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Abstract

Extraction of local feature descriptors is a vital stage in

the solution pipelines for numerous computer vision tasks.

Learning-based approaches improve performance in cer-

tain tasks, but still cannot replace handcrafted features in

general. In this paper, we improve the learning of local

feature descriptors by optimizing the performance of de-

scriptor matching, which is a common stage that follows

descriptor extraction in local feature based pipelines, and

can be formulated as nearest neighbor retrieval. Specif-

ically, we directly optimize a ranking-based retrieval per-

formance metric, Average Precision, using deep neural net-

works. This general-purpose solution can also be viewed

as a listwise learning to rank approach, which is advanta-

geous compared to recent local ranking approaches. On

standard benchmarks, descriptors learned with our formu-

lation achieve state-of-the-art results in patch verification,

patch retrieval, and image matching.

1. Introduction

Extracting feature descriptors from local image patches

is a common stage in many computer vision tasks involving

alignment or matching. To replace handcrafted feature en-

gineering, recently much attention has been paid to learning

local feature descriptors. Despite exciting progress, certain

levels of handcrafting are currently present in the design of

learning objectives for local feature descriptors, making it

difficult to have performance guarantees when the learned

descriptors are integrated into larger pipelines. Indeed, ac-

cording to a recent study [28], traditional handcrafted fea-

tures such as SIFT [21] can still outperform learned ones in

complicated tasks such as 3D reconstruction. In this paper,

we aim to improve the learning of local feature descriptors

by optimizing better objective functions.

Our thesis is that local feature descriptor learning is not a

standalone problem, but rather a component in the optimiza-

tion of larger pipelines. Therefore, the learning objectives
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should be designed in accordance with other pipeline com-

ponents. Upon inspection of common local feature match-

ing pipelines, we find that feature matching can be exactly

formulated as nearest neighbor retrieval. Thus, we propose

a novel listwise learning to rank formulation for learning

local feature descriptors, based on the direct optimization

of a ranking-based retrieval performance metric: Average

Precision. Our formulation uses deep neural networks, and

works for both binary and real-valued descriptors. Com-

pared to recent approaches, our method optimizes a com-

monly adopted evaluation metric, and eliminates complex

optimization heuristics. Descriptors learned with our for-

mulation achieve state-of-the-art results in benchmarks in-

cluding UBC Phototour [37], HPatches [2], RomePatches

[26], and the Oxford dataset [23].

An important feature of our proposed formulation is that

it is general-purpose, as it optimizes the performance of the

task-independent nearest neighbor matching stage, rather

than a task-specific pipeline. Nevertheless, to better tai-

lor the learned descriptors for feature matching, we also

augment our formulation with task-specific improvements.

First, we make use of the Spatial Transformer module [12]

to effectively handle geometric noise and improve the ro-

bustness of matching, without requesting extra supervision.

Also, for the challenging HPatches dataset, we design a

clustering-based technique to mine additional patch-level

supervision, which improves the performance of learned de-

scriptors in the image matching task.

In summary, we propose a general-purpose learning to

rank formulation that optimizes local feature descriptors for

nearest neighbor matching. Our learned descriptors achieve

state-of-the-art performance, and are further enhanced by

task-specific improvements. We believe that our contribu-

tion can serve as a stepping stone for the direct optimization

of larger computer vision pipelines.

2. Related Work

Learning Local Features

Parallel with the long history of handcrafted computer

vision pipelines (the most prominent example being SIFT

[21]), numerous researchers have attempted to replace
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Figure 1. An example local feature-based image matching pipeline, where the task is to estimate the fundamental matrix F between images

I = (I1, I2), using robust estimation techniques such as RANSAC [9]. We model the feature descriptor extractor using deep neural

networks, and directly optimize a ranking-based objective (Average Precision) for the subsequent stage of descriptor matching.

handcrafted components with learned counterparts. There

exist many formulations for learning different components

in local feature based pipelines. For example, interest

point detectors are learned in [18, 27, 35], LIFT [39] learns

three components separately in a feature matching pipeline,

and DSAC [4] approximately learns a camera localization

pipeline end-to-end.

