small NORB dataset [13] - The NORB dataset contains

images of 50 toys belonging to five generic categories: four-

legged animals, human figures, airplanes, trucks, and cars.

The objects were imaged by two cameras under six different

illumination conditions, nine elevations and 18 azimuths.

The training set is composed of five instances of each cate-

gory and the test set of the remaining five instances. We use

the instance identity as the specified component and have 25
different labels for the training set.

For this dataset the swapping results were not perfect. We

succeeded in separating different azimuths and background

from the instance. However, for some of the categories, the

reconstruction contained mistakes. This is probably due to

the high variability between the instances in the train and

the test. The numerical results support this hypothesis, since

there are big difference between the train and the test errors.

The results look good for the interpolation, see Figure 7. A

similar degradation of results was also observed in [14]

Extended-YaleB [6] - The extended-YaleB Face dataset

contains 16095 images of 28 human subjects under nine

(a)

(b)
Figure 4. (a) Swapping the specified and unspecified components

of MNIST images. The images are generated using Z from the

left column and S from the top row in the decoder. The diagonal

digits show reconstructions. (b) Interpolation results. the images

in the top-left and bottom-right corners are from the test set. The

other digits are generated by interpolation of S and Z gradually. Z

interpolate along the rows and S through the columns.

poses and 64 illumination conditions. The training set con-

tains 500 images per subject, while the test contains roughly

75 images per subject. We use subject identity as the speci-

fied component.

Results for swapping and interpolation for images from

the test set shown in Figure 8. For swapping, one can see

that illumination conditions are transferred almost perfectly,

whereas the position is not perfectly transferred (see for

example line 6, column 5). We again suspect that this is

mainly because some of the positions were missing in the

776



(a)

(b)
Figure 5. (a) Swapping the specified and unspecified components

of Sprites. The images are generated using Z from the left column

and S from the top row in the decoder. (b) Interpolation results. the

images in the top-left and bottom-right corners are from the test set.

The other images are generated by gradual interpolation of S and

Z. Z interpolates along the rows and S through the columns.

training set, and with more data we expect the results to

improve. For the interpolation, some of the mixed identities

do not resemble either sources.

Quantitative results The numerical results for all datasets

are shown in Tab. 3.1. One can see that the unspecified com-

ponent is almost agnostic to the identity, while the classifier

on the specified component achieves high accuracy. For com-

parison with [14], we added to the table the results that were

reported in their paper. For most cases our model achieves

higher accuracy for S. This is expected, since we train the

S-encoder for classification. As for the unspecified com-

(a)

(b)
Figure 6. Sprites retrieval results (a) Querying on the specified

component S. (b) Querying on the unspecified component Z. The

components of the sprites on the left column are used as the query.

ponent Z, our performance on the train and the test set are

similar, except for the NORB dataset where our error rate is

slightly worse. For this dataset, the error rate of S in the test

set is much larger than that of the train set, and in [14] they

explain this result by overfitting. Note that for this dataset,

there are only five training instances per category, which

makes generalization difficult.

3.2. Financial data

We applied our method on the daily returns of stocks

listed in NASDAQ, NYSE and AMEX, from the Center

for Research in Security Prices (CRSP) database. For all

datasets, the results were measured on the test set. Specif-

ically, we used daily returns of stocks from the Nasdaq,

NYSE and AMEX exchanges. The training set consists of

777



(a)

(b)
Figure 7. (a) Swapping the specified and unspecified components

of the NORB test set images. (b) Interpolation results. These are

the same arrangements as in Figure 5.

the years 1976-2009 and the test set 2010-2016. Each year

is divided into four quarters of approximately 63 trading

days. As an input to the network, we used for each stock

the returns of the first 50 days of each quarter, as well as the

market returns for the same 50 days. In order to improve

generalization, we added ǫi a random noise N(0, 0.0016).

The goal of the disentanglement is to separate market

behavior from specific stock’s movements. In order to do

so, we labeled each quarter in the training set differently, so

as to have 136 such labels. Next, we let S encode the label

information and Z encode the rest of the information.

For evaluation, we employed two metrics, (i) checking

the stock specific information from Z and (ii) evaluating a

trading strategy based on the predictions that came from Z.

