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Abstract

Text detection and recognition in natural images have

long been considered as two separate tasks that are pro-

cessed sequentially. Jointly training two tasks is non-trivial

due to significant differences in learning difficulties and

convergence rates. In this work, we present a conceptu-

ally simple yet efficient framework that simultaneously pro-

cesses the two tasks in a united framework. Our main

contributions are three-fold: (1) we propose a novel text-

alignment layer that allows it to precisely compute con-

volutional features of a text instance in arbitrary orienta-

tion, which is the key to boost the performance; (2) a char-

acter attention mechanism is introduced by using charac-

ter spatial information as explicit supervision, leading to

large improvements in recognition; (3) two technologies,

together with a new RNN branch for word recognition, are

integrated seamlessly into a single model which is end-to-

end trainable. This allows the two tasks to work collab-

oratively by sharing convolutional features, which is crit-

ical to identify challenging text instances. Our model ob-

tains impressive results in end-to-end recognition on the

ICDAR 2015 [19], significantly advancing the most recent

results [2], with improvements of F-measure from (0.54,

0.51, 0.47) to (0.82, 0.77, 0.63), by using a strong, weak

and generic lexicon respectively. Thanks to joint training,

our method can also serve as a good detector by achiev-

ing a new state-of-the-art detection performance on related

benchmarks. Code is available at https://github.

com/tonghe90/textspotter.

1. Introduction

The goal of text spotting is to map an input natural image

into a set of character sequences or word transcripts and cor-

responding locations. It has attracted increasing attention in

the vision community, due to its numerous potential appli-

cations. It has made rapid progress riding on the wave of re-

The first two authors contribute equally. C. Shen is the corresponding

author (e-mail: chunhua.shen@adelaide.edu.au).

Figure 1: Illustrations of the results on ICDAR 2015 by

our proposed method, which can detect all possible text

regions and recognize relevant transcriptions in a unified

framework.

cent deep learning technologies, as substantiated by recent

works [17, 8, 2, 23, 12, 35, 43, 31, 33, 22, 26]. However,

text spotting in the wild still remains an open problem, since

text instances often exhibit vast diversity in font, scale and

orientation with various illumination effects, which often

come with a highly complicated background.

Past works in text spotting often consider it as two sep-

arate tasks: text detection and word recognition, which are

implemented sequentially. The goal of text detection is to

precisely localize all text instances (e.g., words) in a natural

image, and then a recognition model is processed repeatedly

through all detected regions for recognizing correspond-

ing text transcripts. Recent approaches for text detection

are mainly extended from general object detectors (such as

Faster R-CNN [29] and SSD [25]) by directly regressing

a bounding box for each text instance, or from semantic

segmentation methods (e.g., Fully Convolutional Networks

(FCN) [27]) by predicting a text/non-text probability at each

pixel. With careful model design and development, these

approaches can be customized properly towards this highly
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domain-specific task, and achieve the state-of-the-art per-

formance [8, 12, 35, 43, 31, 42]. The word recognition

can be cast into a sequence labeling problem where con-

volutional recurrent models have been developed recently

[31, 9]. Some of them were further incorporated with an at-

tention mechanism for improving the performance [21, 1].

However, training two tasks separately does not exploit the

full potential of convolutional networks, where the convo-

lutional features are not shared. It is natural for us to make a

more reliable decision if we clearly understand or recognize

the meaning of a word and all characters within it. Besides,

it is also possible to introduce a number of heuristic rules

and hyper-parameters that are costly to tune, making the

whole system highly complicated.

Recent Mask R-CNN [7] incorporates an instance seg-

mentation task into the Faster R-CNN [29] detection frame-

work, resulting in a multi-task learning model that jointly

predicts a bounding box and a segmentation mask for each

object instance. Our work draws inspiration from this

pipeline, but has a different goal of learning a direct map-

ping between an input image and a set of character se-

quences. We create a recurrent sequence modeling branch

for word recognition within a text detection framework,

where the RNN based word recognition is processed in par-

allel to the detection task.

