
Hashing as Tie-Aware Learning to Rank

Kun He Fatih Cakir Sarah Adel Bargal Stan Sclaroff

Department of Computer Science, Boston University

{hekun,fcakir,sbargal,sclaroff}@cs.bu.edu

Abstract

Hashing, or learning binary embeddings of data, is fre-

quently used in nearest neighbor retrieval. In this paper, we

develop learning to rank formulations for hashing, aimed at

directly optimizing ranking-based evaluation metrics such as

Average Precision (AP) and Normalized Discounted Cumu-

lative Gain (NDCG). We first observe that the integer-valued

Hamming distance often leads to tied rankings, and pro-

pose to use tie-aware versions of AP and NDCG to evaluate

hashing for retrieval. Then, to optimize tie-aware ranking

metrics, we derive their continuous relaxations, and perform

gradient-based optimization with deep neural networks. Our

results establish the new state-of-the-art for image retrieval

by Hamming ranking in common benchmarks.

1. Introduction

In this paper, we consider the problem of hashing, which

is concerned with learning binary embeddings of data in or-

der to enable fast approximate nearest neighbor retrieval. We

take a task-driven approach, and seek to optimize learning

objectives that closely match test-time performance mea-

sures. Nearest neighbor retrieval performance is frequently

measured using ranking-based evaluation metrics, such as

Average Precision (AP) and Normalized Discounted Cumula-

tive Gain (NDCG) [26], but the optimization of such metrics

has been deemed difficult in the hashing literature [30]. We

propose a novel learning to rank formulation to tackle these

difficult optimization problems, and our main contribution

is a gradient-based method that directly optimizes ranking

metrics for hashing. Coupled with deep neural networks,

this method achieves state-of-the-art results.

Our formulation is inspired by a simple observation.

When performing retrieval with binary vector encodings

and the integer-valued Hamming distance, the resulting rank-

ing usually contains ties, and different tie-breaking strategies

can lead to different results (Fig. 1). In fact, ties are a com-

mon problem in ranking, and much attention has been paid

to it, including in Kendall’s classical work on rank corre-

lation [15], and in the modern information retrieval litera-

Tie-Aware Optimization

 d = 0 d = 1 d = 2
Database

…

AP = 0.92

AP = 0.59

AP = 0.81

Query

DNN

AP = 1

Figure 1: When applying hashing for nearest neighbor re-

trieval, the integer-valued Hamming distance produces ties

(items that share the same distance). If left uncontrolled,

different tie-breaking strategies could give drastically dif-

ferent values of the evaluation metric, e.g. AP. We address

this issue by using tie-aware ranking metrics that implicitly

average over all the permutations in closed form. We further

use tie-aware ranking metrics as optimization objectives in

deep hashing networks, leading to state-of-the-art results.

ture [3, 28]. Unfortunately, the learning to hash literature

largely lacks tie-awareness, and current evaluation protocols

rarely take tie-breaking into account. Thus, we advocate

using tie-aware ranking evaluation metrics, which implic-

itly average over all permutations of tied items, and permit

efficient closed-form evaluation.

Our natural next step is to learn hash functions by opti-

mizing tie-aware ranking metrics. This can be seen as an in-

stance of learning to rank with listwise loss functions, which

is advantageous compared to many other ranking-inspired

hashing formulations. To solve the associated discrete and

NP-hard optimization problems, we relax the problems into

their continuous counterparts where closed-form gradients

are available, and then perform gradient-based optimization

with deep neural networks. We specifically study the op-

timization of AP and NDCG, two ranking metrics that are

14023

widely used in evaluating nearest neighbor retrieval perfor-

mance. Our results establish the new state-of-the-art for

these metrics in common image retrieval benchmarks.

2. Related Work

Hashing is a widely used approach for practical nearest

neighbor retrieval [39], thanks to the efficiency of evaluating

Hamming distances using bitwise operations, as well as the

low memory and storage footprint. It has been theoretically

demonstrated [1] that data-dependent hashing methods out-

perform data-independent ones such as Locality Sensitive

Hashing [14]. We tackle the supervised hashing problem,

also known as affinity-based hashing [18, 25, 30], where

supervision is given in the form of pairwise affinities. Re-

garding optimization, the discrete nature of hashing usually

results in NP-hard problems. Our solution uses continuous

relaxations, which is in line with relaxation-based methods,

e.g. [4, 18, 25], but differs from alternating methods that

preserve the discrete constraints [22, 29, 30] and two-step

methods [6, 23, 48].

Supervised hashing can be cast as a distance metric learn-

ing problem [29], which itself can be formulated as learning

to rank [21, 27]. Optimizing ranking metrics such as AP

and NDCG has received much attention in the learning to

rank literature. For instance, surrogates of AP and NDCG

can be optimized in the structural SVM framework [10, 45],

and bound optimization algorithms exist for NDCG [38].

Alternatively, there are gradient-based methods based on

smoothing or approximating these metrics [2,11,19,35]. Re-

cently, [36] tackles few-shot classification by optimizing AP

using the direct loss minimization framework [34]. These

methods did not consider applications in hashing.

In the learning to hash literature, different strategies have

been proposed to handle the difficulties in optimizing listwise

ranking metrics. For example, [40] decomposes listwise

supervision into local triplets, [22, 44] use structural SVMs

to optimize surrogate losses, [33] maximizes precision at the

top, and [41, 47] optimize NDCG surrogates. In other recent

methods using deep neural networks, the learning objectives

are not designed to match ranking evaluation metrics, e.g.

[4, 20, 42, 48]. In contrast, we directly optimize listwise

ranking metrics using deep neural networks.

