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Abstract

Most existing 3D object recognition algorithms focus on

leveraging the strong discriminative power of deep learn-

ing models with softmax loss for the classification of 3D

data, while learning discriminative features with deep met-

ric learning for 3D object retrieval is more or less ne-

glected.

In the paper, we study variants of deep metric learning

losses for 3D object retrieval, which did not receive enough

attention from this area. First , two kinds of representative

losses, triplet loss and center loss, are introduced which

could learn more discriminative features than traditional

classification loss. Then, we propose a novel loss named

triplet-center loss, which can further enhance the discrim-

inative power of the features. The proposed triplet-center

loss learns a center for each class and requires that the dis-

tances between samples and centers from the same class are

closer than those from different classes. Extensive experi-

mental results on two popular 3D object retrieval bench-

marks and two widely-adopted sketch-based 3D shape re-

trieval benchmarks consistently demonstrate the effective-

ness of our proposed loss, and significant improvements

have been achieved compared with the state-of-the-arts.

1. Introduction

In the past few years, 3D shape analysis has received

extensive attention from both computer vision and graph-

ics communities. Especially, many new attempts have been

made to this field, thanks to the powerful deep learning ap-

proaches and the large scale 3D model benchmarks such

as ShapeNet [7]. 3D object retrieval is a fundamental is-

sue in shape analysis that is the most crucial for process-

ing and analyzing 3D data. However, most deep learning

based approaches focus on leveraging the strong discrimi-

native power of deep learning models for the classification

of 3D data, e.g., [33, 14, 25], only a few novel deep learn-

ing based approaches specifically designed for 3D object
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retrieval in large scale have been presented.

With a long history in the community, 3D object re-

trieval may be coarsely divided into two categories: view-

based and model-based methods. View-based methods [1,

33] extract or learn the shape features from a set of 2D

view projections, where 2D convolutional neural networks

(CNN) are often adopted to process such projection images.

Model-based methods [11, 38] obtain the 3D shape fea-

tures directly from the original 3D representations so that

3D CNN is preferred. Until now, view-based methods usu-

ally outperform model-based ones in term of retrieval ac-

curacy, as reported in the recent competitions of large scale

3D SHape REtrieval Contest (SHREC) [4, 27, 28].

One well-known example of 3D object retrieval is Multi-

View Convolutional Neural Networks (MVCNN) [33], a

combination of multiple 2D projection features learned by

CNN within an end-to-end trainable fashion. Similar to

MVCNN, great efforts have been made to build a unified

deep learning model that can simultaneously perform the

tasks of 3D object classification and retrieval. These ap-

proaches including MVCNN believe that a strong classifica-

tion model trained with deep learning, often can meanwhile

provide a faithful similarity for 3D object retrieval.

In fact, deep learning approaches for 3D object retrieval

are quite similar to those for image or other object retrieval,

where several loss functions such as contrastive loss [8] and

triplet loss [29] have been introduced for training CNN, in

order to learn a metric or an embedding space that makes

the instances from the same category closer to each other

than those from different categories. In particular, train-

ing a plain CNN model with the triplet loss for end-to-end

metric learning has shown its advantages in face recogni-

tion [29] and person re-identification (re-ID) [12]. Though

the remarkable progresses in the tasks of re-ID in 2D image

sets have been achieved using such loss functions, they are

more or less neglected by the area of 3D object retrieval. In-

deed most existing deep learning approaches for 3D shape

retrieval focus on designing the sophisticated architectures

of deep neural networks or exploiting different representa-

tions of 3D object.

In contrast to most existing algorithms, in this paper we
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Figure 1. An overview of architecture for 3D object retrieval. We adopt MVCNN as the basic component for achieving view-based 3D

object representations, and the proposed TCL is used as the supervision loss. In addition, softmax loss could be also combined into the

framework for boosting performance.

argue that training a CNN with the triplet loss [29] or center

loss [39] that is specific for distance measure, can also bring

the performance benefits to 3D object retrieval, significantly

outperforming the state-of-the-art approaches on the most

popular benchmark datasets of 3D object retrieval, such as

ModelNet40 and ShapeNet Core55.

In summary, we make the following contributions: 1)

We firstly introduce two kinds of typical loss functions that

are suggested for 3D object retrieval, and fully investigate

their impact on the retrieval performance; 2) We propose

a novel loss function named triplet-center loss (TCL), and

show that the state-of-the-art results are obtained when us-

ing TCL based on the same CNN model, superior to other

alternatives.

