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Abstract

Advances in image super-resolution (SR) have recently

benefited significantly from rapid developments in deep

neural networks. Inspired by these recent discoveries, we

note that many state-of-the-art deep SR architectures can

be reformulated as a single-state recurrent neural network

(RNN) with finite unfoldings. In this paper, we explore new

structures for SR based on this compact RNN view, leading

us to a dual-state design, the Dual-State Recurrent Network

(DSRN). Compared to its single-state counterparts that op-

erate at a fixed spatial resolution, DSRN exploits both low-

resolution (LR) and high-resolution (HR) signals jointly.

Recurrent signals are exchanged between these states in

both directions (both LR to HR and HR to LR) via de-

layed feedback. Extensive quantitative and qualitative eval-

uations on benchmark datasets and on a recent challenge

demonstrate that the proposed DSRN performs favorably

against state-of-the-art algorithms in terms of both mem-

ory consumption and predictive accuracy. The code for our

method is publicly available1.

1. Introduction

In the problem of single-image super-resolution (SR),

the aim is to recover a high-resolution (HR) image from a

single low-resolution (LR) image. In recent years, SR per-

formance has been significantly improved due to rapid de-

velopments in deep neural networks (DNNs). Specifically,

convolutional neural networks (CNNs) and residual learn-

ing [16] have been widely applied in much recent SR work

[10, 12, 20, 21, 22, 25, 35, 38].

In these approaches, two principles have been consis-

tently observed. The first is that increasing the depth of

a CNN model improves SR performance; a deeper model

with more parameters can represent a more complex map-
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ping from LR to HR images. In addition, increasing net-

work depth enlarges the size of receptive fields, providing

more contextual information that can be exploited to recon-

struct missing HR components. The second principle is that

adding residual connections (globally [20], locally [21] or

jointly [35]) prevents the problems of vanishing and explod-

ing gradients, facilitating the training of deep models.

While these recent models have demonstrated promising

results, there are also drawbacks. One major issue is that

increasing the depth of models by adding new layers in-

troduces more parameters, and thus raises the likelihood of

model overfitting. At the same time, larger models demand

more storage space, which is a hurdle to deployment in

resource-constrained environments (e.g. mobile systems).

To resolve this issue, the Deep Recursive Residual Network

(DRRN) [35] inspired by the Deeply-Recursive Convolu-

tional Network (DRCN) [21] shares weights across differ-

ent residual units and achieves state-of-the-art performance

with a small number of parameters.

Separate efforts [6, 24, 39] in neural architectural design

have recently shown that commonly-used deep structures

can be represented more compactly using recurrent neu-

ral networks (RNNs). Specifically, Liao and Poggio [24]

demonstrated that a weight-sharing Residual Neural Net-

work (ResNet) [16] is equivalent to a shallow RNN. In-

spired by their findings, we first explore the connections

between the neural architectures of existing SR algorithms

and their compact RNN formulations. We note that previous

SR models with recursive computation and weight sharing,

including DRRN and DRCN, work at a single spatial res-

olution (bicubic interpolation is first applied to upscale LR

images to a desired spatial resolution). This enables their

model structures to be represented as a unified single-state

RNN. Thus, both DRRN and DRCN can be viewed as a fi-

nite unfolding in time of the same RNN structure, but with

different transition functions. This is illustrated in Figure 1,

and will be discussed in detail in Section 3. It is worth men-

tioning that we follow the terminology used in [24], where

a “state” can be considered as corresponding to a “layer” in

the normal RNN setting.
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Based on this compact RNN view of state-of-the-art SR

models, in this paper we explore new structures to extend

the frontier of SR. The first approach in improving a con-

ventional RNN model is generally to make it multi-layer.

We apply this experience in designing the SR architecture in

our compact RNN view by adding an additional state, ren-

dering our model a Dual-State Recurrent Network (DSRN),

where the two states operate at different spatial resolutions.

Specifically, the bottom state captures information at LR,

while the top state operates in the HR regime. As with a

conventional two-layer stacked RNN, there is a connection

from the bottom to the top state via deconvolutional opera-

tions. This provides information flow from LR to HR at ev-

ery single unrolling time. In addition, to allow information

flow from previously predicted HR features to LR features,

we incorporate a delayed feedback mechanism [8] from the

top (HR) state to the bottom one. The overall structure of

the proposed DSRN is shown in Figure 2, which not only

utilizes parameters efficiently but also allows both LR and

HR signals to contribute jointly to learning the mappings.