However, the RNN branch, where the gradients are back-

propagated through time, is clearly much more difficult to

optimize than the task of bounding box regression in detec-

tion. This naturally leads to significant differences in learn-

ing difficulties and convergence rates between two tasks,

making the model particularly hard to be trained jointly.

For example, the magnitude of images for training a text

detection model is about 103 (e.g., 1000 training images in

the ICDAR 2015 [19]) , but the number is increased signif-

icantly by many orders of magnitude when an RNN based

text recognition model is trained, such as the 800K synthetic

images used in [6]. Furthermore, simply using a set of char-

acter sequences as direct supervision may be too abstrac-

tive (high-level) to provide meaningful detailed information

for training such an integrated model effectively, which will

make the model difficult to convergence. In this work, we

introduce strong spatial constraints in both word and char-

acter levels, which allows the model to be optimized gradu-

ally by reducing the search space at each step.

Contributions. In this work, we present an end-to-end

textspotter capable of learning a direct mapping between

an input image and a set of character sequences or word

transcripts. We propose a solution that combines a text-

alignment layer tailed for multi-orientation text detection,

together with a character attention mechanism that explic-

itly encodes strong spatial information of characters into the

RNN branch, as shown in Figure 1. These two technologies

faithfully preserve the exact spatial information in both text

Figure 2: The framework of our method. The text-

alignment layer is proposed to extract accurate sequence

features within a detected quadrilateral of multi-orientation.

A novel character attention mechanism is applied to guide

the decoding process with explicit supervision. The whole

framework can be trained in an end-to-end manner.

instance and character levels, playing a key role in boosting

the overall performance. We develop a principled learning

strategy that allows the two tasks to be trained collabora-

tively by sharing convolutional features. Our main contri-

butions are described as follows.

Firstly, we develop a text-alignment layer by introducing

a grid sampling scheme instead of conventional RoI pool-

ing. It computes fixed-length convolutional features that

precisely align to a detected text region of arbitrary orien-

tation, successfully avoiding the negative effects caused by

orientation and quantization factor of the RoI pooling.

Secondly, we introduce a character attention mechanism

by using character spatial information as an addition super-

vision. This explicitly encodes strong spatial attentions of

characters into the model, which allows the RNN to focus

on current attentional features in decoding, leading to per-

formance boost in word recognition.

Thirdly, both approaches, together with a new RNN

branch for word recognition, are integrated elegantly into

a CNN detection framework, resulting in a single model

that can be trained in an end-to-end manner. We develop

a principled and intuitive learning strategy that allows the

two tasks to be trained effectively by sharing features, with

fast convergence.

Finally, we show by experiments that word recognition

can significantly improve detection accuracy in our model,

demonstrating strong complementary nature of them, which

is unique to this highly domain-specific application. Our

model achieves new state-of-the-art results on the IC-

DAR2015 in end-to-end recognition of multi-orientation

texts, largely outperforming the most recent results in [2],

with improvements of F-measure from (0.54, 0.51, 0.47)
to (0.82, 0.77, 0.63) in terms of using a strong, weak and

generic lexicon.

2. Related work

Here we briefly introduce some related works on text

detection, recognition and recent method for end-to-end
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wordspotting.

Scene text detection. Recent approaches cast previous

character-based text detection [14, 15, 11, 37] into direct

text region estimation [24, 43, 42, 10, 8, 41, 38], which

avoids multiple bottom-up post-processing steps by taking

word or text-line as a whole detection unite. Built on ad-

vances of recent object detector Faster-RCNN [29], Tian et

al. [35] proposed a novel Connectionist Text Proposal Net-

work (CTPN) which detects a text line in a sequence of fine-

scale text proposals from convolutional layers, with a new

RNN design incorporated. Liao et al. [24] extended single-

shot object detector (SSD) [25] to text detection. He et

al. [8] proposed a text attention module capable of auto-

matically learning the attention of rough text regions from

the convolutional features. This allows the model to pro-

duce single-shot detection of text with a high accuracy. In

[12], the author proposed a method to generate arbitrary

quadrilaterals, by calculating offsets between every point

of text region and vertex coordinates. A weakly super-

vised text detector, WeText, was proposed to learn from

un-annotated or weakly annotated data [33]. Zhou et al. ap-

plied Intersection-over-Union (IoU) loss to text detection,

which regresses text bounding boxes densely at each spatial

location.

