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Abstract

Observing that Semantic features learned in an image

classification task and Appearance features learned in a

similarity matching task complement each other, we build

a twofold Siamese network, named SA-Siam, for real-time

object tracking. SA-Siam is composed of a semantic branch

and an appearance branch. Each branch is a similarity-

learning Siamese network. An important design choice in

SA-Siam is to separately train the two branches to keep

the heterogeneity of the two types of features. In addi-

tion, we propose a channel attention mechanism for the

semantic branch. Channel-wise weights are computed ac-

cording to the channel activations around the target posi-

tion. While the inherited architecture from SiamFC [3] al-

lows our tracker to operate beyond real-time, the twofold

design and the attention mechanism significantly improve

the tracking performance. The proposed SA-Siam outper-

forms all other real-time trackers by a large margin on

OTB-2013/50/100 benchmarks.

1. Introduction

Visual object tracking is one of the most fundamental

and challenging tasks in computer vision. Given the bound-

ing box of an unknown target in the first frame, the objec-

tive is to localize the target in all the following frames in a

video sequence. While visual object tracking finds numer-

ous applications in surveillance, autonomous systems, and

augmented reality, it is a very challenging task. For one

reason, with only a bounding box in the first frame, it is

difficult to differentiate the unknown target from the clut-

tered background when the target itself moves, deforms, or

has an appearance change due to various reasons. For an-

other, most applications demand real-time tracking. It is
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Figure 1. Comparing the tracking results of SiamFC and our

tracker. Thanks to the semantic features, our tracker successfully

follows the target object in case of shooting angle change or scale

change, when SiamFC fails.

even harder to design a real-time high-performance tracker.

The key to design a high-performance tracker is to find

expressive features and corresponding classifiers that are si-

multaneously discriminative and generalized. Being dis-

criminative allows the tracker to differentiate the true tar-

get from the cluttered or even deceptive background. Being

generalized means that a tracker would tolerate the appear-

ance changes of the tracked object, even when the object

is not known a priori. Conventionally, both the discrimina-

tion and the generalization power need to be strengthened

through online training process, which collects target infor-

mation while tracking. However, online updating is time

consuming, especially when a large number of parameters

are involved. It is therefore very crucial to balance the track-

ing performance and the run-time speed.

In recent years, deep convolutional neural networks
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(CNNs) demonstrated their superior capabilities in various

vision tasks. They have also significantly advanced the

state-of-the-art of object tracking. Some trackers [7, 26,

30, 9, 6] integrate deep features into conventional tracking

approaches and benefit from the expressive power of CNN

features. Some others [29, 28, 12, 33] directly use CNNs

as classifiers and take full advantage of end-to-end training.

Most of these approaches adopt online training to boost the

tracking performance. However, due to the high volume of

CNN features and the complexity of deep neural networks,

it is computationally expensive to perform online training.

As a result, most online CNN-based trackers have a far less

operational speed than real-time.

Meanwhile, there emerge two real-time CNN-based

trackers [13, 3] which achieve high tracking speed by com-

pletely avoiding online training. While GOTURN [13]

treats object tracking as a box regression problem, SiamFC

[3] treats it as a similarity learning problem. It appears

that SiamFC achieves a much better performance than GO-

TURN. This owes to the fully convolutional network archi-

tecture, which allows SiamFC to make full use of the offline

training data and make itself highly discriminative. How-

ever, the generalization capability remains quite poor and

it encounters difficulties when the target has significant ap-

pearance change, as shown in Fig.1. As a result, SiamFC

still has a performance gap to the best online tracker.

In this paper, we aim to improve the generalization capa-

bility of SiamFC. It is widely understood that, in a deep

CNN trained for image classification task, features from

deeper layers contain stronger semantic information and is

more invariant to object appearance changes. These seman-

tic features are an ideal complement to the appearance fea-

tures trained in a similarity learning problem. Inspired by

this observation, we design SA-Siam, which is a twofold

Siamese network comprised of a semantic branch and an

appearance branch. Each branch is a Siamese network com-

puting the similarity scores between the target image and a

search image. In order to maintain the heterogeneity of the

two branches, they are separately trained and not combined

until the similarity score is obtained by each branch.