For learning local feature descriptors, some early works

use simple architectures [33, 37] and convex optimization

[31]. Later approaches use deep neural networks: Philipp-

Net [8] learns by fitting pseudo-classes, DeepDesc [30] ap-

plies Siamese networks, MatchNet [10] and DeepCompare

[40] learn nonlinear distance metrics for matching, and [26]

uses Convolutional Kernel Networks. A series of recent

works have considered more advanced model architectures

and triplet-based deep metric learning formulations, includ-

ing UCN [7], TFeat [3], GLoss [15], L2Net [32], Hard-

Net [24], and GOR [41].

Instead of optimizing triplet-based surrogate losses, we

employ listwise learning to rank to directly optimize the

performance of the matching stage. Although end-to-end

optimization of the pipeline is attractive, it is unfortunately

highly difficult and task-dependent. By focusing on the two

task-independent stages (descriptor extraction and match-

ing), our solution is general-purpose and can be potentially

integrated into larger optimization pipelines.

Evaluating Local Feature Descriptors

Local features ideally should be evaluated in terms of

final task performance, e.g. Mikolajczyk and Schmid [23]

use precision and recall derived from image matching, and

Schonberger et al. [28] use a benchmark based on 3D recon-

struction. However, in complex vision pipelines, final task

performance can be affected by individual components. For

example, [2] observes that without controlling for compo-

nents such as interest point detection in image-based bench-

marks, different conclusions can be drawn when comparing

the relative performance of feature descriptors.

Patch-based benchmarks provide unambiguous evalua-

tion for local feature descriptors. The patch verification task

is first proposed in [37], formulated as binary classificaton

on the relationship between patch pairs. RomePatches [26]

and HPatches [2] both consider the patch retrieval task,

which simulates nearest neighbor matching, and is shown

[2] to be more realistic and challenging compared to patch

verification. A ranking-based evaluation metric, Average

Precision, is adopted in both benchmarks.

Ranking Optimization in Metric Learning

Metric learning [14] is a general family of methods that

learn distance functions from data. While much previous

effort focused on learning Mahalanobis distances, recently

the metric learning community has focused on learning vec-

tor embeddings to be used with standard (e.g. Euclidean)

distance metrics. In this light, the problem of learning local

feature descriptors is an instance of metric learning.

Learning vector embeddings necessarily calls for task-

dependent formulations. For nearest neighbor retrieval, op-

timization of ranking performance has been studied in met-

ric learning. For example, learning to rank formulations

for Mahalanobis distances are proposed in [19,22]. Triplet-

based deep metric learning approaches [16, 25, 34, 38] can

also be viewed as optimizing surrogate ranking losses. In

the “learning to hash” subcommunity that considers the spe-

cial case of learning binary embeddings, He et al. [11] di-

rectly optimize ranking-based retrieval performance mea-

sures with deep neural networks, based on an approximation

to histogram binning originally proposed in [34], which is

also adopted in learning binary descriptors by [5]. We make

use of their optimization technique in the learning of binary

and real-valued descriptors for our problem.

3. Optimizing Descriptors for Matching

In this section, we motivate our approach by analyzing

the descriptor matching stage, and point out that it corre-

sponds to nearest neighbor retrieval. Then we discuss a

learning to rank formulation to optimize ranking-based re-

trieval performance.

3.1. Nearest Neighbor Matching

Consider Fig. 1, which depicts a pipeline for estimating

the fundamental matrix between matching images I1 and

I2. It consists of four stages: feature detection, descrip-

tor extraction, descriptor matching, and robust estimation.

Suppose we detect and extract M local features from each

image. The descriptor matching stage operates as follows:
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it computes the pairwise distance matrix with M2 entries,

and for each feature in I1, looks for its nearest neighbor in

I2, and vice versa. Feature pairs that are mutual nearest

neighbors1 become candidate matches in the robust estima-

tion stage, such as RANSAC [9].

We point out that this matching process is exactly per-

forming nearest neighbor retrieval: each feature in I1 is

used to query a database, which is the set of features in

I2. For good performance, true matches should be returned

as top retrievals, while false matches are ranked as low as

possible. Performance of the matching stage also directly

reflects the quality of the learned descriptors, since it has no

learnable parameters (only performs distance computation

and sorting). To assess nearest neighbor matching perfor-

mance, we adopt Average Precision (AP), a commonly used

evaluation metric. AP evaluates the performance of retrieval

systems under the binary relevance assumption: retrievals

are either “relevant” or “irrelevant” to the query. This nat-

urally fits the local feature matching setup, where given a

reference feature, features in a target image are either its

true match or false match. Next, we learn binary and real-

valued local feature descriptors to optimize AP.