Scene text recognition. With the success of recurrent

neural networks on handwriting recognition and speech

translation, sequence modelling has recently been applied

to scene text recognition. For example, He et al. [9] cast the

task of word recognition into a sequence labelling problem,

where an encoding-decoding process is introduced by incor-

porating LSTM [3] and connectionist temporal classifica-

tion (CTC) [4] into a unified framework. Similar work has

been developed by Shi et al. in [31], and spatial transformer

networks [17] was incorporated for automatic rectification

[32]. Lee et al. [21] proposed an attention-based LSTM

for word recognition. However, these attention weights are

learned completely from the distribution of data, without

any clear supervision that guides the learning process.

End-to-end wordspotting. End-to-end wordspotting is

an emerging research area. Previous methods usually try to

solve it by splitting the whole process into two independent

problems: training two cascade models, one for detection

and one for recognition. Detected text regions are firstly

cropped from original image, followed by affine transfor-

mation and rescaling. Corrected images are repeatedly pro-

cessed by a recognition model to obtain corresponding tran-

scripts. However, training errors will be accumulated due to

cascading models without sharable features. Li et al. [23]

proposed a unified network that simultaneously localizes

and recognizes text in one forward pass by sharing convo-

lution features under a curriculum strategy. But the existing

RoI pooling operation limits it to detect and recognize only

horizontal examples. Busta et al. [2] brought up deep text

Figure 3: Standard RoI pooling (Top) and text-alignment

layer (Bottom). Our method can avoid encoding irrelevant

texts and complicated background, which is crucial for the

accuracy of text recognition.

spotter, which can solve wordspotting of multi-orientation

problem. However, the method does not have sharable fea-

ture, meaning that the recognition loss of the later stage has

no influence on the former localization results.

3. End-to-End TextSpotter

In this section, we present the details of the proposed

textspotter which learns a direct mapping between an in-

put image and a set of word transcripts with corresponding

bounding boxes with arbitrary orientations. Our model is a

fully convolutional architecture built on the PVAnet frame-

work [13]. As shown in Figure 2, we introduce a new re-

current branch for word recognition, which is integrated

into our CNN model in parallel with the existing detection

branch for text bounding box regression. The RNN branch

is composed of a new text-alignment layer and a LSTM-

based recurrent module with a novel character attention em-

bedding mechanism. The text-alignment layer extracts pre-

cise sequence feature within the detected region, preventing

encoding irrelevant texts or background information. The

character attention embedding mechanism regulates the de-

coding process by providing more detailed supervisions of

characters. Our textspotter directly outputs final results in

an end-to-end manner, without any post-processing step ex-

cept for a simple non-maximum suppression (NMS).

Network architecture Our model is a fully convolu-

tional architecture inspired by [43], where a PVA network

[13] is utilized as backbone due to its significantly low com-

putational cost. Unlike generic objects, texts often have a

much larger variations in both sizes and aspect ratios. Thus

it not only needs to preserve local details for small-scale text

instances, but also should maintain a large receptive field

for very long instances. Inspired by the success in semantic

segmentation [30], we exploit feature fusion by combining

convolutional features of conv5, conv4, conv3 and conv2

layers gradually, with the goal of maintaining both local

detailed features and high-level context information. This

results in more reliable predictions on multi-scale text in-

stances. The size of the top layer is 1

4
of the input image.