For the semantic branch, we further propose a chan-

nel attention mechanism to achieve a minimum degree of

target adaptation. The motivation is that different objects

activate different sets of feature channels. We shall give

higher weights to channels that play more important roles

in tracking specific targets. This is realized by comput-

ing channel-wise weights based on the channel responses at

the target object and in the surrounding context. This sim-

plest form of target adaptation improves the discrimination

power of the tracker. Evaluations show that our tracker out-

performs all other real-time trackers by a large margin on

OTB-2013/50/100 benchmarks, and achieves state-of-the-

art performance on VOT benchmarks.

The rest of the paper is organized as follows. We first

introduce related work in Section 2. Our approach is de-

scribed in Section 3. The experimental results are presented

in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

2.1. Siamese Network Based Trackers

Visual object tracking can be modeled as a similarity

learning problem. By comparing the target image patch

with the candidate patches in a search region, we can track

the object to the location where the highest similarity score

is obtained. A notable advantage of this method is that it

needs no or little online training. Thus, real-time tracking

can be easily achieved.

Similarity learning with deep CNNs is typically ad-

dressed using Siamese architectures [23]. The pioneer-

ing work for object tracking is the fully convolutional

Siamese network (SiamFC) [3]. The advantage of a fully-

convolutional network is that, instead of a candidate patch

of the same size of the target patch, one can provide as in-

put to the network a much larger search image and it will

compute the similarity at all translated sub-windows on a

dense grid in a single evaluation [3]. This advantage is also

reflected at training time, where every sub-window effec-

tively represents a useful sample with little extra cost.

There are a large number of follow-up work[39, 38, 15,

32, 11] of SiamFC. EAST[15] attempts to speed up the

tracker by early stopping the feature extractor if low-level

features are sufficient to track the target. CFNet[38] in-

troduces correlation filters for low level CNNs features to

speed up tracking without accuracy drop. SINT [32] incor-

porates the optical flow information and achieves better per-

formance. However, since computing optical flow is com-

putationally expensive, SINT only operates at 4 frames per

second (fps). DSiam[11] attempts to online update the em-

beddings of tracked target. Significantly better performance

is achieved without much speed drop.

SA-Siam inherits network architecture from SiamFC.

We intend to improve SiamFC with an innovative way to

utilize heterogeneous features.

2.2. Ensemble Trackers

Our proposed SA-Siam is composed of two separately

trained branches focusing on different types of CNN fea-

tures. It shares some insights and design principles with

ensemble trackers.

HDT[30] is a typical ensemble tracker. It constructs

trackers using correlation filters (CFs) with CNN features

from each layer, and then uses an adaptive Hedge method

to hedge these CNN trackers. TCNN[28] maintains multi-

ple CNNs in a tree structure to learn ensemble models and

estimate target states. STCT[33] is a sequential training
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Figure 2. The architecture of the proposed twofold SA-Siam network. A-Net indicates the appearance network. The network and data

structures connected with dotted lines are exactly the same as SiamFC [3]. S-Net indicates the semantic network. Features from the last

two convolution layers are extracted. The channel attention module determines the weight for each feature channel based on both target

and context information. The appearance branch and the semantic branch are separately trained and not combined until testing time.

method for CNNs to effectively transfer pre-trained deep

features for online applications. An ensemble CNN-based

classifier is trained to reduce correlation across models.

BranchOut[12] employs a CNN for target representation,

which has a common convolutional layers but has multiple

branches of fully connected layers. It allows each branch to

have a different number of layers so as to maintain variable

abstraction levels of target appearances. PTAV[10] keeps

two classifiers, one acting as the tracker and the other act-

ing as the verifier. The combination of an efficient tracker

which runs for sequential frames and a powerful verifier

which only runs when necessary strikes a good balance be-

tween speed and accuracy.