Key to our formulation is the observation that the integer-

valued Hamming distance results in rankings with ties. How-

ever, this fact is not widely taken into consideration in previ-

ous work. Ties can be sidestepped by using weighted Ham-

ming distance [22, 46], but at the cost of reduced efficiency.

Fortunately, tie-aware versions of common ranking metrics

have been found in the information retrieval literature [28].

Inspired by such results, we propose to optimize tie-aware

ranking metrics on Hamming distances. Our gradient-based

optimization uses a recent differentiable histogram binning

technique [4, 5, 37].

3. Hashing as Tie-Aware Ranking

3.1. Preliminaries

Learning to hash. In learning to hash, we wish to learn

a hash mapping Φ : X → Hb, where X is the feature

space, and Hb = {−1, 1}b is the b-dimensional Hamming

space. A hash mapping Φ induces the Hamming distance

dΦ : X × X → {0, 1, . . . , b} as1

dΦ(x, x
′) =

1

2

(

b− Φ(x)⊤Φ(x′)
)

. (1)

We consider a supervised learning setting, or supervised

hashing, where supervision is specified using pairwise affini-

ties. Formally, we assume access to an affinity oracle A,

whose value indicates a notion of similarity: two examples

xi, xj ∈ X are called similar if A(xi, xj) > 0, and dissim-

ilar when A(xi, xj) = 0. In this paper, we restrict A to

take values from a finite set V , which covers two important

special cases. First, V = {0, 1}, or binary affinities, are

extensively studied in the current literature. Binary affini-

ties can be derived from agreement of class labels, or by

thresholding the original Euclidean distance in X .2 The

second case is multi-level affinities, where V consists of

non-negative integers. This more fine-grained model of sim-

ilarity is frequently considered in information retrieval tasks,

including in web search engines.

Throughout this paper we assume the setup where a query

xq ∈ X is retrieved against some database S ⊆ X . Retrieval

is performed by ranking the instances in S by increasing dis-

tance to xq , using dΦ as the distance metric. This is termed

“retrieval by Hamming ranking” in the hashing literature.

The ranking can be represented by an index vector R, whose

elements form a permutation of {1, . . . , |S|}. Below, let Ri

be the i-th element in R, and Aq(i) = A(xq, xi). Unless

otherwise noted, we implicitly assume dependency on xq, S,

and Φ in our notation.

Ranking-based evaluation. Ranking-based metrics usu-

ally measure some form of agreement between the ranking

and ground truth affinities, capturing the intuition that re-

trievals with high affinity to the query should be ranked

high. First, in the case of binary affinity, we define N+ =
|{xi ∈ S|Aq(i) = 1}|. Average Precision (AP) averages the

precision at cutoff k over all cutoffs:

AP(R) =
1

N+

|S|
∑

k=1

Aq(Rk)





1

k

k
∑

j=1

Aq(Rj)



 . (2)

Next, for integer-valued affinities, Discounted Cumulative

1Although the usual implementation is by counting bit differences, this

equivalent formulation has the advantage of being differentiable.
2The latter is sometimes referred to as “unsupervised hashing” in the

literature due to the absence of class labels.

4024

Gain (DCG) is defined as

DCG(R) =

|S|
∑

k=1

G(Aq(Rk))D(k), (3)

where G(a) = 2a − 1, D(k) =
1

log2(k + 1)
. (4)

G and D are called gain and (logarithmic) discount, respec-

tively. Normalized DCG (NDCG) divides DCG by its maxi-

mum possible value, ensuring a range of [0, 1]:

NDCG(R) =
DCG(R)

maxR′ DCG(R′)
. (5)

3.2. Tie­Awareness in Hashing

When evaluating information retrieval systems, special

attention is required when there exist ties in the distances

[3, 28]. In this case, the ranking R is not unique as the tied

items can be ordered arbitrarily, and the tie-breaking strategy

may have a sizable impact on the result. We have given

an example in Fig. 1. Surprisingly, we found that current

ranking-based hashing evaluation protocols usually do not

take tie-breaking into account, which could result in ambigu-

ous comparisons or even unfair exploitation. Perhaps more

importantly, ties render the formulation of direct optimiza-

tion unclear: what tie-breaking strategy should we assume

when using AP or NDCG as optimization objectives? Thus,

we believe that it is important to seek tie-aware evaluation

metrics for hashing.

Rather than picking a fixed tie-breaking strategy or rely-

ing on randomization, the tie-aware solution that we propose

is to average the value of the ranking metric over all possi-

ble permutations of tied items. This solution is appealing

in several ways: it is deterministic, it is unambiguous and

cannot be exploited, and it reduces to the ordinary version

when there are no ties. However, there is one caveat: gener-

ating all permutations for n tied items requires O(n!) time,

which is super-exponential and prohibitive. Fortunately, [28]

observes that the average can be computed implicitly for

commonly used ranking metrics, and gives their tie-aware

versions in closed form. Based on this result, we further de-

scribe how to efficiently compute tie-aware ranking metrics

by exploiting the structure of the Hamming distance.

We focus on AP and NDCG, and denote the tie-aware

versions of AP and (N)DCG as APT and (N)DCGT, respec-

tively. First, we define some notation. With integer-valued

Hamming distances, we redefine the ranking R to be a col-

lection of (b+ 1) “ties”, i.e. R = {R(0), . . . , R(b)}, where

R(d) = {i|dΦ(xq, xi) = d} is the set of retrievals having

Hamming distance d to the query. We define a set of discrete

histograms conditioned on affinity values, (n0,v, . . . , nb,v),
where nd,v = |R(d) ∩ {i|Aq(i) = v}|, ∀v ∈ V , and their cu-

mulative sums (N0,v, . . . , Nb,v) where Nd,v =
∑

j≤d nj,v.