To demonstrate the effectiveness of the proposed

method, we compare DSRN with other recent image SR

approaches on four common benchmarks [4, 19, 30, 46] as

well as on the DIV2K dataset from the "New Trends in Im-

age Restoration and Enhancement workshop and challenge

on image super-resolution (NTIRE SR 2017)" [1]. Exten-

sive experimental results validate that DSRN delivers higher

parameter efficiency, low memory consumption and high

restoration accuracy.

2. Related Work

Single image SR has been widely studied in the past

few decades and has an extensive literature. In recent years,

due to the fast development of deep learning, significant

progress has been made in this field. Dong et al. [10] first

exploited a fully convolutional neural network, termed SR-

CNN, to predict the nonlinear LR-HR mapping. It demon-

strated superior performance to many other example-based

learning paradigms, such as nearest neighbor [13], sparse

representation [44, 43], neighborhood embedding [5, 37],

random forest [32], etc. Although all layers of a SRCNN

are trained jointly in an end-to-end fashion, conceptually

the network is split into three stages: patch representation,

non-linear mapping, and reconstruction.

Much of the later work follows a similar network design

with more complicated building blocks or advanced opti-

mization techniques [34, 28, 11, 27]. Wang et al. [41] pro-

posed a sparse coding network (SCN) that encodes a sparse

representation prior for image SR and can be trained end-to-

end, demonstrating the benefit of domain expertise in sparse

coding for image SR. Both external and self examples were

utilized to synthesize the HR prediction via a neural net-

work in [42].

Inspired by the success of very deep models [16] on Im-

ageNet challenges [9], Kim et al. [20] proposed a very deep

CNN, VDSR, which stacks 20 convolutional layers with

3×3 kernels. Both residual learning and adjustable gradient

clipping are used to prevent vanishing and exploding gradi-

ents. However, as the model gets deeper, the number of pa-

rameters increases. To control the size of the model, DRCN

introduces 16 recursive layers, each with the same structure

and shared parameters. Moreover, DRCN makes use of skip

connections and recursive supervision to mitigate the diffi-

culty of training. Tai et al. [35] discovered that many resid-

ual SR learning algorithms are based on either global resid-

ual learning or local residual learning, which are insufficient

for very deep models. Instead, they proposed the DRRN that

applies both global and local learning while remaining pa-

rameter efficient via recursive learning. More recently, Tong

et al. [38] proposed making use of Densely Connected Net-

works (DenseNet) [17] instead of ResNet as the building

block for image SR. They demonstrated that the DenseNet

structure is better at combining features at different levels,

which boosts SR performance.

Apart from deep models working on bicubic upscaled in-

put images, Shi et al. [34] used a compact network model

to conduct convolutions on LR images directly and learned

upscaling filters in the last layer, which considerably re-

duces the computation cost. Similarly, Dong et al. [11]

adopted deconvolution layers to accelerate SRCNN in com-

bination with smaller filter sizes and more convolution

layers. However, these networks are relatively small and

have difficulty capturing complicated mappings owing to

limited network capacity. The Laplacian Pyramid Super-

Resolution Network (LapSRN) [22] works on LR images

directly and progressively predicts sub-band residuals on

various scales. Lim et al. [25] proposed the Enhanced Deep

Super-Resolution (EDSR) network and a multi-scale vari-

ant, which learns different scaled mapping functions in par-

allel via weight sharing.

It is noteworthy that most SR algorithms minimize the

mean squared reconstruction error (i.e. via ℓ2 loss). They

often suffer from regression-to-the-mean due to the ill-

posed nature of single image SR, resulting in blurry predic-

tions and poor subjective scores. To overcome this draw-

back, Generative Adversarial Networks have been used

along with perceptual loss for SR [23, 31]. Subjective eval-

uation by mean-opinion-score showed huge improvement

over other regression-based methods.