A common insight of these ensemble trackers is that it is

possible to make a strong tracker by utilizing different lay-

ers of CNN features. Besides, the correlation across mod-

els should be weak. In SA-Siam design, the appearance

branch and the semantic branch use features at very differ-

ent abstraction levels. Besides, they are not jointly trained

to avoid becoming homogeneous.

2.3. Adaptive Feature Selection

Different features have different impacts on different

tracked target. Using all features available for a single

object tracking is neither efficient nor effective. In SCT

[4] and ACFN [5], the authors build an attention network

to select the best module among several feature extrac-

tors for the tracked target. HART [18] and RATM[16] use

RNN with attention model to separate where and what pro-

cessing pathways to actively suppress irrelevant visual fea-

tures. Recently, SENet[14] demonstrates the effectiveness

of channel-wise attention on image recognition tasks.

In our SA-Siam network, we perform channel-wise at-

tention based on the channel activations. It can be looked

on as a type of target adaptation, which potentially improves

the tracking performance.

3. Our Approach

We propose a twofold fully-convolutional siamese net-

work for real-time object tracking. The fundamental idea

behind this design is that the appearance features trained

in a similarity learning problem and the semantic features

trained in an image classification problem complement each

other, and therefore should be jointly considered for robust

visual tracking.

3.1. SA­Siam Network Architecture

The network architecture of the proposed SA-Siam net-

work is depicted in Fig. 2. The input of the network is a pair

of image patches cropped from the first (target) frame of the

video sequence and the current frame for tracking. We use

notations z, zs and X to denote the images of target, target

with surrounding context and search region, respectively.

Both zs and X have a size of Ws×Hs×3. The exact target

z has a size of Wt × Ht × 3 (Wt < Ws and Ht < Hs),

locates in the center of zs. X can be looked on as a col-

lection of candidate image patches x in the search region

which have the same dimension as z.

SA-Siam is composed of the appearance branch (indi-

cated by blue blocks in the figure) and the semantic branch

(indicated by orange blocks). The output of each branch

is a response map indicating the similarity between target

z and candidate patch x within the search region X . The

two branches are separately trained and not combined until

testing time.

The appearance branch: The appearance branch takes

(z,X) as input. It clones the SiamFC network [3]. The

convolutional network used to extract appearance features
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is called A-Net, and the features extracted are denoted by

fa(·). The response map from the appearance branch can

be written as:

ha(z,X) = corr(fa(z), fa(X)), (1)

where corr(·) is the correlation operation. All the param-

eters in the A-Net are trained from scratch in a similar-

ity learning problem. In particular, with abundant pairs

(zi, Xi) from training videos and corresponding ground-

truth response map Yi of the search region, A-Net is op-

timized by minimizing the logistic loss function L(·) as fol-

lows:

argmin
θa

1

N

N∑

i=1

{L (ha(zi, Xi; θa), Yi)}, (2)

where θa denotes the parameters in A-Net, N is the number

of training samples.

The semantic branch: The semantic branch takes

(zs, X) as input. We directly use a CNN pretrained in the

image classification task as S-Net and fix all its parameters

during training and testing. We let S-Net to output features

from the last two convolutional layers (conv4 and conv5 in

our implementation), since they provide different levels of

abstraction. The low-level features are not extracted.

Features from different convolutional layers have differ-

ent spatial resolution. For simplicity of notation, we denote

the concatenated multilevel features by fs(·). In order to

make the semantic features suitable for the correlation op-

eration, we insert a fusion module, implemented by 1 × 1
ConvNet, after feature extraction. The fusion is performed

within features of the same layer. The feature vector for

search region X after fusion can be written as g(fs(X)).