We also define the total histograms as nd =
∑

v∈V nd,v with

cumulative sum Nd =
∑

j≤d nj .

Next, Proposition 1 gives the closed forms of APT and

DCGT. We give proof in the appendix.

Time complexity Analysis. Let |S| = N . Given the

Hamming distances {dΦ(xq, x)|x ∈ S}, the first step is to

generate the ranking R, or populate the ties {R(d)}. This

step is essentially the counting sort for integers, which has

O(bN) time complexity. Computing either APT or DCGT

then takes O(
∑

d nd) = O(N) time, which makes the total

time complexity O(bN). In our formulation, the number of

bits b is a constant, and therefore the complexity is linear in

N . In contrast, for real-valued distances, sorting generally

takes O(N logN) time and is the dominating factor.

For the normalized NDCGT, the normalizing factor is

unaffected by ties, but computing it still requires sorting the

gain values in descending order. Under the assumption that

the set of affinity values V consists of non-negative integers,

the number of unique gain values is |V|, and counting sort

can be applied in O(|V|N) time. The total time complexity

is thus O((b + |V|)N), which is also linear in N provided

Proposition 1. Both APT and DCGT decompose additively over the ties. For V = {0, 1}, let n+
d

∆
= nd,1, N

+
d

∆
= Nd,1, and

N+ =
∑

d n
+
d , the contribution of each tie R(d) to APT is computed as

APT(R
(d)) =

n+
d

ndN+

Nd
∑

t=Nd−1+1

N+
d−1 + (t−Nd−1 − 1)

n
+
d
−1

nd−1 + 1

t
. (6)

For DCGT, the contribution of R(d) is

DCGT(R
(d)) =

∑

i∈R(d)

G(Aq(i))

nd

Nd
∑

t=Nd−1+1

D(t) =
∑

v∈V

G(v)nd,v

nd

Nd
∑

t=Nd−1+1

D(t). (7)

Proof. See appendix.

4025

that |V| is known. We note that counting sort on Hamming

distances is also used by Lin et al. [22] to speed up loss-

augmented inference for their NDCG surrogate loss.

3.3. The Learning to Rank View

Since we focus on optimizing ranking metrics, our work

has connections to learning to rank [24]. Many supervised

hashing formulations use loss functions defined on pairs or

triplets of training examples, which correspond to pointwise

and pairwise approaches in learning to rank terminology.

We collectively refer to these as local ranking losses. Since

we optimize evaluation metrics defined on a ranked list, our

approach falls into the listwise category, and it is well-known

[9, 40, 44] that listwise ranking approaches are generally

superior to pointwise and pairwise approaches.

We further note that there exists a mismatch between

optimizing local ranking losses and optimizing for evaluation

performance. This is because listwise evaluation metrics are

position-sensitive: errors made on individual pairs/triplets

impact results differently depending on the position in the

list, and more so near the top. To address this mismatch,

local ranking methods often need nontrivial weighting or

sampling heuristics to focus on errors made near the top.

In fact, the sampling is especially crucial in triplet-based

methods, e.g. [22, 42, 48], since the set of possible triplets

is of size O(N3) for N training examples, which can be

prohibitive to enumerate. Triplet-based methods are also

popular in the metric learning literature, and it is similarly

observed [43] that careful sampling and weighting are key

to stable learning. In contrast, we directly optimize listwise

ranking metrics, without requiring sampling or weighting

heuristics: the minibatches are sampled at random, and no

weighting on training instances is used.

4. Optimizing Tie-Aware Ranking Metrics

In this section, we describe our approach to optimizing

tie-aware ranking metrics. For discrete hashing, such opti-

mization is NP-hard, since it involves combinatorial search

over all configurations of binary bits. Instead, we are in-

terested in a relaxation approach using gradient-based deep

neural networks. Therefore, we apply continuous relaxation

to the discrete optimization problems.

4.1. Continuous Relaxations

Our continuous relaxation needs to address two types

of discrete variables. First, as is universal in hashing for-

mulations, the bits in the hash code are binary. Second,

the tie-aware metrics involve integer-valued histogram bin

counts {nd,v}.

We first tackle the binary bits. Commonly, bits in the

hash code are generated by a thresholding operation using

the sgn function,

Φ(x) = (φ1(x), . . . , φb(x)), (8)

φi(x) = sgn(fi(x;w)) ∈ {−1, 1}, ∀i, (9)

where in our case fi are neural network activations, param-

eterized by w. We smoothly approximate the sgn function

using the tanh function, which is a standard technique in

hashing [4, 8, 20, 25, 41, 42]:

φi(x) ≈ φ̂i(x) = tanh(αfi(x;w)) ∈ (−1, 1). (10)

The constant α is a scaling parameter.

As a result of this relaxation, both the hash mapping and

the distance function (1) are now real-valued, and will be

denoted Φ̂ and d̂Φ, respectively. The remaining discrete-

ness is from the histogram bin counts {nd,v}. We also relax

them into real-valued “soft histograms” {cd,v} (described be-

low), whose cumulative sums are denoted {Cd,v}. However,

we face another difficulty: the definitions of APT (6) and

DCGT (7) both involve a finite sum with lower and upper

limits Nd−1 + 1 and Nd, which themselves are variables to

be relaxed. We approximate these finite sums by continuous

integrals, removing the second source of discreteness. We

outline the results in Proposition 2, and leave proof and error

analysis to the appendix.