Text detection This branch is similar to that of [43],

where a multi-task prediction is implemented at each spa-
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Figure 4: Our proposed sub-net structure for recognition

branch, which provides guidance during the decoding pro-

cess by using character spatial information as supervision.

tial location on the top convolutional maps, by adopting

an Intersection over Union (IoU) loss described in [40]. It

contains two sub-branches on the top convolutional layer

designed for joint text/non-text classification and multi-

orientation bounding boxes regression. The first sub-branch

returns a classification map with an equal spatial size of

the top feature maps, indicating the predicted text/non-text

probabilities using a softmax function. The second sub-

branch outputs five localization maps with the same spatial

size, which estimate five parameters for each bounding box

with arbitrary orientation at each spatial location of text re-

gions. The five parameters represent the distances of the

current point to the top, bottom, left and right sides of an

associated bounding box, together with its inclined orienta-

tion. With these configurations, the detection branch is able

to predict a quadrilateral of arbitrary orientation for each

text instance. The feature of the detected quadrilateral re-

gion is then feed into the RNN branch for word recognition

via a text-alignment layer which is described below.

3.1. Text­Alignment Layer

We create a new recurrent branch for word recognition,

where a text-alignment layer is proposed to precisely com-

pute fixed-size convolutional features from a quadrilateral

region of arbitrary size. The text-alignment layer is ex-

tended from RoI pooling [5] which is widely used for gen-

eral objects detection. The RoI pooling computes a fixed-

size convolutional features (e.g., 7 × 7) from a rectangle

region of arbitrary size by performing quantization opera-

tion. It can be integrated into the convolutional layers for

in-network region cropping, which is a key component for

training an end-to-end framework. However, directly apply-

ing the RoI pooling to a text region will lead to a significant

performance drop in word recognition due to the issue of

misalignment. Reasons are described below.

Firstly, unlike object detection and classification where

the RoI pooling computes global features of a RoI region for

discriminating an object, word recognition requires more

detailed and accurate local features and spatial information

for predicting each character sequentially. As pointed out

in [7], the RoI pooling performs quantizations which in-

evitably introduce misalignments between the original RoI

region and the extracted features. Such misalignments have

a significant negative effect on predicting characters, partic-

ularly on some small-scale ones such as ‘i’, ‘l’.

Secondly, RoI pooling was designed for a rectangle re-

gion which is only capable of localizing horizontal in-

stances. It will make larger misalignments when applied

to multi-orientation text instances. Furthermore, a large

amount of background information and irrelevant texts are

easily encoded when a rectangle RoI region is applied to a

highly inclined text instance, as shown in Figure 3. This

severely reduces the performance on the RNN decoding

process for recognizing sequential characters.

Recent Mask R-CNN considers explicit per-pixel spatial

correspondence by introducing RoIAlign pooling [7]. This

inspires current work that develops a new text-alignment

layer tailored for text instance which is a quadrilateral shape

with arbitrary orientation. It provides strong word-level

alignment with accurate per-pixel correspondence, which is

of critical importance to extract exact text information from

the convolutional maps, as shown in Figure 3.

Specifically, given a quadrilateral region, we first build a

sampling grid with size of h × w on the top convolutional

maps. The sampled points are generated with equidistant

interval within the region, and the feature vector (vp) for a

sampled point (p) at spatial location (px, py), is calculated

via a bilinear sampling [7] as follows,

vp =

4
∑

i=1

vpi ∗ g(px, pix) ∗ g(py, piy) (1)

where vpi refers to four surrounding points of point p,

g(m,n) is the bilinear interpolation function and pix and

piy refer to the coordinates of point pi. As presented in [7],

an appealing property of the bilinear sampling is that gradi-

ents of the sampled points can be back-propagated through

the networks, by using Eq. 2.

∂grad

∂vpi
=

∑

g(px, pix) ∗ g(py, piy) (2)

Grid sampling, by generating a fixed number of sam-

pling points (e.g., w = 64, h = 8 in our experiments), pro-

vides an efficient way to compute fixed-size features from a

quadrilateral region with arbitrary size and orientation. The

bilinear sampling allows for exacting per-pixel alignment,

successfully avoiding the quantization factor.

3.2. Word Recognition with Character Attention

The word recognition module is built on the text-

alignment layer, as shown in Figure 2. Details of this mod-

ule is presented in Figure 4, where the input is fixed-size

convolutional features output from the text-align pooling

layer with size of w × h × C. The convolutional features
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Figure 5: A comparison of the proposed method with tradi-

tional attention LSTM. The heat map indicates the focusing

location at each time step.

are fed into multiple inception modules and generate a se-

quence of feature vectors, e.g., 64 ×C-dimensional features,

as shown in Figure 4. In the next part, we will briefly in-

troduce the attention mechanism and three strategies to en-

hance attention alignment.