The proposed TCL, motivated by center loss [39] and

triplet loss [29], learns a center for each class and requires

that the distances between samples and centers from the

same class are smaller than those from different classes,

such that the features of samples from the same class are

pulled closer to the corresponding center and meanwhile

pushed away from the other centers of different classes.

Different from center loss which only focuses on reduc-

ing the intra-class variations, TCL also considers inter-class

separability. Compared with triplet loss, TCL avoids the

complex construction of triplets and hard sample mining

mechanism. With TCL, our CNN model for 3D object re-

trieval is built upon the framework of MVCNN [33], as il-

lustrated in Figure 1. Therefore, our method can be con-

sidered as a view-based approach that unifies the extrac-

tion of 3D shape features and distance metric learning into

an end-to-end learning procedure. Beyond ModelNet40

and ShapeNet Core55, we also demonstrate its advantages

in sketch-based 3D shape retrieval task on two widely-

adopted benchmarks, SHREC’13 and SHREC’14 sketch

track benchmark datasets respectively.

2. Related work

With the availability of large-scale labeled 3D shape col-

lections like ShapeNet [7], a growing body of literature on

3D shape analysis especially on deep learning has emerged

recently. We refer the readers to [34, 13] for a comprehen-

sive survey of 3D shape retrieval. In this section, we will

mainly focus on representative 3D shape retrieval methods

based on deep learning mechanisms.

In general, 3D shape retrieval methods could be roughly

categorized into two classes: 3D model-based methods and

view-based methods. 3D model-based methods directly

learn shape features from 3D data formats, such as polygon

meshes or surfaces [5, 6, 42, 43], voxel grid [21, 40, 18,

25, 30], and point clouds [24, 26]. For example, Furuya et

al. [11] propose DLAN network to process local regions of

3D shape directly and aggregate local 3D rotation-invariant

features to perform retrieval task. Klokov et al. [15] propose

Kd-network to work with unstructured point clouds and use

the learned features to perform retrieval task. The main lim-

itations of these methods lie in the restriction of shape rep-

resentation (e.g., smooth manifold), or high computational

complexity, especially for the voxel-based methods. More

recently, Wang et al. [38] propose a 3D CNN based on oc-

tree representation, which can largely improve the compu-

tation efficiency compared with traditional full-voxel-based

representations.

The view-based methods usually render a single view or

multiple views for a 3D shape firstly, such that sophisti-

cated image feature extractors like CNN can be exploited

to extract features from the 2D rendered view, then these

extracted view features are assembled into a compact shape

descriptor which is finally employed for the retrieval or clas-

sification task. For example, MVCNN [33] utilizes a max-

pooling layer to aggregate the features of different views
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Figure 2. A toy illustration of the distributions of deep features learned by (a) softmax loss, (b) center loss + softmax loss, and (c) triplet-

center loss + softmax loss. Intuitively, the decision boundary of the softmax classifier separates the two classes elaborately. The center loss

pulls features toward their corresponding centers. The TCL pulls the features to their corresponding centers and pushes the features away

from the other centers.

extracted by a shared CNN. Bai et al. [1, 2] propose a deep

learning-based 3D shape search engine named GIFT, which

particularly focuses on the real-time property and scalabil-

ity of shape retrieval. To this end, GPU and inverted file

are used to accelerate the view feature extraction and index-

ing, and excellent retrieval performances on various shape

benchmarks are achieved. Typically, the learned features

from view-based methods are more discriminative for 3D

shapes, leading to a better retrieval performance in most

cases.

However, most of the above methods are not specifically

designed for the 3D shape retrieval task, while in image re-

trieval community, in order to learn more robust and dis-

criminative features, deep metric learning has been widely

adopted. Triplet loss [29], which is proposed by Wein-

berger and Saul, encourages features of data points with the

same identity to get closer than those with different identi-

ties. Several variants of triplet loss have also been proposed,

such as [19, 23, 37]. However, triplet loss may suffer from

the problem of time-consuming mining of hard triplets and

dramatic data expansion. Aimed at solving this problem,

recently Hermans et al. [12] propose a batch-hard based

triplet loss (BHL) which mines hard negative and hard pos-

itive samples from the on-line training batches, and achieve

state-of-the-art results on several person re-ID benchmarks.