3.2. Optimizing Average Precision

We first introduce mathematical notation. Let X be the

space of image patches, and S ⊂ X be a database. For a

query patch q ∈ X , let S+
q be the set of its matching patches

in S, and let S−
q be the set of non-matching patches. Given

a distance metric D, let (x1, x2, . . . , xn) be a ranking of

items in S+
q ∪ S−

q sorted by increasing distance to q, i.e.

D(x1, q) ≤ D(x2, q) . . . ≤ D(xn, q). Given the ranking,

AP is the average of precision values (Prec@K) evaluated

at different positions:

Prec@K =
1

K

K
∑

i=1

1[xi ∈ S+
q ], (1)

AP =
1

|S+
q |

n
∑

K=1

1[xK ∈ S+
q ]Prec@K, (2)

where 1[·] is the binary indicator. AP achieves its optimal

value if and only if every patch from S+
q is ranked above all

patches from S−
q .

The optimization of AP can be cast as a metric learning

problem, where the goal is to learn a distance metric D that

gives optimal AP when used for retrieval. Ideally, if all the

above steps can be formulated in differentiable forms, then

AP can be optimized by exploiting chain rule. However, this

is not possible in general: the sorting operation, required

in producing the ranking, is non-differentiable, and contin-

uous changes in the input distances induce discontinuous

“jumps” in the value of AP. Thus, appropriate smoothing is

necessary to derive differentiable approximations of AP.

1For simplicity, the distance ratio check [21] is not considered.

Our solution is based on a recent result in the metric

learning community. For the problem of learning binary

image-level descriptors for image retrieval, He et al. [11]

observe that sorting on integer-valued Hamming distances

can be implemented as histogram binning, and employ a

differentiable approximation to histogram binning [34] to

optimize ranking-based objectives with gradient descent.

We use this optimization framework to optimize AP for both

binary and real-valued local feature descriptors. In the latter

case, the optimization is enabled by a novel quantization-

based approximation that we develop.

Binary Descriptors

Binary descriptors offer compact storage and fast match-

ing, which are useful in applications with speed or storage

restrictions. Although binary descriptors can be learned one

bit at a time [33], here we take a gradient-based relaxation

approach to learn fixed-length “hash codes”.

Formally, a deep neural network F is used to model

a mapping from patches to a low-dimensional Hamming

space: F : X → {−1, 1}b. For the Hamming distance

D, which takes integer values in {0, 1, . . . , b}, AP can

be computed in closed form using entries of a histogram

h
+ = (h+

0 , . . . , h
+

b ), where h+

k =
∑

x∈S
+
q

1[D(q, x) = k].

The closed-form AP can further be continuously relaxed,

and differentiated with respect to h
+ [11].

The next step in the chain rule is to differentiate entries of

h
+ with respect to the network F . Usnitova and Lempitsky

[34] approximate the histogram binning operation as

h+

k ≈
∑

x∈S
+
q

δ(D(q, x), k), (3)

replacing the binary indicator with a differentiable function

δ that peaks when D(q, x) = k. This allows to derive ap-

proximate gradients as

∂h+

k

∂F (q)
≈

∑

x∈S
+
q

∂δ(D(q, x), k)

∂D(q, x)

∂D(q, x)

∂F (q)
, (4)

∂h+

k

∂F (x)
≈ 1[x ∈ S+

q ]
∂δ(D(q, x), k)

∂D(q, x)

∂D(q, x)

∂F (x)
. (5)

Note that the partial derivative of the Hamming distance is

obtained via this differentiable formulation:

D(x, x′) =
1

2

(

b− F (x)⊤F (x′)
)

. (6)

Finally, the thresholding operation used to produce bi-

nary bits is smoothed using the tanh function,

F (x) = (sgn(f1(x)), . . . , sgn(fb(x))) (7)