The target processing is slightly different. S-Net takes

zs as the target input. zs has z in its center and contains

the context information of the target. Since S-Net is fully

convolutional, we can easily obtain fs(z) from fs(z
s) by a

simple crop operation. The attention module takes fs(z
s)

as input and outputs the channel weights ξ. The details of

the attention module is included in the next subsection. The

features are multiplied by channel weights before they are

fused by 1 × 1 ConvNet. As such, the response map from

the semantic branch can be written as:

hs(z
s, X) = corr (g (ξ · fs(z)) , g (fs(X))) , (3)

where ξ has the same dimension as the number of channels

in fs(z) and · is element-wise multiplication.

In the semantic branch, we only train the fusion mod-

ule and the channel attention module. With training pairs

(zs
i
, Xi) and ground-truth response map Yi, the semantic

branch is optimized by minimizing the following logistic

Channel i

max 
pooling MLP

Figure 3. Channel-wise attention generates the weighing coeffi-

cient ξi for channel i through max pooling and multilayer percep-

tron (MLP).

loss function L(·):

argmin
θs

1

N

N∑

i=1

{L (hs(z
s

i , Xi; θs), Yi)}, (4)

where θs denotes the trainable parameters, N is the number

of training samples.

During testing time, the overall heat map is computed

as the weighted average of the heat maps from the two

branches:

h(zs, X) = λha(z,X) + (1− λ)hs(z
s, X), (5)

where λ is the weighting parameter to balance the impor-

tance of the two branches. In practice, λ can be estimated

from a validation set. The position of the largest value in

h(zs, X) suggests the center location of the tracked target.

Similar to SiamFC [3], we use multi-scale inputs to deal

with scale changes. We find that using three scales strikes a

good balance between performance and speed.

3.2. Channel Attention in Semantic Branch

High-level semantic features are robust to appearance

changes of objects, and therefore make a tracker more gen-

eralized but less discriminative. In order to enhance the

discriminative power of the semantic branch, we design a

channel attention module.

Intuitively, different channels play different roles in

tracking different targets. Some channels may be extremely

important in tracking certain targets while being dispens-

able in tracking others. If we could adapt the channel im-

portance to the tracking target, we achieve the minimum

functionality of target adaptation. In order to do so, not only

the target is relevant, the surrounding context of the target

also matters. Therefore, in our proposed attention module,

the input is the feature map of zs instead of z.

The attention module is realized by channel-wise opera-

tions. Fig. 3 shows the attention process for the ith channel.

Take a conv5 feature map as an example, the spatial di-

mension is 22 × 22 in our implementation. We divide the

feature map into 3 × 3 grids, and the center grid with size

6 × 6 corresponds to the tracking target z. Max pooling

is performed within each grid, and then a two-layer mul-

tilayer perceptron (MLP) is used to produce a coefficient
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for this channel. Finally, a Sigmoid function with bias is

used to generate the final output weight ξi. The MLP mod-

ule shares weights across channels extracted from the same

convolutional layer.

Note that attention is only added to the target processing.

All the activations in channel i for the target patch are mul-

tiplied by ξi. Therefore, this module is passed only once for

the first frame of a tracking sequence. The computational

overhead is negligible.

3.3. Discussions of Design Choices

We separately train the two branches. We made this

choice based on the following observations. For some train-

ing samples, tracking with semantic clues may be much eas-

ier than with appearance clues, and for some others, it could

just be the opposite. Let us take the former case as an ex-

ample. If the two branches are jointly trained, the overall

loss could be small when the semantic branch has a dis-

criminative heat map and the appearance branch has a non-

informative heat map. Then, these training samples do not

play their part in optimizing the appearance branch. As a re-

sult, both branches are less powerful when they are jointly

trained than separately trained.

