
Conditional Generative Adversarial Network for Structured Domain Adaptation

Weixiang Hong

Nanyang Technological University

weixiang.hong@outlook.com

Zhenzhen Wang

Nanyang Technological University

zwang033@e.ntu.edu.sg

Ming Yang

Horizon Robotics, Inc.

ming.yang@horizon-robotics.com

Junsong Yuan

State University of New York at Buffalo

jsyuan@buffalo.edu

Abstract

In recent years, deep neural nets have triumphed over

many computer vision problems, including semantic seg-

mentation, which is a critical task in emerging autonomous

driving and medical image diagnostics applications. In

general, training deep neural nets requires a humongous

amount of labeled data, which is laborious and costly to

collect and annotate. Recent advances in computer graph-

ics shed light on utilizing photo-realistic synthetic data with

computer generated annotations to train neural nets. Nev-

ertheless, the domain mismatch between real images and

synthetic ones is the major challenge against harnessing

the generated data and labels. In this paper, we propose

a principled way to conduct structured domain adaption

for semantic segmentation, i.e., integrating GAN into the

FCN framework to mitigate the gap between source and

target domains. Specifically, we learn a conditional gener-

ator to transform features of synthetic images to real-image

like features, and a discriminator to distinguish them. For

each training batch, the conditional generator and the dis-

criminator compete against each other so that the generator

learns to produce real-image like features to fool the dis-

criminator; afterwards, the FCN parameters are updated to

accommodate the changes of GAN. In experiments, without

using labels of real image data, our method significantly

outperforms the baselines as well as state-of-the-art meth-

ods by 12% ∼ 20% mean IoU on the Cityscapes dataset.

1. Introduction

Deep neural networks have dominated many vision tasks

such as image recognition [38], object detection [17] and se-

mantic segmentation [26]. These state-of-the-art results are

generally achieved by learning very deep networks on large-

scale, high-quality, and thoroughly labeled datasets, such
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(a) Synthetic images are easy to collect and annotate, yet the se-

mantic segmentation model naively trained on synthetic data may

not generalize well to real images. In this work, we introduce a

conditional GAN model to close the gap between the representa-

tions of synthetic images to those of real images, thus improve the

semantic segmentation performance without laborious annotations

on real image data.
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(b) Our GAN-based domain adaptation boosts the semantic seg-

mentation performance.

Figure 1: (a) The motivation and overview. (b) An illustra-

tive example.

as the ImageNet [11], COCO [25], Pascal VOC [13] and

Cityscapes [10], etc. Nevertheless, building such datasets

manually is expensive and not scalable. For instance, an-

notating pixel-level semantic segmentation in autonomous

driving or medical image analysis requires intensive labor

and certain expertise. Therefore, it is very appealing to ex-
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plore a scalable alternative, i.e., the use of synthetic data

for neural network training. Recent advances in computer

graphics have stimulated the interests to train deep learn-

ing models on photo-realistic synthetic data with computer-

generated annotations, and apply them in real-world set-

tings [12, 29, 47, 37, 41, 48, 20, 19, 32, 22, 34, 33].

In this work, we aim to train semantic segmentation

models for real urban scene parsing without using any man-

ual annotation. The significance of this problem is mainly

due to three reasons: 1) Autonomous driving has become

such a hot theme in both academia and industry, where

semantic segmentation is one of the essential techniques

[16, 10] in understanding complex inner-city traffic scenes;

2) Training deep neural networks for automatic semantic

segmentation requires massive amount of high-quality an-

notated imagery in order to generalize well to unlimited un-

seen scenes. Compared with image recognition and object

detection, annotating pixel-level training data for semantic

segmentation is a much more time-consuming task for hu-

man. For example, Cordts et al. reports that the annotation

and quality control take more than 1.5 hours for a single

image of the Cityscapes dataset [10]. In contrast, anno-

tating a synthetic image takes only 7 seconds on average

through a computer game [34]; 3) Besides, it requires ded-

icated equipments and takes months, if not years, to collect

imagery that covers a large number of diverse urban scenes

in different countries, seasons, and lighting conditions, etc.

Therefore, it is of great practical and theoretical interests

to explore the feasibility conducting semantic urban scene

segmentation without manual labeling.

Formally, our goal is to learn neural networks for seman-

tic segmentation using synthetic images with generated an-

notations and real images without annotations in the train-

ing phase, and then we expect the learned model general-

izes well to real images in the testing phase. By harnessing

photo-realistic simulation of urban environments such as

Grand Thief Auto (GTA), practically an unlimited amount

of synthetic scene images can be generated for training deep

learning models [35, 34, 33]. However, the latest literature

findings reveal that a gap between distributions of synthetic

and real data does exist, yet the deep features may reduce,

but not remove, the cross-domain distribution discrepancy

[44]. Deep neural nets naively trained on synthetic data do

not readily generalize to real images due to the domain mis-

match between the source domain (synthetic) and the target

domain (real). This problem almost fits into the setting of

unsupervised domain adaptation, except that our goal is to

learn pixel-wise labeling classifier, while unsupervised do-

main adaptation mainly concerns with classification and re-

gression problem [30, 31]. In view of these, we refer our

problem as a structured domain adaptation [43].

Generally speaking, unsupervised domain adaptation is

a very challenging problem, i.e., learning a discriminative

classifier in the presence of a shift between training and

testing data distribution, where target domain data are com-

pletely unlabeled. To tackle the discrepancy between source

and target domains, previous work [15, 40, 27, 5] typi-

cally assume that there exists a cross-domain feature space,

so that the rich labeled data in the source domain can be

leveraged to train effective classifiers in the target domain.