≈ (tanh(f1(x)), . . . , tanh(fb(x))), (8)

where fi are real-valued neural network activations. With

these relaxations, the network can be trained end-to-end.
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Real-Valued Descriptors

To complete our formulation, we next consider real-

valued descriptors, which are preferred in high-precision

scenarios. We model the the descriptor as a vector of real-

valued network activations, and apply L2 normalization:

‖F (x)‖ = 1, ∀x. In this case, the Euclidean distance D
is given as

D(x, x′) =
√

2− 2F (x)⊤F (x′). (9)

The main challenge in optimizing AP for real-valued de-

scriptors is again the non-differentiable sorting, but real-

valued sorting has no simple alternative form. However,

histogram binning can be used as an approximation: we

quantize real-valued distances using histogram binning, ob-

tain the histograms h
+, and then reduce the optimization

problem to the previous one. With L2-normalized vectors,

the quantization is easy to implement as the Euclidean dis-

tance has closed range [0, 2]: we simply uniformly divide

[0, 2] into b + 1 bins. To derive the chain rules in this case,

only the partial derivatives of the distance function needs

modification in (4) and (5). The differentiation rules for the

L2 normalization operation are well known, and we give

full derivations in the supplementary material.

Differently from the case of binary descriptors, the num-

ber of histogram bins b is now a free parameter, which in-

volves a tradeoff. On the one hand, a large b reduces quan-

tization error, which in fact achieves zero if each histogram

bin contains at most one item. On the other hand, gradient

computation for approximate histogram binning has linear

complexity in b. Nevertheless, in our experiments, we con-

sistently obtain good results using b ≤ 25.

3.3. Comparison with Other Ranking Approaches

We would like to contrast our approach with others in

the learning to rank context. Some recent methods, e.g.

[3,24,32,41], learn feature descriptors by optimizing losses

defined on triplets in the form of (a, p+, p−), where a is an

anchor patch, p+ is its matching patch, and p− is a non-

matching patch. The loss typically encourages the learned

distance metric D to satisfy D(a, p+) < D(a, p−) − ρ,

where ρ is a margin. Triplet losses have a long history

in metric learning [6, 29], and are better suited for rank-

ing tasks than pair-based losses used in Siamese networks

(e.g. [30]). In learning to rank terminology [20], triplets

define local pairwise ranking losses, while our approach is

listwise since the evaluation metric that we optimize (AP) is

defined on a ranked list.

Despite their simplicity, triplet losses can be very chal-

lenging to optimize. For N training examples, the set of

triplets is of size O(N3), but most of them get classified cor-

rectly early on during learning. To maintain stable progress,

carefully tuned heuristics such as hard negative mining [24],

anchor swap [3], or distance-weighted sampling [38] are
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Figure 2. Comparison between triplet-based and listwise ranking

approaches. Top: in triplet-based training, most triplets get cor-

rectly classified early (first row), and it is crucial to find and correct

high-rank errors (red dashed box), with a heuristic known as hard

negative mining. Bottom: in listwise ranking which is position-

sensitive, the high-rank error would reduce AP from 1 to 0.5, thus

automatically receiving a heavy penalty. Our listwise optimiza-

tion corrects such errors without using complex mining heuristics.

Best viewed in color.

crucial. We note that these optimization difficulties stem

from a fundamental mismatch between triplet losses and

listwise evaluation. As shown in Fig. 2, listwise metrics

are position-sensitive, while local losses are insensitive; an

error made on a single triplet may have a big impact on the

result if it occurs near the top of the list. Therefore, heuris-

tics are needed to focus on reducing high-rank errors. In

contrast, our method directly optimizes the listwise evalu-

ation metric, Average Precision, and is free of such heuris-

tics. The listwise optimization also implicitly encodes hard

negative mining: it requires matching patches to be ranked

above all non-matching patches, which automatically en-

forces correct classification of the hardest triplet in the batch

without explicitly finding it.

4. Task-Specific Improvements

In addition to the general-purpose learning to rank for-

mulation, we develop two improvements that take the na-

ture of local feature matching into account.