We do not fine-tune S-Net. A common practice in trans-

fer learning is to fine-tune the pre-trained network in the

new problem. We choose not to do so because fine-tuning S-

Net using the same procedure as we train A-Net will make

the two branches homogeneous. Although fine-tuning S-

Net may improve the tracking performance of the semantic

branch alone, the overall performance could be unfavorably

impacted. We have carried out experiments to verify this

design choice, although we do not include them in this pa-

per due to space limitation.

We keep A-Net as it is in SiamFC. Using multilevel

features and adding channel attention significantly improve

the semantic branch, but we do not apply them to the ap-

pearance branch. This is because appearance features from

different convolutional layers do not have significant differ-

ence in terms of expressiveness. We cannot apply the same

attention module to the appearance branch because high-

level semantic features are very sparse while appearance

features are quite dense. A simple max pooling operation

could generate a descriptive summary for semantic features

but not for appearance features. Therefore, a much more

complicated attention module would be needed for A-Net,

and the gain may not worth the cost.

4. Experiments

4.1. Implementation Details

Network structure: Both A-Net and S-Net use

AlexNet[22]-like network as base network. The A-Net

has exactly the same structure as the SiamFC network

[3]. The S-Net is loaded from a pretrained AlexNet on

ImageNet[31]. A small modification is made to the stride

so that the last layer output from S-Net has the same dimen-

sion as A-Net.

In the attention module, the pooled features of each

channel are stacked into a 9-dimensional vector. The fol-

lowing MLP has 1 hidden layer with nine neurons. The

non-linear function of the hidden layer is ReLU. The MLP

is followed by a Sigmoid function with bias 0.5. This is to

ensure that no channel will be suppressed to zero.

Data Dimensions: In our implementation, the target im-

age patch z has a dimension of 127× 127× 3, and both zs

and X have a dimension of 255× 255× 3. The output fea-

tures of A-Net for z and X have a dimension of 6×6×256
and 22 × 22 × 256, respectively. The conv4 and conv5
features from S-Net have dimensions of 24× 24× 384 and

22×22×256 channels for zs and X . The 1×1 ConvNet for

these two sets of features outputs 128 channels each (which

adds up to 256), with the spatial resolution unchanged. The

response maps have the same dimension of 17× 17.

Training: Our approach is trained offline on the

ILSVRC-2015 [31] video dataset and we only use color im-

ages. Among a total of more than 4,000 sequences, there

are around 1.3 million frames and about 2 million tracked

objects with ground truth bounding boxes. For each track-

let, we randomly pick a pair of images and crop zs from one

image with z in the center and crop X from the other image

with the ground truth target in the center. Both branches are

trained for 30 epochs with learning rate 0.01 in the first 25
epochs and learning rate 0.001 in the last five epochs.

We implement our model in TensorFlow[1] 1.2.1 frame-

work. Our experiments are performed on a PC with a Xeon

E5 2.4GHz CPU and a GeForce GTX Titan X GPU. The

average testing speed of SA-Siam is 50 fps.

Hyperparameters: The two branches are combined by

a weight λ. This hyperparameter is estimated on a small val-

idation set TC128[24] excluding sequences in OTB bench-

marks. We perform a grid search from 0.1 to 0.9 with

step 0.2. Evaluations suggest that the best performance is

achieved when λ = 0.3. We use this value for all the test

sequences. During evaluation and testing, three scales are

searched to handle scale variations.

4.2. Datasets and Evaluation Metrics

OTB: The object tracking benchmarks (OTB)[36, 37]

consist of three datasets, namely OTB-2013, OTB-50 and

OTB-100. They have 51, 50 and 100 real-world target

for tracking, respectively. There are eleven interference at-

tributes to which all sequences belong.

The two standard evaluation metrics on OTB are success

rate and precision. For each frame, we compute the IoU (in-

tersection over union) between the tracked and groundtruth

bounding boxes, as well as the distance of their center lo-
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OTB-2013 OTB-50 OTB-100

App. Sem. ML Att. AUC Prec. AUC Prec. AUC Prec.