Importantly, both relaxations have closed-form deriva-

tives. The differentiation for APr (11) is straightforward,

while for DCGr it removes the integral in (12).

4.2. End­to­End Learning

We perform end-to-end learning with gradient ascent.

First, as mentioned above, the continuous relaxations APr

and DCGr have closed-form partial derivatives with respect

Proposition 2. The continuous relaxations of APT and DCGT, denoted as APr and DCGr respectively, are as follows:

APr(R
(d)) =

c+d (c
+
d − 1)

N+(cd − 1)
+

c+d
N+cd

[

C+
d−1 + 1−

c+d − 1

cd − 1
(Cd−1 + 1)

]

ln
Cd

Cd−1
, (11)

DCGr(R
(d)) = ln 2

∑

v∈V

G(v)cd,v
cd

∫ Cd+1

Cd−1+1

dt

ln t
. (12)

Proof. See appendix.

4026

0101 0101

0001 0001

1110 0000

 0 1 2 3 4

 0 1 2 3 4

 0 1 2 3 4

APT = 0.92

APT = 0.92

APT = 0.58

:

:

:

DNN

≈ ≈

Figure 2: The flow of computation in our model. Input images are mapped to b-bit binary codes by a deep neural network

(b = 4 in this example). During training, in a minibatch, each example is used as query to rank the rest of the batch, producing

a histogram of Hamming distances with (b+ 1) bins. Tie-aware ranking metrics (APT shown here) are computed on these

histograms, and averaged over the batch. To maintain end-to-end differentiability, we derive continuous relaxations for APT

and NDCGT, and employ two differentiable approximations to non-differentiable operations (backward arrows).

to the soft histograms {cd,v}. Next, we consider differen-

tiating the histogram entries. Note that before relaxation,

the discrete histogram (n0,v, . . . , nb,v) for ∀v ∈ V is con-

structed as follows:

nd,v =
∑

xi|Aq(i)=v

1[dΦ(xq, xi) = d], d = 0, . . . , b. (13)

To relax nd,v into cd,v , we employ a technique from [4, 37],

where the binary indicator 1[·] is replaced by a differen-

tiable function δ(d̂Φ(xq, xi), d) with easy-to-compute gra-

dients. Specifically, δ(d̂Φ(xq, xi), d) linearly interpolates

d̂Φ(xq, xi) into the d-th bin with slope ∆ > 0:

∀z ∈ R, δ(z, d) =

{

1− |z−d|
∆ , |z − d| ≤ ∆,

0, otherwise.
(14)

Note that δ approaches the indicator function as ∆ → 0. We

now have the soft histogram cd,v as

cd,v =
∑

xi|Aq(i)=v

δ(d̂Φ(xq, xi), d), (15)

and we differentiate cd,v using chain rule, e.g.

∂cd,v

∂Φ̂(xq)
=

∑

xi|Aq(i)=v

∂δ(d̂Φ(xq, xi), d)

∂d̂Φ(xq, xi)

−Φ̂(xi)

2
. (16)

The next and final step is to back-propagate gradients

to the parameters of the relaxed hash mapping Φ̂, which

amounts to differentiating the tanh function.

As shown in Fig. 2, we train our models using minibatch-

based stochastic gradient ascent. Within a minibatch, each

example is retrieved against the rest of the minibatch. That

is, each example in a minibatch of size M is used as the

query xq once, and participates in the database for some

other example M − 1 times. Then, the objective is averaged

over the M queries.

5. Experiments

5.1. Experimental Setup

We conduct experiments on image retrieval datasets that

are commonly used in the hashing literature: CIFAR-10 [16],

NUS-WIDE [13], 22K LabelMe [31], and ImageNet100 [8].

Each dataset is split into a test set and a database, and ex-

amples from the database are used in training. At test time,

queries from the test set are used to perform Hamming rank-

ing on the database, and the performance metric is averaged

over the test set.

• CIFAR-10 is a canonical benchmark for image classi-

fication and retrieval, with 60K single-labeled images

from 10 classes. Following [42], we consider two ex-

perimental settings. In the first setting, the test set is

constructed with 100 random images from each class

(total: 1K), the rest is used as database, and 500 images

per class are used for training (total: 5K). The second

setting uses the standard 10K/50K split and the entire

database is used in training.

• NUS-WIDE is a multi-label dataset with 270K Flickr

images. For the database, we use a subset of 196K

images associated with the most frequent 21 labels

as in [20, 42]. 100 images per label are sampled to

construct a test set of size 2.1K, and the training set

contains 500 images per label (total: 10.5K).

• LabelMe is an unlabeled dataset of 22K images. As

in [7], we randomly split LabelMe into a test test of

size 2K and database of 20K. We sample 5K examples

from the database for training.

• ImageNet100 is a subset of ImageNet, containing all

the images from 100 classes. We use the same setup

as in [8]: 130 images per class, totaling 130K images,

are sampled for training, and all images in the selected

classes from the ILSVRC 2012 validation set are used

as queries.

4027

Retrieval-based evaluation of supervised hashing was re-

cently put into question by [32], which points out that for

multi-class datasets, binary encoding of classifier outputs

is already a competitive solution. While this is an impor-

tant point, deriving pairwise affinities from multi-class label

agreement is a special case in our formulation. As mentioned

in Sec. 3.1, our formulation uses a general pairwise affinity

oracle A, which may or may not be derived from labels,

and can be either binary or multi-level. In fact, the datasets

we consider range from multi-class/single-label (CIFAR-10,

ImageNet100) to multi-label (NUS-WIDE) and unlabeled

(LabelMe), and only the first case can be addressed by multi-

class classification. For multi-level affinities, we also pro-

pose a new evaluation protocol using NDCG.