4.1. Handling Geometric Noise

To improve the robustness of local features for matching,

it is key to build invariance to geometric noise into the de-

scriptor: SIFT [21] estimates orientation and affine shape to

normalize input patches, and LIFT [39] includes a learned

orientation estimation module. Likewise, we can also in-

clude a geometric alignment module in our descriptor net-

works. Our choice is the Spatial Transformer [12], which

aligns input patches by predicting a 6-DOF affine transfor-

mation, without requiring extra supervision. In our exper-
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iments, this module is able to correct geometric distortion,

and consistently improve performance.

In contrast to the image-based UCN [7], which also in-

cludes Spatial Transformers, our patch-based networks have

limited input size, and the predicted affine transformation

can often lead to out-of-boundary sampling, which corrupts

sampled patches. We address this challenge by using ap-

propriate boundary padding. Details are given in the sup-

plementary material.

4.2. Label Mining for Image Matching

While our formulation directly optimizes for the task of

patch retrieval, it is also possible to address higher-level

tasks. We demonstrate this with the image matching task

in the challenging HPatches dataset [2], which contains

patches extracted from matching image sequences.

The image matching task in HPatches is formulated sim-

ilarly as patch retrieval, which involves retrieving matching

patches in a pool of “distractors”. However, the distrac-

tors are defined differently. In patch retrieval, distractors

do not include patches in the same image sequence as the

query, due to concern of repeating structures in images. In

image matching, images are matched against others in the

same sequence, which means that all distractors are actu-

ally in-sequence. Thus, image matching performance can

be improved by including in-sequence distractors when op-

timizing patch retrieval.

We perform label mining to augment the set of distrac-

tors when optimizing patch retrieval in HPatches. To avoid

noisy labels in the presence of repeating structures, we use

a simple heuristic: clustering. For each image sequence,

we cluster all patches based on visual appearance. Then,

patches having high inter-cluster distance are marked as dis-

tractors for each other (with 3D verification). Note that label

mining is not related to the hard negative mining heuristic,

since its goal is to add additional supervision. Please see

Sec. 5.2 and supplementary material for more details.

5. Experiments

We experiment with three patch-based datasets (exam-

ples are in Fig. 3): UBC Phototour [37], HPatches [2], and

RomePatches [26]. We use the CNN architecture recently

proposed in L2Net [32], which consists of seven convolu-

tion layers, and is regularized with Batch Normalization

and Dropout. We do not use the more complex “Center

Surround” architecture. The input to the network is 32x32

grayscale, and we resize input patches to this size. When

adding the Spatial Transformer module, we increase the in-

put size to 42x42, and use 3 convolution layers to predict a

6-DOF affine transformation, which is then used to sample

a 32x32 patch.

We name our descriptor DOAP (Descriptors Optimized

for Average Precision), and test its binary and real-valued

Figure 3. Examples from three patch-based datasets (top to bot-

tom): RomePatches [26], UBC Phototour [37], HPatches [2]. In

all datasets, patches are grouped such that patches in the same

group correspond to the same 3D point.

versions. Our networks are trained using SGD with mo-

mentum 0.9 and weight decay 10−4, and the learning rate

is decayed linearly to zero within a fixed number of epochs.

The initial learning rate (always on the order of 0.1) and

number of epochs are tuned during training. Input normal-

ization is as follows: patches are normalized by subtracting

the mean pixel value in the patch and then dividing by the

standard deviation.

5.1. UBC Phototour

We first conduct experiments on the UBC Phototour

dataset [37], a classical benchmark of descriptor perfor-

mance. Patches are extracted from Difference-of-Gaussian

detections in three image sequences: Liberty, Notre Dame,

and Yosemite. Following the standard setup, we use six

training/test combinations formed by the three sequences,

and report patch verification performance in terms of false

positive rate at 95% recall (FPR95).

We train our models on UBC Phototour with data aug-

mentation, in the form of random flipping and 90-degree

rotations, which showed consistent performance improve-

ment in previous work. We compare to a range of existing

descriptors, including both binary and real-valued, listed in

Table 1. L2Net [32] and HardNet [24] are two leading meth-

ods, which optimize triplet-based losses with the same CNN

architecture as ours. We also include methods that use the

“Center Surround” architecture: CS-SNet-Gloss [15] and

CS-L2Net, and we have applied the recent global regular-

ization technique in [41] to HardNet, resulting in a more

competitive method which we call HardNet-GOR. Com-

pared to existing approaches, DOAP achieves state-of-the-

art performance with both binary and real-valued descrip-

tors, and results are further improved by DOAP-ST, which

includes the Spatial Transformer module.