3.2.1 Attention Mechanism

Recently, attention mechanism has been developed for word

recognition [21, 1], where an implicit attention is learned

automatically to enhance deep features in the decoding pro-

cess. In the encoding process, a bi-direction LSTM layer is

utilized to encode the sequential vectors. It outputs hidden

states {he
1
, he

2
, ..., he

w} of the same number, which encode

strong sequential context features from both past and future

information. Unlike previous work [31, 9] which decode a

character (including a non-character label) using each hid-

den state, the attention mechanism introduces a new decod-

ing process where an attention weights (αt ∈ R
w) is learned

automatically at each decoding iteration, and the decoder

predicts a character label (yt) by using this attention vector,

yt = Decoder(hd
t , gt, yt−1) (3)

where hd
t is the hidden state vector of the decoder at time t,

computed by:

hd
t = f(yt−1, h

d
t−1

, gt) (4)

gt is the context vector, which is calculated as a weighted

sum of the input sequence: gt =
∑w

j=1
αt,jh

e
j . The decoder

is ended until it encounters an end-of-sequence (EOS). The

attention vector is calculated by αt,j = softmax(et,j),
where et,j = z(hd

t−1
, he

j) is an alignment factor measur-

ing matching similarity between the hidden state and en-

coding features he
j . However, these attention vectors are

learned automatically in the training process without an ex-

plicit guidance, giving rise to misalignment problem which

severely reduces recognition performance, as shown in Fig-

ure 5. To address this problem, we propose new attention

alignment and enhancement methods that explicitly encode

strong attention of each character.

3.2.2 Attention Alignment and Enhancement

We introduce a new method which enhance the attention

of characters in word recognition. We develop character-

alignment mechanism that explicitly encodes strong char-

acter information, together with a mask supervision task

which provides meaningful local details and spatial infor-

mation of character for model learning. Besides, an at-

tention position embedding is also presented. It identifies

the most significant spot from the input sequence which

further enhances the corresponding text features in infer-

ence. These technical improvements are integrated seam-

lessly into a unified framework that is end-to-end trainable.

Details of each module are described as follows.

Attention alignment To deal with misalignment issue

raised by existing implicit attention models, we propose an

attention alignment which explicitly encodes spatial infor-

mation of characters, by introducing an additional loss as

supervision.

Specifically, assuming that pt,1, pt,2, ..., pt,w are central

points in each column of the sampling grid. At t-th time

step, these central points can be calculated by Eq. 5,

δt =

w
∑

j=1

αt,j × pt,j (5)

Ideally, δt should be close to the center of the current char-

acter, yt. Without supervision, it is likely to result in mis-

alignment and therefore incorrect sequence labels. Intu-

itively, we can construct a loss function (Eq. 6) to describe

whether the attention points is focusing on the right place.

ℓalign =

T
∑

t=0

∥

∥

∥

∥

δt − kt

0.5 ∗ w̄t

∥

∥

∥

∥

2

(6)

where kt is ground truth (GT) coordinates, and w̄t is the GT

width of current character, yt. Both of them are projected

onto the axis of text orientation. T is the number of char-

acters in a sequence. Notice that the distance between the

prediction and GT should be normalized by character width,

which we found is useful for model convergence.

Character mask To further enhance character attention,

we introduce another additional supervision by leveraging

character mask, which provides more meaningful informa-

tion, including both local details and spatial location of a

character. A set of binary masks are generated, with the

same spatial size of the last convolutional maps. The num-

ber of the masks is equal to the number of character labels.