Our work is also strongly related to and built upon the

idea of viewing a ResNet as an unrolled RNN. It was first

proposed in [24], which aids understanding of a family of

deep structures from the perspective of RNNs. Later, Chen

et al. [45] unified several different residual functions to pro-

vide a better understanding of the design of DNNs with high

learning capacity. Recently, the equivalence to RNNs has
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been further extended to DenseNet. Based on this finding,

Dual Path Networks [6] were proposed and showed superior

performance to DenseNet and ResNet in a varity of appli-

cations.

3. Single-State Recurrent Networks

In this section, we first revisit the discovery that a ResNet

with shared weights can be reformulated as a recurrent sys-

tem. Then, based on this view, we unite the recent develop-

ment of SR models with such RNN reformulations to show

DRCN and DRRN are structurally equivalent to an unrolled

single-state RNN.

To establish the equivalence, we adopt the commonly

used definition of a RNN, which is characterized by a set

of states and transition functions among the states. A RNN

often consists of the input state, output state, and the recur-

rent states. Depending on the number recurrent states, we

describe RNNs as “single-state” (i.e. one recurrent state) or

“dual-state” (i.e. two recurrent states). An illustration of a

single-state RNN is shown in Figure 1(a). The input, out-

put, and recurrent states are represented as x, y and s respec-

tively. The arrow link indicates the state transition function.

The square on the directed cycle indicates that the recurrent

function travels one time step forward during the unfolding.

Interested readers are referred to [47] for detailed informa-

tion on this general formulation of a RNN.

Based on Figure 1(a), we unfold along the temporal di-

rection to a fixed length T . The unfolded graph is shown in

figure 1(b), and the dynamics of a single-state RNN can be

characterized by:

st = finput(x
t)+ frecurrent(s

t−1)

yt = foutput(s
t),

(1)

where the upper script t indicates the t-th unrolling. The

parameters of finput, foutput, and frecurrent are often time-

independent, which means these parameters are reused

at every unfolding step. This allows us to unify ResNet,

DRCN, and DRRN as unrolled networks with the same

recurrent structure but with the different realizations of

frecurrent and different rules of parameter sharing.

ResNet: We consider a ResNet in its simplest form with-

out any down-sampling or up-sampling operations. In other

words, both of the spatial dimensions and feature dimen-

sions remain the same across all intermediate layers. To

render Figure 1(b) equivalent to a ResNet with T residual

blocks, one possible technique is to make:

• s0 be the input image I or a function of I.

• xt = 0,∀t ∈ {1, . . .T}, and finput(0) = 0. Thus, the state

transition becomes st = frecurrent(s
t−1).

• The recurrent function frecurrent be the same as a con-

ventional residual block, which contains two convolu-

tional layers with skip connections as shown in Figure

1(c). Differences in color indicate different sets of pa-

rameters.

• The prediction state yt be calculated only at the time T

as the final output.

It is worth mentioning that the only difference between an

unrolled RNN following the above definitions and a con-

ventional ResNet is that the parameters in frecurrent need to

be reused among all residual blocks.

DRCN: To realize the DRCN expressible by the same

single-state RNN, we define s0 and xt in the same way as

for the ResNet. Since DRCN recursively applies only a sin-

gle convolutional layer to the input feature map 16 times,

with the parameters of the layer reused across the whole

network, we could use a single convolutional layer to ex-

press frecurrent. The graph is illustrated in Figure 1(d). More-

over, unlike the ResNet where the output is predicted only at

the end of unfolding, DRCN utilizes recursive supervision,

which generates an output yt at every unfolding t. The final

HR prediction of DRCN is the weighted sum of the outputs

at every unfolding t.

DRRN: The recurrent structure of DRRN differs only

slightly from a ResNet. In a ResNet, the skip connec-

tion comes from the previous residual block, whereas in a

DRRN the skip connection always comes from the first un-

rolled state s0. Figure 1(e) shows the equivalent recurrent

function for a DRRN with one recursive block (i.e. B = 1)

using the definition in the original paper.

4. Dual-State Recurrent Networks

Drawing on the connections between state-of-the-art SR

models and RNNs, we have investigated new compact RNN

architectures for image SR. Specifically, we propose a dual-

state design, which adopts two recurrent states enable use

of features from both LR and HR spaces. The RNN view

of our DSRN is shown in Figure 2(a) and is introduced as

follows.