We term our method TALR (Tie-Aware Learning to

Rank), and compare it against a range of classical and state-

of-the-art hashing methods. Due to the vast hashing litera-

ture, an exhaustive comparison is unfortunately not feasible.

Focusing on the learning to rank aspect, we select represen-

tative methods from all three categories:

• Pointwise (pair-based). Methods that define loss func-

tions on instance pairs: Binary Reconstructive Embed-

dings (BRE) [18], Fast Supervised Hashing (FastHash)

[23], Hashing using Auxiliary Coordinates (MACHash)

[30], Deep Pair-Supervised Hashing (DPSH) [20], and

Hashing by Continuation (HashNet) [8].

• Pairwise (triplet-based). We include a recent method,

Deep Triplet-Supervised Hashing (DTSH) [42].

• Listwise (list-based). We compare to two listwise rank-

ing methods: Structured Hashing (StructHash) [22]

which optimizes an NDCG surrogate, and Hashing

with Mutual Information (MIHash) [4] which optimizes

mutual information as a ranking surrogate for binary

affinities.

These selected methods include recent ones that achieve

state-of-the-art results on CIFAR-10 (MIHash, DTSH), NUS-

WIDE (DTSH, HashNet) and ImageNet100 (HashNet).

Since tie-aware evaluation of Hamming ranking perfor-

mance has not been reported in the hashing literature, we

re-train and evaluate all methods using publicly available

implementations.

5.2. AP Optimization

We evaluate AP optimization on the three labeled datasets,

CIFAR-10, NUS-WIDE, and ImageNet100. As we men-

tioned earlier, for labeled data, affinities can be inferred

from label agreements. Specifically, in CIFAR-10 and Ima-

geNet100, two examples are neighbors (i.e. have pairwise

affinity 1) if they share the same class label. In the multi-

labeled NUS-WIDE, two examples are neighbors if they

share at least one label.

5.2.1 CIFAR-10 and NUS-WIDE

We first carry out AP optimization experiments on the two

well-studied datasets, CIFAR-10 and NUS-WIDE. For these

experiments, we perform finetuning using the ImageNet-

pretrained VGG-F network [12], which is used in DPSH

and DTSH, two recent top-performing methods. For meth-

ods that are not amenable to end-to-end training, we train

them on fc7-layer features from VGG-F. On CIFAR-10, we

compare all methods in the first setting, and in the second

setting we compare the end-to-end methods: DPSH, DTSH,

MIHash, and ours. We do not include HashNet as it uses a

different network architecture (AlexNet), but will compare

to it later on ImageNet100.

We present AP optimization results in Table 1. By opti-

mizing the relaxation of APT in an end-to-end fashion, our

method (TALR-AP) achieves the new state-of-the-art in AP

on both datasets, outperforming all the pair-based and triplet-

based methods by significant margins. Compared to listwise

ranking solutions, TALR-AP outperforms StructHash signifi-

cantly by taking advantage of deep learning, and outperforms

MIHash by matching the training objective to the evaluation

metric. A side note is that for NUS-WIDE, it is customary in

previous work [20, 42] to report AP evaluated at maximum

cutoff of 5K (AP@5K), since ranking the full database is in-

efficient using general-purpose sorting algorithms. However,

focusing on the top of the ranking overestimates the true

AP, as seen in Table 1. Using counting sort, we are able to

evaluate APT on the full database efficiently, and TALR-AP

also outperforms other methods in terms of AP@5K.

5.2.2 ImageNet100

For ImageNet100 experiments, we closely follow the setup

in HashNet [8] and fine-tune the AlexNet architecture [17]

pretrained on ImageNet. Due to space limitations, we re-

port comparisons against recent state-of-the-art methods on

ImageNet100. The first competitor is HashNet, which is

empirically superior to a wide range of classical and recent

methods, and was previously the state-of-the-art method on

ImageNet100. We also compare to MIHash, as it is the

second-best method on CIFAR-10 and NUS-WIDE in the

previous experiment. As in [8], the minibatch size is set

to 256 for all methods, and the learning rate for the pre-

trained convolution and fully connected layers are scaled

down, since the model is fine-tuned on the same dataset that

it was originally trained on. AP at cutoff 1000 (AP@1000)

is used as the evaluation metric.

ImageNet100 results are summarized in Table 2. TALR-

AP outperforms both competing methods, and the improve-

ment is especially significant with short hash codes (16 and

32 bits). This indicates that our direct optimization approach

produces better compact binary representations that preserve

desired rankings. The state-of-the-art performance with com-

4028

Method

CIFAR-10 NUS-WIDE

12 Bits 24 Bits 32 Bits 48 Bits

S
1

(A
P
T

)

12 Bits 24 Bits 32 Bits 48 Bits

A
P
T

BRE [18] 0.361 0.448 0.502 0.533 0.561 0.578 0.589 0.607

MACHash [30] 0.628 0.707 0.726 0.734 0.361 0.361 0.361 0.361

FastHash [23] 0.678 0.729 0.742 0.757 0.646 0.686 0.698 0.712

StructHash [22] 0.664 0.693 0.691 0.700 0.639 0.645 0.666 0.669

DPSH [20]* 0.720 0.757 0.757 0.767 0.658 0.674 0.695 0.700

DTSH [42] 0.725 0.773 0.781 0.810 0.660 0.700 0.707 0.723

MIHash [4] 0.687 0.775 0.786 0.822 0.652 0.693 0.709 0.723

TALR-AP 0.732 0.789 0.800 0.826 0.709 0.734 0.745 0.752

Method 16 Bits 24 Bits 32 Bits 48 Bits

S
2

(A
P
T

) 12 Bits 24 Bits 32 Bits 48 Bits

A
P

@
5

KDPSH [20]* 0.908 0.909 0.917 0.932 0.758 0.793 0.818 0.830

DTSH [42] 0.916 0.924 0.927 0.934 0.773 0.813 0.820 0.838

MIHash [4] 0.929 0.933 0.938 0.942 0.767 0.784 0.809 0.834

TALR-AP 0.939 0.941 0.943 0.945 0.795 0.835 0.848 0.862
* Trained using parameters recommended by authors of DTSH.