A softmax loss function is applied at each spatial location,

which is referred as mask loss ℓmask. This explicitly en-

coding strong detailed information of characters into the at-

tention module. Both ℓmask and ℓalign losses are optional

during the training process, and can be ignored on those im-

ages where character level annotations are not provided.
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Position embedding Position embedding was first intro-

duced in [36], aiming to make the model ‘location aware’ by

encoding a one-hot coordinate vector. This is equivalent to

adding a varying bias terms. It is difficult to directly apply it

to our task, as the size of the feature maps changes accord-

ing to the size of input image. Instead, we generate a one-

hot vector from the attention vector, uk = argminj αt,j ,

which is a fixed-size binary vector (e.g., 64-D). Then, we

directly concatenate the one-hot vector with the context vec-

tor (gt), which forms a new feature representation with ad-

ditional one-hot attention information. Then the decoder

computed in Eq. 3 can be modified as,

yt = Decoder(hd
t , gt, yt−1, ut) (7)

Finally, by integrating all these modules into an end-to-

end model, we obtains an overall loss function including

four components,

L = ℓloc + ℓword + λ1ℓalign + λ2ℓmask (8)

where ℓword is a softmax loss for word recognition, ℓloc is

the loss function for text instance detection, and λ1 and λ2

are corresponding loss weights (both are set to 0.1).

3.3. Training Strategy

Training our model in an end-to-end manner is challeng-

ing due to a number of difficulties. First, largely different

nature of them, e.g., significant differences in learning dif-

ficulties and convergence rates. Second, the extremely un-

balanced distribution of image data. Our methods require

character-level bounding boxes for generating character co-

ordinates and masks. These detailed character annotations

are not provided in the standard benchmarks, such as the IC-

DAR2013 [20] and ICDAR2015 [19]. Although Gupta et

al. [6] developed a fast and scalable engine to generate

synthetic images of text, providing both word-level and

character-level informations, there is still a large gap be-

tween realistic and synthesized images, making the trained

model difficult to generalize well to real-world images.

We fill this gap by developing a principled training strat-

egy which includes multiple steps. It is able to train mul-

tiple tasks collaboratively in our single model, allowing for

excellent generalization capability from the synthesized im-

ages to real-world data.

Step One: We randomly select 600k images from the

800k synthetic images. Word recognition task is firstly

trained by fixing the detection branch. We provide the

ground truth bounding boxes of word instances to the text-

align layer. Three losses: ℓword, ℓalign and ℓmask are com-

puted. The training process takes 120k iterations with a

learning rate 2× 10−3.

Step Two: For the next 80k iterations, we open the de-

tection branch, but still use the GT bounding boxes for the

text-align layer, as the detector performs poorly at first,

Figure 6: A comparison of detection performance between

joint training (Top) and separate training (Bottom). Joint

training makes it more robust to find out text regions as

two tasks are highly correlated, where detection can benefit

from training of recognition.

roi pooling?
roi

alignment?

text

alignment?
supervision?

position

embedding?
Accuracy (%)

X × × × × 60.7

× X × × × 61.9

× × X × × 67.6

× × X X × 68.8

× × X × X 68.2

× × X X X 69.5

Table 1: Ablations for the proposed method. We test our

model on ICDAR2015. The detection part is replaced with

ground truth for fair comparison.

which will be harmful to the already trained recognition

branch. The learning rate is set to 2 × 10−4. During the

next 20k iterations, sampling grid is generated from detec-

tion results. The model is trained end-to-end in this stage.

Step Three: About 3,000 real-world images from the

ICDAR 2013 [20], ICDAR 2015 [19] and Multi-lingual1

datasets are utilized in the next 60k iterations. To enhance

the generalization ability, data augmentation is employed.

We re-scale the images by keeping the aspect ratio un-

changed, followed by random rotation ranging from −20◦

to 20◦, and random cropping 800×800 patches for training.

To utilize the character-level supervision, we set the batch

size to 4, where an image from the synthetic dataset is in-

cluded. The learning rate remained at 2× 10−4. The whole

system is implemented by using Caffe [18].

4. Experiments

In this section, we first briefly introduce the datasets

we use and the evaluation protocols, followed by thorough

comparison of the proposed method with the state-of-the-art

along with comprehensive ablation experiments.

Datasets The ICDAR2013 dataset focuses more on hor-

izontal text instances, which contains 229 images for train-

ing and 233 images for testing with word-level annotation.