We attribute the performance of DOAP and DOAP-ST

to the listwise AP optimization. As mentioned in Sec. 3.3,

listwise optimization automatically includes the “hard neg-

ative mining” heuristic in local ranking approaches, since it
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Method
Train Notredame Yosemite Liberty Yosemite Liberty Notredame FPR95

Test Liberty Notredame Yosemite Mean

Real-valued descriptors

SIFT [21] 128 29.84 22.53 27.29 26.55

MatchNet [10] 128 7.04 11.47 3.82 5.65 11.6 8.70 8.05

TFeat-M* [3] 128 7.39 10.31 3.06 3.80 8.06 7.24 6.64

TL-AS-GOR [41] 128 4.80 6.45 1.95 2.38 5.40 5.15 4.36

DC-2ch2st+ [40] 512 4.85 7.20 1.90 2.11 5.00 8.39 4.19

CS-SNet-GLoss+ [15] 256 3.69 4.91 0.77 1.14 3.09 2.67 2.71

L2Net+ [32] 128 2.36 4.7 0.72 1.29 2.57 1.71 2.23

HardNet+ [24] 128 2.28 3.25 0.57 0.96 2.13 2.22 1.90

HardNet-GOR+ [24, 41] 128 1.89 3.03 0.54 0.90 2.41 2.39 1.86

CS-L2Net+ [32] 256 1.71 3.87 0.56 1.09 2.07 1.30 1.76

DOAP+ 128 1.54 2.62 0.43 0.87 2.00 1.21 1.45

DOAP-ST+ 128 1.47 2.29 0.39 0.78 1.98 1.35 1.38

Binary descriptors

BinBoost [33] 64 20.49 21.67 16.90 14.54 22.88 18.97 19.24

L2Net+ [32] 128 7.44 10.29 3.81 4.31 8.81 7.45 7.01

CS-L2Net+ [32] 256 4.01 6.65 1.90 2.51 5.61 4.04 4.12

DOAP+ 256 3.18 4.32 1.04 1.57 4.10 3.87 3.01

DOAP-ST+ 256 2.87 4.17 0.96 1.76 3.93 3.64 2.89

Table 1. Patch verification performance on UBC Phototour, where metric is false positive rate at 95% recall (FPR95). The best results

are in bold. Second column shows dimensionality, and methods with suffix “+” are trained with data augmentation. Both the binary and

real-valued versions of DOAP and DOAP-ST achieve state-of-the-art results.
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Figure 4. Influence of training batch size for the 128-d DOAP de-

scriptor trained on Liberty, with data augmentation. Vertical axis:

average of FPR95 on Notre Dame and Yosemite.

implicitly enforces the correct classification of all induced

pairs and triplets. We then expect performance to improve

when increasing training batch size, as larger batches lead

to longer lists and increased likelihood of including hard

negatives. We validate this by training the 128-dimensional

DOAP model on Liberty, varying batch size between 256

and 4096, and monitoring the average of FPR95 on Notre

Dame and Yosemite. Indeed, Fig. 4 shows that performance

improves with batch size and saturates after 2048. Similar

trends are also observed in HardNet [24], with saturation

occurring at batch size 512. In contrast, the listwise opti-

mization allows the performance of DOAP to saturate at a

later stage.

5.2. HPatches

HPatches [2] consists of a total of over 2.5 million

patches extracted from 116 image sequences, each with 6

images with known homography. Both viewpoint and illu-

mination changes are included, and test cases have levels

of difficulty easy, hard, and tough, according to the amount

of geometric noise. Three evaluation tasks are considered

(in increasing order of difficulty): patch verification, patch

retrieval, and image matching.

In this experiment, we focus on comparing real-valued

descriptors. We first include four baselines reported in [2]:

SIFT [21], RootSIFT [1], DeepDesc [30], and TFeat [3].