Dual-state design: Unlike single-state models working at

the same spatial resolution, DSRN incorporates informa-

tion from both the LR and HR spaces. Specifically, sl and

sh in Figure 2(a) indicate the LR state and HR state, respec-

tively. Four colored arrows indicate the transition functions

between these two states. The blue ( flr), orange ( fhr) and

yellow ( fup) links exist in a conventional two-layer RNN,

providing information flow from LR to LR, HR to HR, and

LR to HR, respectively. To further enable two-way informa-

tion flows between sl and sh, we add the green link, which is

inspired by the delayed feedback mechanism of traditional
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(a) A single-state RNN
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Figure 1. (a) An example of a single-state RNN, which is characterized by an input state x, output state y and a single recurrent state s.

The arrow links indicate the state transition function. The black square represents the state transition function delayed for one time step.

(b) Finite unfolding (T times) of a single-state RNN. (c) - (e) The required recurrent function to make a single-state RNN equivalent to

ResNet, DRCN, and DRRN, respectively. Different colors of the “Conv” layers indicate different parameters.
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(a) DSRN

Figure 2. (a) The recurrent representation of the proposed DSRN, whose graph definition is the same as Figure 1(a). (b) The unrolled

DSRN. Edges with the same color have identical state transition functions and shared parameters. The structures of four specific transition

functions have been illustrated correspondingly. “Conv” blocks with different colors indicate different parameters.

multi-layer RNNs. Here, it introduces a delayed HR to LR

connection. The overall dynamics of our DSRN is given as:

st
h = fup(s

t
l)+ fhr(s

t−1
h ), and

st
l = finput(x

t)+ flr(s
t−1
l )+ fdown(s

t−1
h ).

(2)

Figure 2(b) demonstrates the same concept via an unfolded

graph, where the top row represents HR state while the bot-

tom one is LR. This design choice encourages feature spe-

cialization for different resolutions and information sharing

across different resolutions.

Transition functions: Our model is characterized by six

transition functions. fup, fdown, flr, and fhr as illustrated in

Figure 2(b). Specifically, we use the standard residual block

for both self-transitions. A single convolutional layer is used

for the down-sampling transition and a single transposed

convolutional (or deconvolutional) layer is used for the up-

sampling transition. The strides in both inter-state layers are

set to be the same as the SR upscaling factor.

Unfolding details: Similarly to unfolding a single-state

RNN to obtain a ResNet, for image SR, we let xt have

no contribution to calculating the state transition. In other

words,

finput(x
t) = 0, (3)

for any choice of xt (e.g. choose xt = 0, ∀t). Furthermore,

we set s0
l as the output of two convolutional layers with skip

connections, which takes the LR input image and transform

it into a desired feature space. In addition, s0
h is set to zero.

Finally, we use deep supervision for the HR prediction, as

discussed below.

Deep supervision: The unrolled DSRN is capable of mak-

ing a prediction at every time step t. Denote

ŷt = foutput(s
t
h) (4)
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as a prediction at the tth unfolding, where foutput is charac-

terized by a single convolutional layer. Then, instead of tak-

ing the prediction only at the final unfolding T , we average

all the predictions as

Îh =
1

T

T

∑
t=1

ŷt . (5)

Thus, every unrolled layer directly connects to the loss layer

to facilitate the training of such a very deep network. More-

over, the model predicts the residual image and minimizes

the following mean square error

L (Îh, Ih) =
1

2
||Îh − ri||

2, (6)

where Ih is the group-truth image in HR and ri = Ih −
bicubic(Il) is the residual map between the ground truth and

bicubic upsampled LR image.

5. Experiments

In this section, we first provide implementation details,

including both model hyper-parameters and training data

augmentation. Then we analyze a number of design choices

and their contributions to final performance. Finally, we

compare DSRN to other state-of-the-art methods on several

benchmark datasets.

5.1. Datasets

To evaluate the proposed DSRN algorithm, we train our

model using 91 images proposed in [44] and test on the fol-

lowing datasets: Set5 [4], Set14 [46], B100 [30] and Ur-

ban100 [19]. The training data is augmented in a similar

way to previous methods [20, 35], which includes 1) ran-

dom flipping along the vertical or horizontal axis; 2) random

rotation by 90◦, 180◦ or 270◦; and 3) random scaling by a

factor from [0.5, 0.6, 0.7, 0.8, 0.9, 1]. Tensorflow is used for

our full data processing pipeline; the LR training images are

generated by the built-in bicubic down-sampling function.