X 0.599 0.811 0.520 0.718 0.585 0.790

X 0.607 0.821 0.517 0.715 0.588 0.791

X X 0.649 0.862 0.583 0.792 0.637 0.843

X X X 0.656 0.865 0.581 0.778 0.641 0.841

X X X 0.650 0.861 0.591 0.803 0.642 0.849

X X X X 0.676 0.894 0.610 0.823 0.656 0.864

Table 1. Ablation study of SA-Siam on OTB benchmarks. App. and Sem. denote appearance model and semantic model. ML means using

multilevel feature and Att. denotes attention module.

cations. A success plot can be obtained by evaluating the

success rate at different IoU thresholds. Conventionally, the

area-under-curve (AUC) of the success plot is reported. The

precision plot can be acquired in a similar way, but usually

the representative precision at the threshold of 20 pixels is

reported. We use the standard OTB toolkit to obtain all the

numbers.

VOT: The visual object tracking (VOT) bench-

mark has many versions, and we use the most recent

ones: VOT2015[19], VOT2016[20] and VOT2017[21].

VOT2015 and VOT2016 contain the same sequences, but

the ground truth label in VOT2016 is more accurate than

that in VOT2015. In VOT2017, ten sequences from

VOT2016 are replaced by new ones.

The VOT benchmarks evaluate a tracker by applying a

reset-based methodology. Whenever a tracker has no over-

lap with the ground truth, the tracker will be re-initialized

after five frames. Major evaluation metrics of VOT bench-

marks are accuracy (A), robustness (R) and expected aver-

age overlap (EAO). A good tracker has high A and EAO

scores but low R scores.

4.3. Ablation Analysis

We use experiments to verify our claims and justify our

design choices in SA-Siam. We use the OTB benchmark for

the ablation analysis.

The semantic branch and the appearance branch

complement each other. We evaluate the performances of

the semantic model alone (model S1) and the appearance

model alone (model A1). S1 is a basic version with only

S-Net and fusion module. Both S1 and A1 are trained from

scratch with random initialization. The results are reported

in the first two rows in Table 1. The third row presents

the results of an SA-Siam model which combines S1 and

A1. The improvement is huge and the combined model

achieves state-of-the-art performance even without multi-

level semantic features or channel attention.

In order to show the advantage of using heterogeneous

features, we compare SA-Siam with two simple ensemble

models. We train another semantic model S2 using differ-

ent initialization, and take the appearance model A2 pub-

lished by the SiamFC authors. Then we ensemble A1A2

Model S2 A2 A1A2 S1S2

AUC 0.606 0.602 0.608 0.602

Prec. 0.822 0.806 0.813 0.811

Table 2. Evaluation of separate and ensemble models on OTB-

2013. A1A2 is an ensemble of appearance models and S1S2 is an

ensemble of basic semantic models.
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Figure 4. Visualizing the channel weights output by attention mod-

ule for video david and bolt. Channels are sorted according to the

weights. There is no correspondence between channel numbers

for the two videos.

and S1S2. Table 2 shows the performance of the separate

and the ensemble models. It is clear that the ensemble mod-

els A1A2 and S1S2 do not perform as well as the SA-Siam

model. This confirms the importance of complementary

features in designing a twofold Siamese network.

Using multilevel features and channel attention bring

gain. The last three rows in Table 1 show how each com-

ponent improves the tracking performance. Directly us-

ing multilevel features is slightly helpful, but there lacks

a mechanism to balance the features of different abstraction

levels. We find that the attention module plays an important

role. It effectively balances the intra-layer and inter-layer

channel importance and achieves significant gain.