Next, as results for L2Net and HardNet trained on the

Liberty sequence of UBC Phototour are reported in [24],

for fair comparison, we also report results for our mod-

els trained on Liberty. Finally, we train and evaluate three

versions of our descriptor on HPatches: DOAP, DOAP-ST

with the Spatial Transformer, and DOAP-ST-LM, which ad-

ditionally uses label mining. We compare to the L2Net

model trained on HPatches, and HardNet++, trained on the

union of Liberty and HPatches. Note that CS-L2Net is ex-

cluded as it performs worse than L2Net in this more realistic

dataset, which is consistent with the observations in [15,32].

When determining training/test sets, we use the “a” split:

the test set contains 40 image sequences (20 viewpoint and

20 illumination), and the training set contains the other 76

sequences.
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DIFFSEQ SAMESEQ VIEWPT ILLUM EASY HARD TOUGH

Figure 5. Results on the HPatches dataset, evaluated on the test set of the “a” split. No ZCA normalization [2] is used. Suffix indicates

training set used (Lib: Liberty, no suffix: HPatches). HardNet++ is trained on the union of Liberty and HPatches. DOAP outperforms

competing methods in all tasks, and all of its variants excel in handling tough test cases.

Fig. 5 presents results on HPatches.2 Our descriptors

achieve state-of-the-art results for all three tasks, and all

variants are better at handling tough test cases than com-

peting methods. Specifically, DOAP and DOAP-ST ob-

tain the best patch retrieval performance, which directly re-

sults from the optimization of patch retrieval mAP. This op-

timization also gives state-of-the-art performance in patch

verification. For the most challenging task of image match-

ing, as mentioned in [2], patch retrieval performance is well

correlated. However, due to the difference in task defini-

tion that we mentioned in Sec. 4.2, all methods see lower

performance when tested for image matching. With the

clustering-based label mining, DOAP-ST-LM significantly

improves image matching mAP compared to the next best

models: around 6% and 10% over DOAP-ST and L2Net,

respectively. Notably, it achieves over 50% mAP even in

the toughest test cases (tough geometric noise, illumina-

tion change). The inclusion of extra supervision also boosts

patch retrieval performance, since in-sequence distractors

provide harder negatives to learn from.

5.3. RomePatches

We next consider the RomePatches dataset [26], which

contains 20,000 image patches of size 51x51, split equally

into training and test sets. The task is patch retrieval. This

dataset is constructed by performing SIFT matching on im-

ages taken in Rome, and keeping matching patches that sat-

isfy 3D constraints. With such tailored construction, SIFT

is unsurprisingly a strong baseline on RomePatches. In fact,

in terms of test set mAP, previous methods, including pre-

trained AlexNet [13] and PhilippNet [8], could not surpass

SIFT. The only method to do so was the CKN-grad variant

proposed in [26], using 1024-dimensional descriptors.

2 Results for L2Net and HardNet are obtained using their publicly re-

leased models and may slightly differ from those reported in [24].

Method Coverage Dim. Train Test

SIFT [21] 51x51 128 91.6 87.9

AlexNet-conv3 [13] 99x99 384 81.6 79.2

PhilippNet [8] 64x64 512 86.1 81.4

CKN-grad [26] 51x51 1024 92.5 88.1

DOAP 51x51 128 95.9 88.4

Binary DOAP 51x51 256 95.2 86.8

Table 2. Patch retrieval mAP comparison on RomePatches. SIFT

is a strong baseline, previously only surpassed by the high-

dimensional CKN-grad [26]. DOAP is the first descriptor to out-

perform SIFT with the same dimensionality.

Due to the small size of RomePatches, we found it nec-

essary to increase weight decay in SGD to 5 × 10−4, and

Dropout rate from 0.1 to 0.5 in the L2Net architecture.

Also, adding Spatial Transformers did not improve results,

possibly because the patches are already well aligned (see

examples in Fig. 3); therefore we only report results for the

binary and real-valued DOAP. As seen in Table 2, the real-

valued DOAP outperforms SIFT and other descriptors with

88.4% mAP on the test set, while the binary version also

performs competitively. The comparison between DOAP

and SIFT is fair, since they have the same input coverage

and output dimensionality. Note that the closest competitor

to DOAP, CKN-grad [26], is unsupervised and needs high

dimensionality to perform well. By exploiting supervised

learning and directly optimizing the evaluation metric, we

are able to get better training and test performance while

using 8x fewer dimensions (128 vs. 1024).