Table 1: AP comparison on CIFAR-10 and NUS-WIDE with VGG-F architecture. On CIFAR-10, we compare all methods in

the first setting (S1), and deep learning methods in the second (S2). We report the tie-aware APT, and additionally AP@5K

for NUS-WIDE. TALR-AP optimizes tie-aware AP using stochastic gradient ascent, and achieves state-of-the-art performance.

Method 16 Bits 32 Bits 48 Bits 64 Bits

HashNet [8] 0.5059 0.6306 0.6633 0.6835

MIHash [4] 0.5688 0.6608 0.6852 0.6947

TALR-AP 0.5892 0.6689 0.6985 0.7053

Table 2: AP@1000 results on ImageNet100 with AlexNet.

TALR-AP outperforms state-of-the-art solutions using mu-

tual information [4] and continuation methods [8].

pact codes has important implications for cases where mem-

ory and storage resources are restricted (e.g. mobile applica-

tions), and for indexing large-scale databases.

5.3. NDCG Optimization

We evaluate NDCG optimization with a multi-level affin-

ity setup, i.e. the set of affinity values V is a finite set of

non-negative integers. Multi-level affinities are common in

information retrieval tasks, and offer more fine-grained spec-

ification of the desired structure of the learned Hamming

space. To our knowledge, this setup has not been considered

in the hashing literature.

In the multi-label NUS-WIDE dataset, we define the affin-

ity value between two examples as the number of labels

they share, and keep other settings the same as in the AP

experiment. For the unlabeled LabelMe dataset, we de-

rive affinities by thresholding the Euclidean distances be-

tween examples. Inspired by an existing binary affinity

setup [7] that defines neighbors as having Euclidean dis-

tance within the top 5% on the training set, we use four

thresholds {5%, 1%, 0.2%, 0.1%} and assign affinity values

{1, 2, 5, 10}. This emphasizes assigning high ranks to the

closest neighbors in the original feature space. We learn shal-

low models on precomputed GIST features on LabelMe. For

gradient-based methods, this means using linear hash func-

tions, i.e. fi(x;w) = w⊤
i x, in (9). For methods that are not

designed to use multi-level affinities (FastHash, MACHash,

DPSH, MIHash), we convert the affinities into binary values;

this reduces to the standard binary affinity setup on both

datasets.

We give NDCG results in Table 3. Again, our method

with the tie-aware NDCG objective (TALR-NDCG) outper-

forms all competing methods on both datasets. Interestingly,

on LabelMe where all methods are restricted to learn shal-

low models on GIST features, we observe slightly different

trends compared to other datasets. For example, without

learning deep representations, DPSH and DTSH appear to

perform less competitively, indicating a mismatch between

their objectives and the evaluation metric. The closest com-

petitors to TALR-NDCG on LabelMe are indeed the two

listwise ranking methods: StructHash which optimizes a

NDCG surrogate using boosted decision trees, and MIHash

which is designed for binary affinities. TALR-NDCG outper-

forms both methods, and notably does so with linear hash

functions, which have lower learning capacity compared

StructHash’s boosted decision trees. This highlights the

benefit of our direct optimization formulation.

5.4. Effects of Tie­Breaking

We lastly discuss the effect of tie-breaking in evaluating

hashing algorithms. As mentioned in Sec. 3.2, tie-breaking

is an uncontrolled parameter in current evaluation protocols,

which can affect results, and even be exploited. To demon-

strate this, we consider for example the AP experiment in

CIFAR-10’s first setting, presented in Sec. 5.2. For each

4029

Method
NUS-WIDE LabelMe

16 Bits 32 Bits 48 Bits 64 Bits 16 Bits 32 Bits 48 Bits 64 Bits

BRE [18]* 0.805 0.817 0.827 0.834 0.807 0.848 0.871 0.880

MACHash [30] 0.821 0.821 0.821 0.821 0.683 0.683 0.683 0.687

FastHash [23] 0.885 0.896 0.899 0.902 0.844 0.868 0.855 0.864

DPSH [20] 0.895 0.905 0.909 0.909 0.844 0.856 0.871 0.874

DTSH [42] 0.896 0.905 0.911 0.913 0.838 0.852 0.859 0.862

StructHash [22] 0.889 0.893 0.894 0.898 0.857 0.888 0.904 0.915

MIHash [4] 0.886 0.903 0.909 0.912 0.860 0.889 0.907 0.914

TALR-NDCG 0.903 0.910 0.916 0.927 0.866 0.895 0.908 0.917
* Evaluated on the the 5K training subset due to kernel-based formulation.