The ICDAR2015 dataset is collected by Google glasses,

which has 1,000 images for training and 500 images for

1 http://rrc.cvc.uab.es/?ch=8&com=introduction
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IC
D

A
R

2
0

1
3

Method Year
Word-Spotting End-to-end

Strong Weak Generic Strong Weak Generic

Deep2Text II+ [39] 2014 0.85 0.83 0.79 0.82 0.79 0.77

Jaderberg et al. [16] 2015 0.90 − 0.76 0.86 − −

FCRNall+multi-filt [6] 2016 − − 0.85 − − −

TextBoxes [24] 2017 0.94 0.92 0.86 0.92 0.90 0.84

YunosRobot1.0 2017 0.87 − 0.87 0.84 − 0.84

Li et al. [23] 2017 0.94 0.92 0.88 0.91 0.90 0.85

Deep text spotter [2] 2017 0.92 0.89 0.81 0.89 0.86 0.77

Proposed Method - 0.93 0.92 0.87 0.91 0.89 0.86

IC
D

A
R

2
0

1
5 Method Year

Word-Spotting End-to-end

Strong Weak Generic Strong Weak Generic

Stradvision [19] 2013 0.46 − − 0.44 − −

TextSpotter [28] 2016 0.37 0.21 0.16 0.35 0.20 0.16

Deep TextSpotter [2] 2017 0.58 0.53 0.51 0.54 0.51 0.47

Proposed Method - 0.85 0.80 0.65 0.82 0.77 0.63

Table 2: Comparisons of the end-to-end task with state-of-the-art on ICDAR2013 and ICDAR2015. The results are reported

with three different level lexicons, namely, strong, weak and generic.

testing. Different from previous datasets which are well-

captured horizontal English text, it contains texts with more

scales, blurring, and orientation.

The multi-lingual scene text dataset2 is built for devel-

oping script-robust text detection methods, which contains

about 9,000 images with 9 different kinds of transcriptions.

We choose about 2000 of them, identified with ‘Latin’, to

train the end-to-end task.

4.1. Evaluation Protocols

Detection. There are two standard protocols for evalu-

ating detection results: DetEval and ICDAR2013 standard

[20]. The main difference between the two protocols is that

the latter one stresses more on individual words while the

former one can achieve a higher score even when many

words are connected into a line.

End-to-end for Detection and Recognition. The cri-

terion has been used in competition: the evaluation of the

results will be based on a single IoU criterion, with a thresh-

old of 50%, and correct transcription. Besides, three dictio-

naries are also provided for testing reference, i.e., ‘strong’,

‘weak’ and ‘generic’. ‘Strong’ lexicon has 100 entries for

every image, and most words appeared in that image are in-

cluded. ‘Weak’ lexicon contains all the words that appeared

in the testing dataset. ‘Generic’ lexicon has 90K words.

One thing should be noticed that the length of all the words

in dictionaries are greater than 3 with symbols and numbers

excluded. There are two protocols for evaluation: end-to-

end and word-spotting. End-to-end needs to recognize all

the words precisely, no matter whether the dictionary con-

tains these strings. On the other hand, word-spotting only

examines whether the words in the dictionary appear in im-

ages, making it less strict than end-to-end for ignoring sym-

2http://rrc.cvc.uab.es/?ch=8&com=introduction

Figure 7: Examples of textspotting results of the proposed

method on ICDAR2013 and ICDAR2015.

bols, numbers and words whose length is less than 3.

4.2. Text­alignment vs. RoI Pooling

We compare the proposed text-alignment with standard

RoI pooling. To make fair comparison, the detection part is

fixed with ground truth and recognition performance is eval-

uated on ICDAR2015. Due to encoding background infor-

mation and irrelevant text instances, RoI pooling results in

mis-alignment and inaccurate representation of feature se-

quences. As shown in Table 1, the accuracy of recognition
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ICDAR2013 dataset ICDAR2015 dataset

Method Year
ICDAR standard DetEval

Method Year R P F
R P F R P F

TextFlow [34] 2015 0.76 0.85 0.80 - - - StradVision2 2015 0.37 0.77 0.50

Text-CNN [11] 2016 0.73 0.93 0.82 0.76 0.93 0.84 MCLAB FCN [42] 2016 0.43 0.71 0.54