5.4. Image Matching in Oxford Dataset

Lastly, we use our learned descriptors to perform im-

age matching in six image sequences from the classical

Oxford dataset [23], where the matching pipeline also in-
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Figure 6. Image matching performance on the Oxford dataset [23]. Suffixes indicate the training set used (Lib: Liberty, HP: HPatches).

Here, all versions of DOAP include the Spatial Transformer.

cludes interest point detection. We use the implementa-

tion from VL-Benchmarks [17]; features are detected by

the Harris-Affine detector, and then patches are extracted

with a magnification factor of 3 relative to the detected fea-

ture frames. The evaluation metric is mean Average Preci-

sion (mAP), computed as the area under the precision-recall

curve derived from nearest neighbor matching.

We compare to SIFT, LIOP [36] (the best-performing

handcrafted descriptor in [32]’s experiment), and 128-d

real-valued versions of L2Net and HardNet with different

training sets. We use the 256-bit binary and 128-d versions

of DOAP trained on Liberty, and the 128-d version trained

on HPatches. From the results in Fig. 6, we can see that

SIFT is indeed difficult to beat, and good results on the UBC

benchmark does not guarantee high-level task performance,

especially in the case of HardNet. The real-valued DOAP

consistently outperforms SIFT and other descriptors with

significant margins, especially in the more challenging se-

quences such as graf and boat. The binary DOAP trained

on Liberty also outperforms other real-valued descriptors on

average, including L2Net trained on HPatches, and HardNet

trained on the union of Liberty and HPatches.

5.5. Discussion

Minibatch Sampling. We discuss the minibatch sampling

strategy used in training our models. First, note that in

all datasets considered, patches are provided in groups:

patches within a group correspond to the same 3D point and

thus match each other (see Fig. 3). The group size, denoted

n, is between 2 and 3 on average in UBC Phototour, and

equals 10 in RomePatches. For HPatches, n = 16, as each

patch has a reference version, and five variations from each

difficulty level.

Our sampling strategy differs from those in local ranking

approaches, where patch groups are often broken up to form

pairs or triplets in a pre-processing step before training. In-

stead, we directly sample groups to construct training mini-

batches, so that patches belonging to the same group are al-

ways in the same batch. This allows our listwise optimiza-

tion to utilize supervision with maximum efficiency. Let

minibatch size be M , every training patch is associated with

a listwise ranking constraint, that its n− 1 matches need to

be ranked at the top of a list of size M − 1. This constraint

alone needs (n− 1)(M − n) triplets to fully capture. Take

UBC Phototour as an example, assuming n = 2.5 on aver-

age, a single minibatch of size 1024 induces about 1.6×106

triplets, which is already 1/32 of the total number of train-

ing triplets used in HardNet. For HPatches (n = 16), this

number would be 1.5 × 107. However, triplets do not need

to be explicitly generated in our listwise optimization.

Time Complexity. For a minibatch of size M , the pair-

wise distances between all examples are computed, and

then binned into b-bin histograms. The time complexity is

O(bM2). The quadratic dependency on M is in fact opti-

mal, due to distance computation.

There is also a tradeoff involving the batch size M . A

larger batch size leads to longer lists and better perfor-

mance, but slows training. Nevertheless, even with M =
4096, a single training epoch on Liberty takes less than 4

minutes on an Nvidia Titan X Pascal GPU. Similar to the

case of UBC (Fig. 4), performance saturation is also ob-

served around M = 2048 in HPatches and RomePatches.

6. Conclusion

In this work, we use deep neural networks to learn bi-

nary and real-valued local feature descriptors that optimize

nearest neighbor matching performance. This is achieved

through a listwise learning to rank formulation that directly

optimizes Average Precision. Our formulation is general-

purpose, and is superior to recent local ranking approaches.

We further enhance our formulation with task-specific com-

ponents: handling geometric noise with the Spatial Trans-

former, and mining labels using clustering. The learned de-

scriptors achieve state-of-the-art performance in patch ver-

ification, patch retrieval, and image matching. Future work

will explore the optimization of larger portions in vision

pipelines, for example, by incorporating differentiable ver-

sions of robust estimation.
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