On the other hand, center loss [39] has been brought up

which serves as an auxiliary loss for softmax loss for the

sake of learning more discriminative features for the prob-

lem of face verification. The main objective of center loss

is to learn a center for the features of each class and pull

features of the same class to the corresponding center more

closely.

Inspired by the success of the applications of deep metric

learning approaches for 2D image retrieval/re-ID tasks, we

introduce two kinds of representative deep metric learning

loss, i.e., triplet loss and center loss, to 3D object retrieval.

In addition, a novel loss named triplet-center loss is put for-

ward. Recently, Wang et al. [36] propose a similar loss

for face verification problem. However, our triplet-center

loss comes from a very different intuition1. Besides, our

loss eliminates the need for normalization on features and

weights and does not reuse weights from fully connected

layer. Remarkable improvements over the state-of-the-art

on two 3D shape retrieval benchmarks and two 3D sketch-

based retrieval benchmarks demonstrate its effectiveness.

3. Proposed method

In the shape retrieval task, obtaining a robust and dis-

criminative representation of a shape is crucial for obtaining

good performance. Usually, this can be partly achieved by

exploiting softmax loss to train a CNN on the labeled train-

ing set. However, the learned features optimized with the

supervision of softmax loss are not discriminative enough

in nature, since they only focus on finding a decision bound-

ary to separate shapes of different classes, without consid-

ering the intra-class compactness of the features. As illus-

trated in Fig. 2 (a), although samples of the two classes are

separated by the decision boundary elaborately, there exists

significant intra-class variations. To cope with this prob-

lem, a lot of deep metric learning algorithms have been put

forward. Here we first introduce two kinds of representa-

tive losses, i.e., triplet loss [29] and center loss [39]. Then,

based on these two losses, we derive our proposed TCL.

3.1. Review on triplet loss

Triplet loss, as its name suggested, is calculated on the

triplet of training samples (xi
a, xi

+, xi
−), where (xi

+, xi
a)

have the same class labels and (xi
−, xi

a) have different class

labels. xi
a is usually taken as an anchor of a triplet. Intu-

itively, triplet loss encourages to find an embedding space

1[36] is motivated by normalization on weights and features, while our

inspiration comes from triplet loss and center loss.
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where the distances between samples from the same classes

( i.e., xi
+ and xi

a) are smaller than those from different

classes ( i.e., xi
− and xi

a) by at least a margin m. Specif-

ically, the triplet loss could be computed as follows:

Ltpl =

N
∑

i=1

max
(

0,m+D
(

f(xi
a), f(x

i
+)

)

−D
(

f(xi
a), f(x

i
−)

)

)

(1)

where f(·) represents the feature embedding output from

the neural networks, D(·) measures the distance between

two input vectors, N stands for the number of triplets in

the training set and i denotes the i-th triplet. However,

the number of triplets grows cubically when the training

dataset gets larger, which usually results in a long imprac-

tical training period. Moreover, the performance of triplet

loss highly relies on the mining of hard triplets, which is

also time consuming. Meanwhile, how to define “good”

hard triplets is still an open problem. All factors above make

triplet loss hard to train. In order to overcome these limita-

tions of triplet loss, we will integrate it with center loss (see

Sec. 3.2) and propose a novel TCL loss.

3.2. Review on center loss

Center loss [39] was proposed to compensate for softmax

loss in face verification. It learns a center for the features of

each class and meanwhile tries to pull the deep features of

the same class close to the corresponding center as illus-

trated in Fig. 2 (b). Basically, center loss can be formulated

as:

Lc =
1

2

N
∑

i=1

D
(

f(xi), cyi

)

(2)

where cyi
∈ R

d is the center of class yi, with d denoting the

dimension of features. Function D(·) stands for the squared

Euclidean distance. During training, center loss encourages

instances of the same classes to be closer to a learnable class

center. However, since the parametric centers are updated

at each iteration based on a mini-batch instead of the whole

dataset, which is very unstable, it has to be under the joint

supervision of softmax loss during training.

3.3. The proposed triplet­center loss

Motivation. Though the joint supervision of center loss

and softmax loss aims at minimizing the intra-class vari-

ations and achieves very promising performances on face

recognition, however, as illustrated in Fig. 2 (b), even

though the intra-class variations are very small, the inter-

class clusters are very likely overlapped. This is due to that

it does not consider the separability of inter-class explicitly.