Table 3: NDCG comparison on NUS-WIDE (VGG-F architecture) and LabelMe (shallow models on GIST features). TALR-

NDCG optimizes tie-aware NDCG using stochastic gradient ascent, and consistently outperforms competing methods.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

12 bits

0.3 0.4 0.5 0.6 0.7 0.8 0.9

24 bits

0.3 0.4 0.5 0.6 0.7 0.8 0.9

32 bits

0.3 0.4 0.5 0.6 0.7 0.8 0.9

48 bits

BRE

StructHash

MACHash

FastHash

DPSH

DTSH

MIHash

TALR-AP

Figure 3: Effects of tie-breaking: we plot the ranges of test-time mAP values spanned by all possible tie-breaking strategies,

for all methods considered in the CIFAR-10 experiment (first setting). Horizontal axis: mAP. Black dots: values of tie-aware

APT. Without controlling for tie-breaking, relative performance comparison between different methods can be ambiguous.

The ambiguity is eliminated by tie-awareness.

method included in this experiment, we plot the range of test

set mAP spanned by all possible tie-breaking strategies. As

can be seen in Fig. 3, the ranges corresponding to different

methods generally overlap; therefore, without controlling for

tie-breaking, relative performance comparison between dif-

ferent methods is essentially ambiguous. The ranges shrink

as code length increases, since the number of ties generally

decreases when there are more bins in the histogram.

Current hashing methods usually compute test-time AP

and NDCG using random tie-breaking and general-purpose

sorting algorithms. Interestingly, in all of our experiments,

we observe that this produces values very close to the tie-

aware APT and NDCGT. The reason is that with a ran-

domly ordered database, averaging the tie-unaware metric

over a sufficiently large test set behaves similarly to the tie-

aware solution of averaging over all permutations. Therefore,

the results reported in the current literature are indeed quite

fair, and so far we have found no evidence of exploitation of

tie-breaking strategies. Still, we recommend using tie-aware

ranking metrics in evaluation, as they completely eliminate

ambiguity, and counting sort on Hamming distances is much

more efficient than general-purpose sorting.

We note that although random tie-breaking is an approx-

imation to tie-awareness at test time, it does not answer

the question of how to optimize the ranking metrics during

training. Our original motivation is to optimize ranking met-

rics for hashing, and the existence of closed-form tie-aware

ranking metrics is what makes direct optimization feasible.

6. Conclusion

We have proposed a new approach to hashing for nearest

neighbor retrieval, with an emphasis on directly optimiz-

ing evaluation metrics used at test-time. A study into the

commonly used retrieval by Hamming ranking setup led

us to consider the issue of ties, and we advocate for using

tie-aware versions of ranking metrics. We then make the

novel contribution of optimizing tie-aware ranking metrics

for hashing, focusing on the important special cases of AP

and NDCG. To tackle the resulting discrete and NP-hard op-

timization problems, we derive their continuous relaxations.

Then, we perform end-to-end stochastic gradient ascent with

deep neural networks. This results in the new state-of-the-art

for common image retrieval benchmarks.

Acknowledgements

The authors would like to thank Qinxun Bai, Peter Gacs,

and Dora Erdos for helpful discussions. This work is

supported in part by a BU IGNITION award, NSF grant

1029430, and gifts from Nvidia.

4030

References

[1] Alexandr Andoni and Ilya Razenshteyn. Optimal data-

dependent hashing for approximate near neighbors. In Proc.

ACM Symposium on Theory of Computing (STOC), 2015.

[2] Christopher J. Burges, Robert Ragno, and Quoc V. Le. Learn-

ing to rank with nonsmooth cost functions. In Advances in

Neural Information Processing Systems (NIPS), 2007.

[3] Guillaume Cabanac, Gilles Hubert, Mohand Boughanem,

and Claude Chrisment. Tie-breaking bias: Effect of an un-

controlled parameter on information retrieval evaluation. In

International Conference of the Cross-Language Evaluation

Forum, 2010.

[4] Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan Sclaroff.

MIHash: Online Hashing with Mutual Information. In Proc.

IEEE International Conference on Computer Vision (ICCV),

2017.

[5] Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan

Sclaroff. Hashing with mutual information. arXiv preprint

arXiv:1803.00974, 2018.

[6] Fatih Cakir and Stan Sclaroff. Supervised hashing with error

correcting codes. In Proc. ACM International Conference on

Multimedia. ACM, 2014.

[7] Fatih Cakir and Stan Sclaroff. Adaptive hashing for fast

similarity search. In Proc. IEEE International Conference on

Computer Vision (ICCV), 2015.

[8] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S

Yu. HashNet: Deep learning to hash by continuation. In Proc.

IEEE International Conference on Computer Vision (ICCV),

2017.

[9] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang

Li. Learning to rank: from pairwise approach to listwise

approach. In Proc. International Conference on Machine

Learning (ICML), 2007.

[10] Soumen Chakrabarti, Rajiv Khanna, Uma Sawant, and Chiru

Bhattacharyya. Structured learning for non-smooth ranking

losses. In ACM SIGKDD Conference on Knowledge Discov-

ery and Data Mining, 2008.

[11] Olivier Chapelle and Mingrui Wu. Gradient descent optimiza-

tion of smoothed information retrieval metrics. Information

Retrieval, 13(3):216–235, 2010.

[12] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew

Zisserman. Return of the devil in the details: Delving deep

into convolutional nets. In Proc. British Machine Vision

Conference (BMVC), 2014.

[13] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhip-

ing Luo, and Yan-Tao Zheng. NUS-WIDE: A real-world web

image database from National University of Singapore. In

Proc. ACM CIVR, 2009.

[14] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity

search in high dimensions via hashing. In Proc. International

Conference on Very Large Data Bases (VLDB), 1999.

[15] Maurice G Kendall. Rank correlation methods. Griffin, 1948.

[16] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images, 2009.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Systems

(NIPS), 2012.