Fig.4 visualizes the channel weights for the two convo-

lutional layers of video sequence david and bolt. We have

used a Sigmoid function with bias 0.5 so that the weights

are in range [0.5, 1.5]. First, we observe that the weight dis-

tributions are quite different for conv4 and conv5. This pro-

vides hints why the attention module has a larger impact on

models using multilevel features. Second, the weight dis-

tributions for conv4 are quite different for the two videos.
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Tracker SA-Siam BACF PTAV ECOhc DSiamM EAST Staple SiamFC CFNet LMCF LCT

(ours) [17] [10] [6] [11] [15] [2] [3] [38] [34] [27]

OTB-2013
AUC 0.677 0.656* 0.663 0.652 0.656 0.638 0.593 0.607 0.611 0.628 0.628

Prec. 0.896 0.859 0.895 0.874 0.891 - 0.782 0.809 0.807 0.842 0.848

OTB-50
AUC 0.610 0.570 0.581 0.592 - - 0.507 0.516 0.530 0.533 0.492

Prec. 0.823 0.768 0.806 0.814 - - 0.684 0.692 0.702 0.730 0.691

OTB-100
AUC 0.657 0.621* 0.635 0.643 - 0.629 0.578 0.582 0.568 0.580 0.562

Prec. 0.865 0.822 0.849 0.856 - - 0.784 0.771 0.748 0.789 0.762

FPS 50 35 25 60 25 159 80 86 75 85 27

Table 3. Comparison of state-of-the-art real-time trackers on OTB benchmarks. * The reported AUC scores of BACF on OTB-2013

(excluding jogging-2) and OTB-100 are 0.678 and 0.630, respectively. They have used a slightly different measure.
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Figure 5. The precision plots and success plots over three OTB

benchmarks. Curves and numbers are generated with OTB toolkit.

The attention module tends to suppress more channels from

conv4 for video bolt.

Separate vs. joint training. We have claimed that the

two branches in SA-Siam should be separately trained. In

order to support this statement, we tried to jointly train

the two branches (without multilevel features or attention).

As we anticipated, the performance is not as good as the

separate-training model. The AUC and precision of the

joint training model on OTB-2013/50/100 benchmarks are

(0.630, 0.831), (0.546,0.739), (0.620, 0.819), respectively.

4.4. Comparison with State­of­the­Arts

We compare SA-Siam with the state-of-the-art real-time

trackers on both OTB and VOT benchmarks. Convention-

ally, a tracking speed beyond 25fps is considered real-time.

Our tracker runs at 50fps.

Tracker A R EAO FPS

MDNet 0.60 0.69 0.38 1

DeepSRDCF 0.56 1.05 0.32 < 1

EBT 0.47 1.02 0.31 4.4

SRDCF 0.56 1.24 0.29 5

BACF 0.59 1.56 - 35

EAST 0.57 1.03 0.34 159

Staple 0.57 1.39 0.30 80

SiamFC 0.55 1.58 0.29 86

SA-Siam 0.59 1.26 0.31 50

Table 4. Comparisons between SA-Siam and state-of-the-art real-

time trackers on VOT2015 benchmark. Four top non-real-time

trackers in the challenge are also included as a reference.

OTB benchmarks: We compare SA-Siam with

BACF[17], PTAV[10], DSiamM[11], EAST[15], Staple[2]

,SiamFC[3], CFNet[38], LMCF[34] and LCT[27] on OTB

2013/50/100 benchmarks. The precision plots and success

plots of one path evaluation (OPE) are shown in Fig.5. More

results are summarized in Table 3. The comparison shows

that SA-Siam achieves the best performance among these

real-time trackers on all three OTB benchmarks.

Note that the plots in Fig.5 are obtained by running the

OTB evaluation kit on the tracking result file released by au-

thors. The numbers for BACF [17] is different from the pa-

per because the authors only evaluate 50 videos (no jogging-

2) for OTB-2013. Also, they use per-video average instead

of per-frame average to compute the numbers.