While for triplet loss, it directly optimizes the network for

the final task but subjects to the complexity of the construc-

tion of triplets. Motivated by the two representative losses,

we bring up the triplet-center loss for the sake of learning

more discriminative features efficiently.

Definitions. The goal of TCL is to leverage the advan-

tages of triplet loss and center loss, i.e., to efficiently min-

imize the intra-class distances of the deeply-learned fea-

tures as well as maximize the inter-class distances of the

deep features simultaneously. Let the given training dataset

{(xi, yi)}Ni=1 consists of N samples xi ∈ X with the as-

sociated labels yi ∈ {1, 2, ..., |Y|}. And these samples are

embedded into d-dimensional vectors with a neural network

denoted by fθ(·). In TCL, we assume that the features of 3D

shapes from the same class share one corresponding center.

Thus we can obtain C = {c1, c2, ..., c|Y |}, where cy ∈ R
d

denotes the center vector for samples with label y, and |Y| is

the number of centers. For simplicity, we adopt fi to repre-

sent f(xi) in the following paper. Similar to center loss, we

update the parametric centers at each iteration based on a

mini-batch. Given a batch of training data with M samples,

we define TCL as

Ltc =

M
∑

i=1

max
(

D
(

fi, cyi

)

+m−min
j 6=yi

D
(

fi, cj
)

, 0
)

(3)

where D(·) represents the squared Euclidean distance func-

tion denoted as:

D(fi, cyi) =
1

2
||fi − cyi ||22 (4)

As illustrated in Fig. 2 (c), TCL is to push the distances be-

tween the samples and their corresponding center cyi closer

than the distances between the samples and their nearest

negative center ( i.e., centers of the other classes C \ {cyi})

by a margin m.

To compute the back-propagation gradients of the in-

put feature embeddings and the corresponding centers,

we assume the following notations for demonstration:

1[condition] is an indicator function which outputs 1
if the condition is satisfied and outputs 0 otherwise,

qi = argminj 6= yi D
(

fi, cj
)

is an integer index which in-

dicates the nearest negative center of i-th sample, and L̃i

represents the triple-center loss of i-th sample as

L̃i = max
(

D
(

fi, cyi

)

+m− min
j 6=yi

D
(

fi, cj
)

, 0
)

(5)

Then, the derivatives of our TCL loss Eq. 3 with respect to

the feature embedding of i-th sample ∂Ltc

∂fi
and j-th center

∂Ltc

∂cj
can be calculated as follows:

∂Ltc

∂fi
=

(∂D
(

fi, cyi

)

∂fi
−

∂D
(

fi, cqi
)

∂fi

)

· 1[L̃i > 0]

= (cqi − cyi) · 1[L̃i > 0]

(6)
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∂Ltc

∂cj
=

∑M
i=1

(fi − cj) · 1[L̃i > 0] · 1[yi = j]

1 +
∑M

i=1
1[L̃i > 0] · 1[yi = j]

−

∑M
i=1

(fi − cj) · 1[L̃i > 0] · 1[qi = j]

1 +
∑M

i=1
1[L̃i > 0] · 1[qi = j]

(7)

Joint supervision with softmax loss. Softmax loss fo-

cuses on mapping the samples to discrete labels, while TCL

aims to apply metric learning to the learned embeddings di-

rectly. Unlike center loss, TCL can be used independently

from softmax loss. However, these two losses can also be

combined together to achieve more discriminative and ro-

bust embeddings according to our experiments in Sec. 4,

which can be written as

Ltotal = λLtc + Lsoftmax (8)

where λ is a hyper-parameter which controls the trade-off

between the TCL and softmax loss. We attribute the benefit

brought by softmax loss to the fact that the parametric cen-

ters of TCL are randomly initialized and updated based-on

the mini-batches instead of the whole datasets which might

be tricky, while softmax loss could serve as a good guider

for seeking better class centers.

3.4. Discussion

Compared with triplet loss. Different from triplet loss,

whose triplet is made up of triple samples (xi
a, x

i
+, x

i
−), the

triplet of the TCL is composed of the i-th sample xi, its cor-

responding center cyi and its nearest negative center. For

a training dataset with N samples, only N triplets will be

formed for TCL while the number of triplets for triplet loss

is O(N3) much more than TCL. Consequently, in compar-

ison with triplet loss, TCL avoids the complexity of con-

structing triplets and the necessity for mining hard samples.