We additionally test our algorithm on the DIV2K dataset of

the NTIRE SR 2017 challenge [1], where we use the pro-

vided training and validation sets with all of the aforemen-

tioned data augmentations except random scaling.

5.2. Implementation Details

We use our model to super-resolve only the luminance

channel of images, and use bicubic interpolation to upscale

the other two color channels, following [20, 21, 35]. We

train independent models for each scale (×2, ×3, and ×4)

with 64 filters on the first input convolutional layer and 128

filters in the rest of the network. All layers use 3×3 convo-

lution filters. Due to our dual-state design, the feature maps

of sl and sh in each time step have the same spatial dimen-

sions as the LR and HR images, respectively. We zero-pad

1 2 3 4 5 6 7 8 9
Unroll Length T

36.8

37.0

37.2

37.4

37.6

PS
NR

 (d
B)

Figure 3. Unrolling length v.s. PSNR performance of our DSRN

with ×2 upscaling on Set5 dataset.

the boundaries of feature maps to ensure the spatial size of

each feature map is the same as the input size after the con-

volution is applied.

All the weights in the network are initialized with a uni-

form distribution using the method proposed in [14]. We

use standard stochastic gradient descent (SGD) with mo-

mentum 0.95 as our optimizer to minimize the MSE loss

function in Equation (6). We search for the best initial learn-

ing rate from {0.1,0.03,0.01} and reduce it by a factor of

10 three times during the entire training process. This learn-

ing rate annealing is driven by observing that the loss on the

validation set stops decreasing. Gradient clipping at 0.5 is

adopted during training to prevent the gradient explosion.

We sample image patches with a size of 128×128 and use

a mini-batch size of 16 to train our network.

We observe that the recursion defined in Equation (2)

may lead to an exponential increase in the scale of feature

values, especially when T is large. In [24], the authors pro-

posed the use of unshared batch normalization at every un-

folding time to resolve this issue. Batch normalization is not

used in our network; we found that normalizing the scale

with two scalar parameters was sufficient. Specifically, we

use one unshared PReLU [15] activation for each recurrent

state after every unrolling step. All other layers have ordi-

nary ReLU as the activation function.

5.3. Model Analysis

In this section, we analyze our proposed model in the

following respects:

Unrolling length: The unrolling length T changes the max-

imum effective depth of the unrolled network. In particular,

for a DSRN with T times unrolling, the maximum number

of convolution layers between input and output of the net-

work is 2T + 4. The multiplier 2 comes from the two lay-

ers in a residual block, while the extra 4 is from the auxil-

iary input and output layers. However, the number of model
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Table 1. Quantitative evaluation of state-of-the-art SR algorithms: average PSNR/SSIM/IFC for scale factors ×2, ×3 and ×4. Bold red

text indicates the best and underlined blue text the second best performance.

Algorithm Scale
SET5 SET14 BSDS100 URBAN100

PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC PSNR / SSIM / IFC

Bicubic 2 33.65 / 0.930 / 6.166 30.34 / 0.870 / 6.126 29.56 / 0.844 / 5.695 26.88 / 0.841 / 6.319

A+ [37] 2 36.54 / 0.954 / 8.715 32.40 / 0.906 / 8.201 31.22 / 0.887 / 7.464 29.23 / 0.894 / 8.440

SRCNN [10] 2 36.65 / 0.954 / 8.165 32.29 / 0.903 / 7.829 31.36 / 0.888 / 7.242 29.52 / 0.895 / 8.092

FSRCNN [11] 2 36.99 / 0.955 / 8.200 32.73 / 0.909 / 7.843 31.51 / 0.891 / 7.180 29.87 / 0.901 / 8.131

SelfExSR [19] 2 36.49 / 0.954 / 8.391 32.44 / 0.906 / 8.014 31.18 / 0.886 / 7.239 29.54 / 0.897 / 8.414