For a sanity check, we start by showing that S contains

market information. We did a PCA on the S-part of the

(a)

(b)
Figure 8. (a) Swapping the specified and unspecified components

of Yale test set images. (b) Interpolation results. These are the same

arrangements as in Figure 4. In this case, the results are visibly

inferior to the examples presented in [14]

encoding and examined the first component. This component

was correlated with the average return of the market during

the tested period. The correlation coefficient between the

market return on the test period and the first component of

the PCA is 0.55.

We then defined two stock specific measures based on

the Capital Asset Pricing Podel (CAPM) [17], which is one

of the fundamental quantitative models in finance theory: β,

which is the systematic risk of a given asset, and ρ, which

is the correlation coefficient with the market during the last

year. We constructed a discrete version of these measures

with four levels each. The classifier we used is logistic re-

gression, since it dominates the econometrics literature. The

778



Mnist Sprites

Z S Z S

Our (train) 87.0% 0.1% 66.0% 0.0%

Our (test) 87.0% 0.8% 58.0% 0.0%

[14] (train) - - 58.6% 5.5%

[14] (test) - - 59.8% 5.2%

Random-chance – 90.0% – – * –

NORB Extended-YaleB

Z S Z S

Our (train) 78.9% 1.1% 95.7% 0.00%

Our (test) 79.2% 15.2% 96.3% 0.00%

[14] (train) 79.8% 2.6% 96.4% 0.05%

[14] (test) 79.9% 13.5% 96.4% 0.08%

Random-chance – 80.0% – – 96.4% –

Table 3. Classification error rate based on S or Z for our model and

as reported in [14]. *While [14] reports 60.7% chance, we observe

56% in the test set, and 67% in the train set.

beta rho beta [14] rho [14]

Z 35% 31% 31% 30%

S 26% 26% 28% 28%

Raw 26% 26%

Rand 25% 25% 25% 25%

Table 4. Logistic regression accuracy for β, ρ

NY AM NQ All [14]

Z-1 31% 37% 30% 31% 30%

S-1 26% 24% 24% 25% 27%

X-1 28% 24% 24% — 25% —

Rnd-1 —————- 25% —————-

Z-5 40% 49% 36% 39% 34%

S-5 26% 27% 25% 26% 30%

X-5 25% 29% 25% — 26% —

Rnd-5 —————- 25% —————-

Table 5. Logistic regression accuracy for next day/week volatility.

The rightmost column is the results of the model presented in

(Mathieu et al. 2016), other columns are the results of our model.

predictive accuracy on the test set for each of the six models

(2 measures times 3 inputs) is given in Table 4. From this

table, we clearly see that we failed to reveal stock properties

from X and S, but managed to do it from Z.

A very important measure that is used in options trading is

the volatility. Using a model on Z, we predicted the next day

and next 5-days volatility. The results are given in Table 5.

The accuracy of the different models changes between the

stock groups, but the performance is significantly better for

the model based on Z.

The volatility is an important component in options pric-

Mean SD Traded days %

Z (Ours) 3.1% 0.026 89.3%

Z [14] 2.9% 0.039 78.6%

S (Ours) 2.4% 0.031 82.1%

S [14] 2.4% 0.028 83.2%

X 2.6% 0.030 78.6%

Table 6. Options portfolio returns. The mean, std and percent of

trading days with positive returns.

ing models, such as Black-Scholes model [1]. We developed

the following theoretical options trading strategy: (1) We

estimated the volatility of a stock based on its volatility in

the last fifty trading days. (2) We run a classification model

for the stock based on either X or Z. (3) For the ten stocks

whose predicted volatility minus measured volatility is the

highest, we bought a put and a call option. Similarly for the

ten stocks whose predicted volatility minus measured volatil-

ity is the lowest, we sold one put option and one call option.

The strike price of the options is 5% higher than the current

price. The time to expire is 60 days for the high predicted

volatility options and 5 days for the low volatility ones. (4)

We cleared position on the next day, i.e., sold options in the

case where we bought options yesterday and vice-versa.

Note that this strategy is market neutral and relies only

on the volatility. We are aware of the fact that we ignored

trading cost, liquidity and other technicalities that make

this strategy unrealistic. However, we used it as a way to

compare the classifier that used X to the one that used Z

as an input. The results are summarized in Table 6. As one

can see, using Z is better. The results from [14] for financial

data are presented next to ours in tables 4, 5 and 6. It can be

seen that our accuracy and portfolio performance based on

Z are better and we also achieved better separation from S,

since it is almost agnostic to specific stock properties.