We provide an empirical analysis on the two losses and vi-

sualize the learned embeddings using t-SNE in Sec. 4.1.

Compared with center loss. TCL can be taken as a vari-

ant of triplet loss, which could be exploited as supervi-

sion for training the neural networks independently of soft-

max loss, while center loss has to be combined with soft-

max to make the learning feasible otherwise the deeply

learned features and centers will degrade to zeros accord-

ing to [39]. Furthermore, TCL simultaneously maximizes

the intra-class compactness and inter-class separability ex-

plicitly while center loss neglects the latter one which may

lead to inter-class overlapping. Besides, center loss aims

at reducing the absolute distances between the samples and

their corresponding centers, while TCL penalizes the rela-

tive distances with a hinge-style loss which is more relaxed

and easier to train. For empirical analysis of TCL loss and

center loss, see Sec. 4.1 for details.

4. Experiments

In this section, we evaluate the performance of the

proposed TCL on two kinds of 3D shape retrieval tasks:

generic 3D shape retrieval task and sketch-based 3D shape

retrieval task. The former is a within-domain retrieval task,

where the given query and examples in the database are 3D

models. While the latter is a cross-domain retrieval task, the

given query are 2D sketches instead.

4.1. Generic 3D shape retrieval task

Datasets. We evaluate our TCL loss on two well-known

3D shape benchmarks: ModelNet40 [40] and ShapeNet

Core 55 [27]. The ModelNet40 dataset contains 12,311

CAD models from 40 common categories. For this dataset,

we follow previous works [33, 1] on the training and test-

ing split settings, i.e., randomly selecting 100 models per

category, of which 80 models are used as training data and

the rest for testing. The ShapeNet Core 55 dataset [27] is

composed of 51,190 3D shapes in total from 55 categories,

which are further divided into 204 sub-categories. Due to its

diversity of categories and large variations within classes,

ShapeNet55 dataset is quite challenging. The whole dataset

is split into the training set, the validation set and the test

set, which contains 35,765, 5,159, 10,266 models, respec-

tively. Further, this dataset has two variants (ShapeNet 55

perturbed dataset and ShapeNet 55 normal dataset). For the

normal dataset, shapes are aligned. For perturbed version

of the dataset, each model is randomly rotated by an angle.

We conduct experiments on the perturbed dataset which is

more challenging. All retrieval performances are reported

on the testing set.

Implementation Details. Experimental codes are imple-

mented in PyTorch http://pytorch.org/ and exe-

cuted on a server with four Nvidia Titan-X GPUs, an Intel i7

CPU and 64GB RAM. We choose the Imagenet-pretrained

VGG-A with batch normalization [32] 2 as our base net-

work. VGG-A contains 8 convolution layers (conv 1-8) with

kernels of size 3 by 3 and 3 fully-connected layers (fc 9-11).

And the view-pooling layer is placed right after conv 6. The

layers before and after the view-pooling layer are denoted

as CNN1 and CNN2 respectively. We initialize the centers

with a Gaussian distribution, and the mean and standard de-

viation is (0, 0.01) respectively. For optimization, we adopt

the stochastic gradient descent algorithm with a mini-batch

size of 16 for all our experiments. The learning rate for

optimizing CNN1 and CNN2 is set to be 1e-4 and 1e-3 re-

spectively. And for both CNN1 and CNN2, a weight decay

of 1e-4 and a momentum of 0.9 are used. The learning rate

2Different from the original MVCNN, which adopts VGG-M as

their base network, we adopt VGG-A with batch normalization to

validate our proposed loss due to the lack of pre-trained VGG-M

in Pytorch.
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for centers is set to 0.1 for our experiments. We clip the gra-

dient of the center by 0.01. During testing, We extract the

output of fc-10, which is 4096-dimensional, as the features

for all our retrieval tasks.

Parameter influence. As indicated by loss function

in Eq. (8), the margin parameter m and λ may affect the

final combinations of the losses. Specifically, λ in Eq. (8)

controls the trade-off between softmax loss and TCL loss,

while m controls the relative distance between the sample

embeddings to its corresponding center and to its nearest

negative center. To study the impact of the two hyper-

parameters, we give an empirical analysis on ModelNet40

dataset.