RFL [32] 2 36.55 / 0.954 / 8.006 32.36 / 0.905 / 7.684 31.16 / 0.885 / 6.930 29.13 / 0.891 / 7.840

SCN [41] 2 36.52 / 0.953 / 7.358 32.42 / 0.904 / 7.085 31.24 / 0.884 / 6.500 29.50 / 0.896 / 7.324

VDSR [20] 2 37.53 / 0.958 / 8.190 32.97 / 0.913 / 7.878 31.90 / 0.896 / 7.169 30.77 / 0.914 / 8.270

DRCN [21] 2 37.63 / 0.959 / 8.326 32.98 / 0.913 / 8.025 31.85 / 0.894 / 7.220 30.76 / 0.913 / 8.527

LapSRN [22] 2 37.52 / 0.959 / 9.010 33.08 / 0.913 / 8.505 31.80 / 0.895 / 7.715 30.41 / 0.910 / 8.907

DRRN [35] 2 37.74 / 0.959 / 8.671 33.23 / 0.914 / 8.320 32.05 / 0.897 / N.A. 31.23 / 0.919 / 8.917

DSRN 2 37.66 / 0.959 / 8.585 33.15 / 0.913 / 8.169 32.10 / 0.897 / 7.541 30.97 / 0.916 / 8.598

Bicubic 3 30.39 / 0.868 / 3.596 27.64 / 0.776 / 3.491 27.21 / 0.740 / 3.168 24.46 / 0.736 / 3.661

A+ [37] 3 32.60 / 0.908 / 4.979 29.24 / 0.821 / 4.545 28.30 / 0.784 / 4.028 26.05 / 0.798 / 4.883

SRCNN [10] 3 32.76 / 0.908 / 4.682 29.41 / 0.823 / 4.373 28.41 / 0.787 / 3.879 26.24 / 0.800 / 4.630

FSRCNN [11] 3 33.15 / 0.913 / 4.971 29.53 / 0.826 / 4.569 28.52 / 0.790 / 4.061 26.42 / 0.807 / 4.878

SelfExSR [19] 3 32.63 / 0.908 / 4.911 29.33 / 0.823 / 4.505 28.29 / 0.785 / 3.922 26.45 / 0.809 / 4.988

RFL [32] 3 32.45 / 0.905 / 4.956 29.15 / 0.819 / 4.532 28.22 / 0.782 / 4.023 25.87 / 0.791 / 4.781

SCN [41] 3 32.60 / 0.907 / 4.321 29.24 / 0.819 / 4.006 28.32 / 0.782 / 3.553 26.21 / 0.801 / 4.253

VDSR [20] 3 33.66 / 0.921 / 5.088 29.77 / 0.834 / 4.606 28.83 / 0.798 / 4.043 27.14 / 0.829 / 5.045

DRCN [21] 3 33.82 / 0.922 / 5.202 29.76 / 0.833 / 4.686 28.80 / 0.797 / 4.070 27.15 / 0.828 / 5.187

LapSRN [22] 3 33.78 / 0.921 / 5.194 29.87 / 0.833 / 4.665 28.81 / 0.797 / 4.057 27.06 / 0.827 / 5.168

DRRN [35] 3 34.03 / 0.924 / 5.397 29.96 / 0.835 / 4.878 28.95 / 0.800 / N.A. 27.53 / 0.838 / 5.456

DSRN 3 33.88 / 0.922 / 5.221 30.26 / 0.837 / 4.892 28.81 / 0.797 / 4.051 27.16 / 0.828 / 5.172

Bicubic 4 28.42 / 0.810 / 2.337 26.10 / 0.704 / 2.246 25.96 / 0.669 / 1.993 23.15 / 0.659 / 2.386

A+ [37] 4 30.30 / 0.859 / 3.260 27.43 / 0.752 / 2.961 26.82 / 0.710 / 2.564 24.34 / 0.720 / 3.218

SRCNN [10] 4 30.49 / 0.862 / 2.997 27.61 / 0.754 / 2.767 26.91 / 0.712 / 2.412 24.53 / 0.724 / 2.992

FSRCNN [11] 4 30.71 / 0.865 / 2.994 27.70 / 0.756 / 2.723 26.97 / 0.714 / 2.370 24.61 / 0.727 / 2.916

SelfExSR [19] 4 30.33 / 0.861 / 3.249 27.54 / 0.756 / 2.952 26.84 / 0.712 / 2.512 24.82 / 0.740 / 3.381