4. Conclusions

This paper presents an adversarial architecture for solving

the problem of disentanglement. Given labeled data, our

algorithm encodes it as two separate parts, one that contains

the label information and the other that is agnostic to it.

We tested the network on visual and financial data, and

found that it performed well compared to a leading literature

method. Our architecture does not assume a distribution on

the unspecified factors and the resultant encoding seemed

both more interpretable and more suitable as a representation

for learning various unspecified qualities.

Acknowledgements

This project has received funding from the European Re-

search Council (ERC) under the European Union’s Horizon

2020 research and innovation programme (grant ERC CoG

725974).

779



References

[1] F. Black and M. Scholes. The pricing of options and corporate

liabilities. Journal of Political Economy, 81(3):637–54, 1973.

8

[2] D. Y. H. R. S. J. S. I. Chen, Xi and P. Abbeel. Infogan: Inter-

pretable representation learning by information maximizing

generative adversarial nets. In Advances in neural information

processing systems, pages 2172–2180, 2016. 2

[3] E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative

image models using a laplacian pyramid of adversarial net-

works. In Advances in neural information processing systems,

pages 1486–1494, 2015. 2

[4] A. Elgammal and C.-S. Lee. Separating style and content

on a nonlinear manifold. In Computer Vision and Pattern

Recognition, 2004. CVPR 2004. Proceedings of the 2004

IEEE Computer Society Conference on, volume 1, pages I–I.

IEEE, 2004. 1

[5] L. A. Fletcher and R. Kasturi. A robust algorithm for text

string separation from mixed text/graphics images. IEEE

transactions on pattern analysis and machine intelligence,

10(6):910–918, 1988. 1

[6] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman.

From few to many: Illumination cone models for face recog-

nition under variable lighting and pose. IEEE transactions

on pattern analysis and machine intelligence, 23(6):643–660,

2001. 3, 5

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio. Generative

adversarial nets. In NIPS, pages 2672–2680. 2014. 2

[8] F. J. Huang, Y.-L. Boureau, Y. LeCun, et al. Unsupervised

learning of invariant feature hierarchies with applications to

object recognition. In Computer Vision and Pattern Recogni-

tion, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,

2007. 1

[9] D. Kingma and J. Ba. Adam: A method for stochastic op-

timization. In The International Conference on Learning

Representations (ICLR), 2016. 3

[10] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling.

Semi-supervised learning with deep generative models. In

Advances in Neural Information Processing Systems, pages

3581–3589, 2014. 1

[11] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer,

and M. Ranzato. Fader networks: Manipulating images by

sliding attributes. CoRR, abs/1706.00409, 2017. 1, 2

[12] Y. LeCun and C. Cortes. MNIST handwritten digit database.

2010. 3

[13] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods

for generic object recognition with invariance to pose and

lighting. In Computer Vision and Pattern Recognition, 2004.

CVPR 2004. Proceedings of the 2004 IEEE Computer Society

Conference on, volume 2, pages II–104. IEEE, 2004. 3, 5

[14] M. F. Mathieu, J. J. Zhao, J. Zhao, A. Ramesh, P. Sprech-

mann, and Y. LeCun. Disentangling factors of variation in

deep representation using adversarial training. In D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, edi-

tors, Advances in Neural Information Processing Systems 29,

pages 5040–5048. Curran Associates, Inc., 2016. 1, 2, 3, 4, 5,

6, 7, 8

[15] A. Radford, L. Metz, and S. Chintala. Unsupervised represen-

tation learning with deep convolutional generative adversarial

networks. arXiv preprint arXiv:1511.06434, 2015. 2

[16] S. E. Reed, Y. Zhang, Y. Zhang, and H. Lee. Deep visual

analogy-making. In Advances in Neural Information Process-

ing Systems, pages 1252–1260, 2015. 3, 5

[17] O. W. Sharpe and M. Miller. Capm. Equilibrium, 1964. 7

[18] J. B. Tenenbaum and W. T. Freeman. Separating style and

content. Advances in neural information processing systems,

pages 662–668, 1997. 1

780