The influence of hyper-parameter λ is presented in Fig. 3

(a). From the experimental results, we can see that TCL

is very robust to this parameter. For a wide-ranged values

from 0.01 to 10, the trained models consistently achieves

very promising results on ModelNet40 dataset. We assume

that this is because TCL and softmax loss are complemen-

tary losses. TCL focuses on the feature representation di-

rectly, while softmax loss focuses on how to separate or map

the feature representation into a discrete label space. Once

the model with softmax loss has converged, TCL can further

enforce the feature embeddings into more compact clusters

without sacrificing the classification performance too much,

thus good retrieval performance can be gained, and vise

versa. When λ is set to be 0, which means the model is

trained using only softmax loss, the performance is worst,

only achieving an mAP of nearly 80.0%. But with TCL, we

can get an improvement of 7∼8% in terms of mAP. How-

ever, TCL loss is more sensitive to the margin m. To study

the influence of m, we fixed λ to be 0.01, and then set m

to be 0.5, 1, 5 and 10 respectively. For hyper-parameter m,

too large or too small values both lead to inferior results.

When it is too small, the strength of triplet center loss will

be weakened, while too large value may cause over-fitting

problem. The best results are achieved by setting m to be 5.

This gives an mAP of 88.0% and an AUC of 89.0%. Thus,

we set m and λ to be 5 and 0.01 in default respectively for

the following experiments.
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Figure 3. The retrieval performances achieved by (a) varying λ

when m is fixed to 5 and (b) varying m when λ is fixed to 0.01.

Table 1. The performances (%) of different losses on ModelNet40.

Loss function AUC MAP

softmax loss 80.9 80.2

softmax+center loss 84.3 83.5

triplet loss 80.9 80.0

TCL 87.6 86.7

TCL+softmax loss 89.0 88.0

Comparison with other losses. To validate the proposed

TCL loss, we conduct extensive experiments on various

losses, including triplet loss, softmax loss, softmax loss

with center loss, TCL and softmax loss with TCL on Mod-

elNet40 dataset. As can be seen from Tab. 1, TCL and

softmax loss with TCL perform best among these losses,

obtaining an mAP of 86.7% and 88.0% respectively. In ad-

dition, softmax loss with center loss can increase the mAP

by 3.4% over softmax loss, reaching 83.5%. The results of

triplet loss are merely comparable to softmax loss.

Visualization of learned representations. We adopt t-

SNE [20] to visualize the deeply-learned features of the

samples from ModelNet40 dataset. As is shown in Fig. 4,

some nice properties can be observed: (i) Compared with

softmax loss, the learned embeddings of the same class are

obviously getting closer to each other after introducing cen-

ter loss, while triplet loss also results in slightly better em-

beddings since the sample embedding distances are consid-

ered directly. (ii) The proposed TCL performs better than

center loss on achieving small intra-class variance and large

inter-class variance. (iii) With the combination of TCL +

softmax loss, learned embeddings make the most compact

and separated clusters at the same time. This demonstrates

the intuition that better underlying representations for re-

trieval task can be obtained with the proposed TCL loss.

Comparison with the state-of-the-arts. The perfor-

mance comparisons with the state-of-the-art shape retrieval

methods are presented in Tab. 2. Here we choose view-

based retrieval methods including MVCNN [33], GIFT [1],

DeepPano [31], and voxel-based retrieval methods includ-

ing 3DShapeNet [22], DLAN [11] for comparison. As is

shown, compared with MVCNN, which is firstly trained

with softmax loss and then an off-line large-margin metric

learning algorithm is applied, our method (TCL+softmax

loss) has demonstrated its superior discriminative ability

and improved mAP by nearly 7%, reaching 88.0%. Fur-

thermore, we outperform GIFT by nearly 6% in terms of

AUC and mAP respectively. And compared with DLAN,

which is the current state-of-the art method on ModelNet40,

an improvement of 3% in terms of mAP is obtained. Be-

sides, our method also beats a recent re-ranking algorithm

named Regularized Ensemble Diffusion (RED) [3]. Fig. 5

shows the representative retrieval results of our method on

the ModelNet40 dataset.
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Figure 4. A visualization of deeply-learned features by (a) softmax loss, (b) triplet loss, (c) softmax loss + center loss, (d) triplet center

loss, (e) softmax loss + triplet center loss. Here we randomly select 10 classes from the test set for visualization (Best viewed in color).