RFL [32] 4 30.15 / 0.853 / 3.135 27.33 / 0.748 / 2.853 26.75 / 0.707 / 2.455 24.20 / 0.711 / 3.000

SCN [41] 4 30.39 / 0.862 / 2.911 27.48 / 0.751 / 2.651 26.87 / 0.710 / 2.309 24.52 / 0.725 / 2.861

VDSR [20] 4 31.35 / 0.882 / 3.496 28.03 / 0.770 / 3.071 27.29 / 0.726 / 2.627 25.18 / 0.753 / 3.405

DRCN [21] 4 31.53 / 0.884 / 3.502 28.04 / 0.770 / 3.066 27.24 / 0.724 / 2.587 25.14 / 0.752 / 3.412

LapSRN [22] 4 31.54 / 0.885 / 3.559 28.19 / 0.772 / 3.147 27.32 / 0.728 / 2.677 25.21 / 0.756 / 3.530

DRRN [35] 4 31.68 / 0.889 / 3.703 28.21 / 0.772 / 3.252 27.38 / 0.728 / N.A. 25.44 / 0.764 / 3.676

DSRN 4 31.40 / 0.883 / 3.500 28.07 / 0.770 / 3.147 27.25 / 0.724 / 2.599 25.08 / 0.747 / 3.297

parameters remains independent of the length of unrolling.

Essentially, T controls the trade-off between model capac-

ity and computation cost. We study the influence of T by

training the model with different unrolling lengths. The em-

pirical results are shown in Figure 3. The test performance

increases when the number of unfolding steps increases, but

the benefit seems to diminish after T = 7. Unless otherwise

mentioned, we use T = 7 for all our models. It is worth men-

tioning that we also experimented with stochastic depth [18]

by randomly sampling T during training, but we observed

no improvement in validation accuracy.

Parameter sharing: We empirically find parameter shar-

ing to be crucial for training a deep recursive model. As

shown in Table 2, the same model with untied weights per-

forms much more poorly than its weight-sharing counter-

part. Specifically, we observe around 0.2dB performance

drop across all three upscaling scales when changing from

shared weights to untied weights. We speculate that the

model with untied weights suffers a larger risk of model

over-fitting and much slower training convergence, both of

which diminish the model’s restoration accuracy.

Dual-state and delayed feedback: We compare our DSRN
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HR bicubic SelfExSR[19] VDSR[20]

DRCN[21] LapSRN[22] DRRN[35] Ours

Ground truth HR

HR bicubic SelfExSR[19] VDSR[20]

DRCN[21] LapSRN[22] DRRN[35] Ours

Ground truth HR

HR bicubic SelfExSR[19] VDSR[20]

DRCN[21] LapSRN[22] DRRN[35] Ours

Ground truth HR

HR bicubic SelfExSR[19] VDSR[20]

DRCN[21] LapSRN[22] DRRN[35] Ours

Figure 4. Qualitative Comparison on Set 14 with ×3 upscaling. From top to bottom: 1) the image "ppt3", DSRN reconstructs sharp text

with less artifacts. 2) the image "comic". 3) the image "monarch", DSRN finds less blurry dots along the edge of the wing. 4) the image

"baboon".

Figure 5. Feature visualization: input image patch and the energy maps of the output at HR states (7 unrolled timestamps in total).

with two baselines under the same unrolling time steps

to understand how each module of our model contributes

to the final performance: 1) a single-state RNN unrolled

ResNet; and 2) a dual-state RNN without delayed feedback

connections. The quantitative comparison on the NTIRE SR

2017 challenge is shown in Table 2. Comparing the single-

state baseline and the DSRN without feedback, it is clear

that considering information from both LR and HR spaces

as two separated states provides performance gains. In addi-

tion, comparing our models with and without feedback, we
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Table 2. Quantitative evaluation (in PSNR) of the proposed DSRN,

its variants, and other state-of-the-art SR algorithms on track 1 of

the NTIRE SR 2017 challenge. Bold red text indicates the best

and underlined blue text indicates the second best performance.