VOT2015 benchmark: VOT2015 is one of the most

popular object tracking benchmarks. Therefore, we

also report the performance of some of the best non-

real-time trackers as a reference, including MDNet[29],

DeepSRDCF[7], SRDCF[8] and EBT[40]. Also, SA-Siam

is compared with BACF[17], EAST[15], Staple[2] and

SiamFC[3]. Table 4 shows the raw scores generated from

VOT toolkit and the speed (FPS) of each tracker. SA-Siam

achieves the highest accuracy among all real-time trackers.

While BACF has the same accuracy as SA-Siam, SA-Siam

is more robust.

VOT2016 benchmark: We compare SA-Siam with

the top real-time trackers in VOT2016 challenge [20] and

Staple[2] , SiamFC[3] and ECOhc[6]. The results are
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SA-Siam SiamFC Staple BACF LCT LMCF CFNet ECOhc PTAV

Figure 6. Qualitative results comparing SA-Siam with other trackers on sequences bolt, soccer, matrix, human3, skiing and motorrolling.

SA-Siam tracks accurately and robustly in these hard cases. In the very challenging skiing and motorrolling sequence, SA-Siam can always

track to the target when most of other trackers fail.

Tracker A R EAO FPS

ECOhc 0.54 1.19 0.3221 60

Staple 0.54 1.42 0.2952 80

STAPLE+ 0.55 1.31 0.2862 > 25

SSKCF 0.54 1.43 0.2771 > 25

SiamRN 0.55 1.36 0.2766 > 25

DPT 0.49 1.85 0.2358 > 25

SiamAN 0.53 1.91 0.2352 86

NSAMF 0.5 1.25 0.2269 > 25

CCCT 0.44 1.84 0.2230 > 25

GCF 0.51 1.57 0.2179 > 25

SA-Siam 0.54 1.08 0.2911 50

Table 5. Comparisons between SA-Siam and state-of-the-art real-

time trackers on VOT2016 benchmark. Raw scores generated

from VOT toolkit are listed.

shown in Table 5. On this benchmark, SA-Siam appears

to be the most robust real-time tracker. The A and EAO

scores are also among the top three.

VOT2017 benchmark: Table 6 shows the comparison

of SA-Siam with ECOhc[6], CSRDCF++[25], UCT[41],

SiamFC[3], SiamDCF[35] and Staple[2] on the VOT2017

benchmark. Different trackers have different advantages,

but SA-Siam is always among the top tier over all the eval-

uation metrics.

More qualitative results are given in Fig. 6. In the very

challenging motorrolling and skiing sequence, SA-Siam is

able to track correctly while most of others fail.

5. Conclusion

In this paper, we have presented the design of a twofold

Siamese network for real-time object tracking. We make

use of the complementary semantic features and appearance

features, but do not fuse them at early stage. The resulting

tracker greatly benefits from the heterogeneity of the two

Tracker A R EAO FPS

SiamDCF 0.500 0.473 0.249 60

ECOhc 0.494 0.435 0.238 60

CSRDCF++ 0.453 0.370 0.229 > 25

CSRDCFf 0.479 0.384 0.227 > 25

UCT 0.490 0.482 0.206 41

ATLAS 0.488 0.595 0.195 > 25

SiamFC 0.502 0.585 0.188 86

SAPKLTF 0.482 0.581 0.184 > 25

Staple 0.530 0.688 0.169 80

ASMS 0.494 0.623 0.169 > 25

SA-Siam 0.500 0.459 0.236 50

Table 6. Comparisons between SA-Siam and state-of-the-art real-

time trackers on VOT2017 benchmark. Accuracy, normalized

weighted mean of robustness score, EAO and speed (FPS) are

listed.

branches. In addition, we have designed a channel atten-

tion module to achieve target adaptation. As a result, the

proposed SA-Siam outperforms other real-time trackers by

a large margin on the OTB benchmarks. It also performs

favorably on the series of VOT benchmarks. In the future,

we plan to continue exploring the effective fusion of deep

features in object tracking task.
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