Query Top10 Retrieved 3D Shapes 

Figure 5. Retrieval examples on ModelNet40 dataset. Top matches

are shown for each query with mistakes highlighted in gray.

Table 2. The performance (%) comparison with state-of-the-art

methods on ModelNet40. ’-’ represents missing metric.

Methods AUC MAP

3DShapeNet [22] 49.9 49.2

DeepPano [31] 77.6 76.8

MVCNN [33] - 80.2

GIFT [1] 83.1 81.9

DLAN [11] - 85.0

RED [3] 87.0 86.3

Ours 89.0 88.0

Experiments on ShapeNet Core55. We evaluate our pro-

posed TCL on the more challenging ShapeNet Core55

dataset. Since each shape in the dataset is attached with a

category label and a subcategory label. To accurately eval-

uate the more fine-grained retrieval results, the organizer of

SHREC’16 uses a metric named normalized discounted cu-

mulative gain (NDCG). In addition, other traditional evalu-

ation metrics like F-measure and mAP are also used.

The comprehensive comparisons with the state-of-the-

art methods on the perturbed dataset are listed in Tab. 3,

which is extremely challenging for the existing methods.

We choose the following methods for comparisons, includ-

ing GIFT [1], MVCNN [33], Wang [27], Li [27], Kd-

network [15]. As is shown, our method (TCL+softmax

loss) outperforms the strong baseline MVCNN by nearly

Table 3. The performance (%) comparison on ShapeNet55 test per-

turbed.

Methods
microALL macroALL

F1 mAP NDCG F1 mAP NDCG

MVCNN [33] 61.2 73.4 84.3 41.6 66.2 79.3

GIFT [1] 66.1 81.1 88.9 42.3 73.0 84.3

Wang [27] 24.6 60.0 77.6 16.3 47.8 69.5

Li [27] 53.4 74.9 86.5 18.2 57.9 76.7

Kd-network [15] 45.1 61.7 81.4 24.1 48.4 72.6

Ours 67.9 84.0 89.5 43.9 78.3 86.9

10% in terms of the micro-averaged mAP and 12% for the

macro-averaged mAP. For other metrics, we also outper-

form by a large margin. Further, compared with GIFT, the

former state-of-the-art in the contest, notable improvements

are also achieved. These results demonstrate that the pro-

posed loss is good at obtaining robust and discriminative

representations for 3D shapes once again.

4.2. Sketch­based 3D shape retrieval task

Considering the huge visual gap between sketch and 3D

shape, sketch-based shape retrieval is a quite challenging

problem. Here we further demonstrate the potential advan-

tages of TCL in such a cross-domain retrieval task.

Datasets. Two widely adopted sketch-based shape re-

trieval benchmarks have been adopted to evaluate our pro-

posed method, they are SHREC’13 and SHREC’14 sketch

track benchmark datasets respectively. SHREC’13 is com-

posed of 7,200 sketches and 1,258 shapes, which are

grouped into 90 classes. There are 80 sketches for each

class, of which 50 sketches for training and 30 for test-

ing. SHREC’14, which is the largest sketch-based shape re-

trieval dataset currently, contains 13,680 sketches and 8,987

shapes, divided into 171 classes. Due to its large variations

within category and diversity of classes, SHREC’14 dataset

is very challenging. For each class of sketches, 50 sketches

are selected for training and 30 for testing.

Implementation Details. As for the experimental setup,

we follow the same training-testing split as [17, 41]. Simi-

lar to [41], we render 12 views for each shape and employ
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Table 4. The performance (%) comparison on SHREC13 dataset

Methods NN FT ST E DCG mAP

CDMR [10] 27.9 20.3 29.6 16.6 45.8 25.0

SBR-VC [17] 16.4 9.7 14.9 8.5 34.8 11.6

Siamese [35] 40.5 40.3 54.8 28.7 60.7 46.9

DCML [9] 65.0 63.4 71.9 34.8 76.6 67.4

LWBR [41] 71.2 72.5 78.5 36.9 81.4 75.2

Ours 76.3 78.7 84.9 39.2 85.4 80.7

two AlexNets [16] to extract features of 2D projections and

sketches, respectively. MVCNN framework is adopted to

obtain the representations of 3D shapes. In addition, we

assume that the features from these two different domains

share the same centers and classifiers. Thus we could train

the two AlexNets pre-trained on ImageNet dataset jointly

via back propagation with TCL and softmax loss. The pa-

rameters are given as λ = 0.01, m = 5.0. The other set-

tings are the same as Sec. 4.1. To measure the retrieval per-

formances, we use the following metrics including Near-

est Neighbor (NN), First Tier (FT), Second Tier (ST), E-

measure (E), Discounted Cumulated Gain (DCG) and mean

Average Precision (mAP).