[18] Brian Kulis and Trevor Darrell. Learning to hash with binary

reconstructive embeddings. In Advances in Neural Informa-

tion Processing Systems (NIPS), 2009.

[19] Andrey Kustarev, Yury Ustinovsky, Yury Logachev, Evgeny

Grechnikov, Ilya Segalovich, and Pavel Serdyukov. Smooth-

ing NDCG metrics using tied scores. In Proc. ACM CIKM,

2011.

[20] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature

learning based deep supervised hashing with pairwise labels.

In Proc. International Joint Conference on Artificial Intelli-

gence (IJCAI), 2016.

[21] Daryl Lim and Gert Lanckriet. Efficient learning of maha-

lanobis metrics for ranking. In Proc. International Conference

on Machine Learning (ICML), 2014.

[22] Guosheng Lin, Fayao Liu, Chunhua Shen, Jianxin Wu, and

Heng Tao Shen. Structured learning of binary codes with

column generation for optimizing ranking measures. Interna-

tional Journal of Computer Vision (IJCV), 2016.

[23] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den

Hengel, and David Suter. Fast supervised hashing with deci-

sion trees for high-dimensional data. In Proc. IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2014.

[24] Tie-Yan Liu. Learning to rank for information retrieval. Foun-

dations and Trends R© in Information Retrieval, 3(3):225–331,

2009.

[25] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu

Chang. Supervised hashing with kernels. In Proc. IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

2012.

[26] Christopher D Manning, Prabhakar Raghavan, Hinrich

Schütze, et al. Introduction to information retrieval. Cam-

bridge university press, 2008.

[27] Brian McFee and Gert R Lanckriet. Metric learning to rank. In

Proc. International Conference on Machine Learning (ICML),

2010.

[28] Frank McSherry and Marc Najork. Computing information

retrieval performance measures efficiently in the presence of

tied scores. In Proc. European Conference on Information

Retrieval, 2008.

[29] Mohammad Norouzi, David J Fleet, and Ruslan R Salakhut-

dinov. Hamming distance metric learning. In Advances in

Neural Information Processing Systems (NIPS), 2012.

[30] Ramin Raziperchikolaei and Miguel A Carreira-Perpinán.

Optimizing affinity-based binary hashing using auxiliary co-

ordinates. In Advances in Neural Information Processing

Systems (NIPS), 2016.

4031

[31] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and

William T Freeman. LabelMe: a database and web-based

tool for image annotation. International Journal of Computer

Vision (IJCV), 77(1):157–173, 2008.

[32] Alexandre Sablayrolles, Matthijs Douze, Nicolas Usunier, and

Hervé Jégou. How should we evaluate supervised hashing?

In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2017.

[33] Dongjin Song, Wei Liu, Rongrong Ji, David A Meyer, and

John R Smith. Top rank supervised binary coding for visual

search. In Proc. IEEE International Conference on Computer

Vision (ICCV), 2015.

[34] Yang Song, Alexander G. Schwing, Richard S. Zemel, and

Raquel Urtasun. Training deep neural networks via direct loss

minimization. In Proc. International Conference on Machine

Learning (ICML), 2016.

[35] Michael Taylor, John Guiver, Stephen Robertson, and Tom

Minka. Softrank: optimizing non-smooth rank metrics. In

Proc. ACM International Conference on Web Search and Data

Mining (WSDM), 2008.

[36] Eleni Triantafillou, Richard Zemel, and Raquel Urtasun. Few-

shot learning through an information retrieval lens. In Ad-

vances in Neural Information Processing Systems (NIPS),

pages 2252–2262, 2017.

[37] Evgeniya Ustinova and Victor Lempitsky. Learning deep

embeddings with histogram loss. In Advances in Neural

Information Processing Systems (NIPS), 2016.

[38] Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang

Mao. Learning to rank by optimizing NDCG measure. In

Advances in Neural Information Processing Systems (NIPS),

2009.

[39] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu

Ji. Hashing for similarity search: A survey. arXiv preprint

arXiv:1408.2927, 2014.

[40] Jun Wang, Wei Liu, Andy X Sun, and Yu-Gang Jiang. Learn-

ing hash codes with listwise supervision. In Proc. IEEE

International Conference on Computer Vision (ICCV), 2013.

[41] Qifan Wang, Zhiwei Zhang, and Luo Si. Ranking preserving

hashing for fast similarity search. In Proc. International Joint

Conference on Artificial Intelligence (IJCAI), 2015.

[42] Yi Wang, Xiaofang Shi and Kris M Kitani. Deep supervised

hashing with triplet labels. In Proc. Asian Conference on

Computer Vision (ACCV), 2016.

[43] Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and

Philipp Krähenbühl. Sampling matters in deep embedding

learning. In Proc. IEEE International Conference on Com-

puter Vision (ICCV), 2017.

[44] Zhou Yu, Fei Wu, Yin Zhang, Siliang Tang, Jian Shao, and

Yueting Zhuang. Hashing with list-wise learning to rank. In

Proc. ACM SIGIR Conference on Research & Development

in Information Retrieval, 2014.

[45] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten

Joachims. A support vector method for optimizing average

precision. In Proc. ACM SIGIR Conference on Research &

Development in Information Retrieval, 2007.

[46] Lei Zhang, Yongdong Zhang, Jinhu Tang, Ke Lu, and Qi Tian.

Binary code ranking with weighted hamming distance. In

Proc. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2013.

[47] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan.

Deep semantic ranking based hashing for multi-label image

retrieval. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015.

[48] Bohan Zhuang, Guosheng Lin, Chunhua Shen, and Ian Reid.

Fast training of triplet-based deep binary embedding networks.

In Proc. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

4032