The number in () indicates ranking in the challenge.

Method x2 x3 x4

O
u

rs

Single-state baseline 34.66 30.80 28.80

DSRN w/o parameter sharing 34.71 30.85 28.81

DSRN w/o delayed feedback 34.89 30.95 28.99

DSRN 34.96 31.12 29.03

O
th

er
s

EDSR+ [25] (1) 34.93 31.13 29.04

Wang et al. [36] (2) 34.47 30.77 28.82

Bae et al. [3] (3) 34.66 30.83 28.83

SelNet [7] (4) 34.29 30.52 28.55

BTSRN [12] (5) 34.19 30.44 28.49

realize that incorporating such an information flow from HR

space back to LR space consistently improves performance

on all three different scales. In all, both the dual-state and

delayed feedback designs are beneficial to our model.

State visualization Since DSRN has independent scaling

parameters on each unrolled state, the model implicitly

learns a weighted-average of all the unrolled states for the

final prediction. Empirically we observe that this strategy

performs better than output from the last state only. To

demonstrate how the network aggregates different unrolled

states, we show feature response maps at different unrolling

steps in Figure 6, demonstrating that the network distributes

slightly different features to each unrolled state.

5.4. Comparison with the State­of­the­Art

We provide results of evaluation of our model on sev-

eral public benchmark datasets in Table 1, with three

commonly-used evaluation metrics: Peak Signal-to-Noise

Ratio (PSNR), Structural SIMilarity (SSIM) [40] and the

Information Fidelity Criterion (IFC) [33]. Specifically, we

perform a comprehensive comparison between our method

and 10 other existing SR algorithms, including both deep

learning and non-deep-learning based methods. Note that

many recent deep learning based competitors, including

VDSR, LapSRN and DRRN, use 291 training samples with

the additional 200 from the training set of Berkeley Seg-

mentation Dataset [2], while our model was trained on only

the 91 images. Still, our DSRN method achieves competi-

tive performance across all datasets and scales. It achieves

particularly strong performance in the ×2 and ×3 settings.

In addition, we report quantitative evaluations on the re-

cently developed DIV2K dataset and comparisons with top-

ranking algorithms in Table 2. Our method achieves com-

petitive performance with the best algorithm, EDSR+[25],

and outperforms all the other algorithms by a large margin,

which demonstrates the effectiveness of our proposed dual-

state recurrent structure.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
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DRCNVDSR

SRCNN

RED30

Figure 6. Comparison of the PSNR and the model size of recent

SR methods for ×3 upscaling on Set 14.

To further analyze the proposed DSRN against other

state-of-the-art SR approaches in a qualitative manner, in

Figure 4 we present several visual examples of super-

resolved images on Set14 with x3 upscaling among differ-

ent SR approaches. For these competing methods, we use

SR results publicly released by the authors. As shown in

Figure 4, our method can construct sharp and detailed struc-

tures and is less prone to generating spurious artifacts.

Furthermore, the proposed DSRN benefits from inherent

parameter sharing and therefore obtains higher parameter

efficiency compared to other methods. In Figure 6, we illus-

trate the parameters-to-PSNR relationship of our model and

several state-of-the-art methods, including SRCNN, VDSR,

DRCN, DRRN and RED30 [29]. Our method represents

a favorable trade-off between model size and SR perfor-

mance, and has modest inference time. The DSRN takes

0.4s on the x4 task with a 288x288 output image size, on an

NVIDIA Titan X GPU.

6. Conclusion

In this work, we have provided a unique formulation that

expresses many state-of-the-art SR models as a finite un-

folding of a single-state RNN with various recurrent func-

tions. Based on this, we extend existing methods by consid-

ering a dual-state design; the two hidden states of our pro-

posed DSRN operate at different spatial resolutions. One

captures the LR information while the other one targets the

HR domains. To ensure two-way communication between

states, we integrate a delayed feedback mechanism. Thus,

the predicted features from both LR and HR states can

be exploited jointly for final predictions. Extensive exper-

iments on benchmark datasets have demonstrated that the

proposed DSRN performs favorably against state-of-the-art

SR models in terms of both efficiency and accuracy. For the

future work, we will explore use of our proposed DSRN to

capture temporal dependencies for video SR [26].
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