FCRN [6] 2016 0.76 0.94 0.84 0.76 0.92 0.83 EAST [43] 2016 0.78 0.83 0.81

CTPN [35] 2016 0.73 0.93 0.82 0.83 0.93 0.88 CTPN [35] 2016 0.52 0.74 0.61

He et al. [8] 2017 0.86 0.88 0.87 0.86 0.89 0.88 He et al. [8] 2017 0.73 0.80 0.77

He et al. [12] 2017 0.81 0.92 0.86 - - - He et al. [12] 2017 0.82 0.80 0.81

Proposed wo recog - 0.87 0.88 0.88 0.87 0.88 0.88 Proposed wo recog - 0.83 0.84 0.83

Proposed - 0.88 0.91 0.90 0.89 0.91 0.90 Proposed - 0.86 0.87 0.87

Table 3: Comparison of detection results with the state-of-the-art methods on ICDAR2013 and ICDAR2015. The results are

reported Recall (R), Precision (P) and F-measure (F). For fair comparison, the detection performance is achieved without

referring to recognition results.

with the proposed method surpasses standard RoI pooling

by a large margin, boosting from 60.7% to 67.6%. All re-

sults are evaluated without referring to any lexicon in one

single scale.

4.3. Character Attention

Different from traditional attention-based recognition

models, where attention weights are automatically learned,

we propose a method to regulate the learning process to pre-

vent mis-alignment in the decoding stage. To demonstrate

the effectiveness of our proposed method, we conduct two

experiments with the detection part fixed. The first one is on

VGG synthetic data [6], where we select 600K for training

and 200K for testing. The accuracies of character-level and

word-level are evaluated. The method with supervision has

an accuracy of 0.95 and 0.88 on two protocols, comparing

to 0.93 and 0.85 on traditional attention-based method. The

other experiment is tested on ICDAR2015 dataset. As is

shown in Figure 5, the proposed method gives more accu-

rate character localization than attentional LSTM, leading

to about 2% boosting in accuracy.

4.4. Joint Training vs. Separate Models

We believe that text detection and recognition are not two

standalone problems, but highly correlated where each task

can benefit from the training of the other. Joint training of

two tasks in a unified framework avoids error accumulations

among cascade models. As shown in Table 3, the task of

recognition greatly enhances the performance of detection

in terms of recall and precision, leading to a 3% improve-

ment on F-Measure (note: the detection performances are

achieved without referring to recognition results). As can

be seen from Figure 6, joint training makes it more robust

to text-like background and complicated text instances. We

also provide a comparison with other detection approaches,

indicating that our method achieved new state-of-the-art

performance on ICDAR2013 and ICDAR2015 datasets.

4.5. Proposed Method vs. State­of­the­art Methods

End-to-end results on some extremely challenging im-

ages are presented in Figure 7. As can be seen in Figure 7,

our method can correctly detect and recognize both small

text instances and those with large inclined angles.

ICDAR2015. The effectiveness to multi-orientation

texts is testified on ICDAR2015 dataset. Our method

achieved an F-measure of 0.82, 0.77 and 0.63 respectively

in terms of referencing ‘Strong’, ‘Weak’ and ‘Generic’ lex-

icon under the end-to-end protocol, which surpasses the

state-of-the-art performance of 0.54, 0.77 and 0.63 by a

large margin.

ICDAR2013. The dataset is well-captured for horizon-

tal text instances. The result is shown in Table 2, which is

comparable to the state-of-the-art result [23].

5. Conclusion

In this paper we have presented a novel framework that

combines detection and recognition in a unified network

with sharable features.

We have proposed a novel text-alignment layer that can

extract precise sequence information without encoding ir-

relevant background or texts. We also improve the accuracy

of traditional LSTM by enhancing the attention of charac-

ters during the decoding process. Our proposed method

achieves state-of-the-art performance on two open bench-

marks: ICDAR2013 and ICDAR2015 and outperforms pre-

vious best methods by a large margin.
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