Experiments on SHREC’13 and SHREC’14. In Tab. 4

and Tab. 5, a comprehensive comparison with various state-

the-of-arts is presented, including Sketch-Based Retrieval

method with View Clustering (SBR-VC) [17], Cross Do-

main Manifold Ranking method (CDMR) [10], Siamese

network (Siamese) [35], Deep Correlated Metric Learning

(DCML) [9] and Learned Wasserstein Barycentric Repre-

sentations (LWBR) [41]. Among them, DCML and LWBR

perform best. DCML [9] proposes discriminative loss and

correlation loss, aiming to increase the discrimination of

features within each domain as well as the correlation be-

tween different domains. While LWBR [41] mainly focuses

on improving 3D shape representations which proposes to

adopt wasserstein barycenters of features of multiple views

as 3D shape representations instead of max-pooling in

MVCNN [33]. These methods have advanced other meth-

ods a lot thanks to the powerful of deep learning. Especially

LWBR gets 75.2% mAP on SHREC’13, nearly 8% higher

than DCML. However, benefit from TCL, more discrimi-

native features are obtained. Even without sophisticated

computation of barycentric representations, our method

(TCL+softmax loss) achieves 79.8% mAP on SHREC’13

dataset, 46.2% mAP on SHREC’14 dataset, which outper-

forms LWBR with at least 5% on both datasets.

4.3. View­based v.s. Model­based

So far we have demonstrated the superiority of the pro-

posed TCL for view-based and sketch-based shape retrieval

tasks. Actually, a sketch can be considered as a ”special”

view of the object, which is why we train them jointly

Table 5. The performance (%) comparison on SHREC14 dataset

Methods NN FT ST E DCG mAP

CDMR [10] 10.9 5.7 8.9 4.1 32.8 5.4

SBR-VC [17] 9.5 5.0 8.1 3.7 31.9 5.0

Siamese [35] 23.9 21.2 31.6 14.0 49.6 22.8

DCML [9] 27.2 27.5 34.5 17.1 49.8 28.6

LWBR [41] 40.3 37.8 45.5 23.6 58.1 40.1

Ours 58.5 45.5 53.9 27.5 66.6 47.7

Table 6. The performance (%) comparison on ModelNet40 using

VoxNet and PointNet.

Methods
VoxNet PointNet

AUC MAP AUC MAP

softmax loss 70.9 70.0 71.4 70.5

softmax loss + center loss 73.1 72.0 74.3 73.1

TCL loss 73.4 72.4 72.3 71.3

TCL + softmax loss 74.3 73.2 75.6 74.5

with the projected views and got notable rewards in the

retrieval. Whereas it has been proved that deeply-learned

features from model-based approaches are complementary

with those of view-based methods, we still conduct a com-

parison by further combining TCL into two representative

model-based approaches: PointNet [24] and VoxNet [21].

Experiments are performed on ModelNet40 dataset. As we

can see in Tab. 6, though less impressive compared to view-

based mechanisms, significant improvements of 3%∼4%

are gained compared with baseline methods. Nevertheless,

we believe that better performance can be achieved once the

baseline of model-based deep learning approaches is im-

proved. We leave it as a future work.

5. Conclusion

In this paper, we focus on the view-based 3D shape re-

trieval task and propose a novel loss function named triplet

center loss. This loss function combines the advantages of

triplet loss and center loss, and has demonstrated its effec-

tiveness on both 3D shape retrieval task and sketch based

shape retrieval task. The triplet center loss can optimize

the features directly by minimizing the intra-class variance

while also maximizing the inter-class variance at the same

time. As a result, the learned embeddings are more robust

and discriminative, thus more appropriate for retrieval task.

In the future, we would like to explore our proposed loss

to other retrieval tasks such as person re-identification, face

recognition and content-based image retrieval.
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