However, it is practically infeasible to determine whether

the classifier learned on cross-domain features generalizes

well to the target domain beforehand. Moreover, different

classifiers could be indeed necessary in some cases [3]. In

contrast to prior arts, the semantic segmentation is a highly

structured prediction problem. Can we still achieve reason-

able domain adaptation by following the above assumption?

The prior attempts [43] indicate that learning a decision

function for structured prediction involves an exponentially

large label space. As a result, the assumption that the source

and target domains share the same prediction function be-

comes less likely to hold.

How can we achieve unsupervised domain adaptation

without relying on the assumption that the source and tar-

get domains share a same prediction function in a domain-

invariant feature space? In this work, we propose a prin-

cipled approach to model the residual in the feature space

between the source and target domain. We train a deep

residual net to transform the feature maps of source do-

main images to appear as if they were sampled from the

target domain while maintaining their semantic spatial lay-

outs. We propose a novel Generative Adversarial Network

(GAN) - based architecture that is capable of learning such a

transformation in an unsupervised manner. Note, we do not

require corresponding image pairs from the two domains,

which are not available in practice. Our unsupervised do-

main adaptation method offers the following advantages

over existing approaches:

No Assumption of Shared Feature Space: Previous work

[15, 40, 27, 5] align two domains via an intermediate fea-

ture space and thereby implicitly assume the same decision

function for both domains. Our approach effectively relaxes

this assumption by learning the residual between the feature

maps from both domains [28]. As shown by our experi-

ments, the relaxation of requiring a common feature space

for both domains is the key to address the structured domain

adaptation problem in an unsupervised setting.

In-network Architecture: To our best knowledge, state-

of-the-art work [45, 9] typically rely on heuristic observa-

tions such as pixel distribution and label statistics to conduct

domain adaptation for semantic segmentation. In contrast,

we propose to transform the feature map with a conditional

generator, hence all components in our method are within

one network and trained in an end-to-end fashion. Although

a discriminator has been used by [45, 9] to conduct adver-

sarial learning, we show that the conditional generator is the
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key for structured domain adaptation in Section 4.4.

Data Augmentation: Conventional domain adaptation ap-

proaches are limited to learning from a finite set of source

and target data. However, by conditioning on both source

images and a stochastic noise channel, our model enables

to create virtually unlimited stochastic samples that appear

similar to feature maps from the target domain images.

To demonstrate the efficacy of our method, we conduct

structured domain adaptation experiments with the SYN-

THIA [35] and GTA [34] as the source domain, Cityscapes

[10] as the target domain. Without using labels of real im-

ages, our method significantly outperforms the state-of-the-

art structured domain adaptation methods [21, 45, 9] by

around 12% ∼ 20% mean IoU.

2. Related Work

We discuss some related work on domain adaptation and

semantic segmentation, with a particular focus on transfer-

ring knowledge from virtual images to real photos.

2.1. Semantic Segmentation

Semantic segmentation is the task of assigning a seman-

tic category label to each pixel in an image. Traditional

methods rely on local image features handcrafted by do-

main experts [24]. After the seminal work [26] introduced

the fully convolutional network (FCN) to semantic segmen-

tation, most recent top-performing methods follow upon

FCN [1, 6, 46].

Despite the existence of weakly-supervised semantic

segmentation [42, 36], an enormous amount of labor-

intensive work is often required to annotate many images

in order to achieve state-of-the-art semantic segmentation

accuracy. The PASCAL VOC2012 Challenge [13] contains

nearly 10,000 annotated images for the segmentation com-

petition, and the MS COCO Challenge [25] includes over

200,000 annotated images. According to [10], it took about

1.5 hours to manually segment each image in Cityscapes; In

contrast, annotating a synthetic image took only 7 seconds

on average through a computer game.

We instead explore the use of almost effortlessly labeled

synthetic images for training high-quality segmentation net-

works. For the urban scenes, we use the SYNTHIA [35] and

GTA [34] dataset which contains images of virtual cities.

2.2. Domain Adaptation

Conventional machine learning algorithms rely on the

assumption that the training and test data are drawn i.i.d.

from the same underlying distribution. However, in prac-

tice it is common that there exists some discrepancy be-

tween training data and testing data. Domain adaptation

aims to rectify this mismatch and tune the models toward

better generalization at testing phase [15, 40, 27, 5].

Most of the previous deep domain adaptation methods

operate mainly under the assumption that the adaptation is

realized by matching the distribution of features from differ-

ent domains. These methods aim to obtain domain-invariant

features by minimizing a task-specific loss on the source do-

main and the divergence between domains, which is usually

measured by MMD [27] or DANN [5].

Generative Adversarial Net in Domain Adaptation: The

Generative Adversarial Networks (GANs) [18] is a frame-

work for learning generative models. In [14], a discrimina-

tor is harnessed to distinguish the source domain and target

domain, but no generator is used. They tried to learn fea-

tures that minimize the discrepancy between two domains

by fooling a discriminator. Bousmalis et al. [4] utilizes

GAN to transfer the style of images from source domain to

target domain, so that one shared classifier could accommo-

date both domains. In [39], the authors employ adversarial

learning to train a face classifier on images and adapt it to

video domain.

2.3. Structured Domain Adaptation

Most existing domain adaptation literatures are limited

to classification or regression. Instead, structured domain

adaptation, which is significantly challenging, has been sel-

dom discussed. To our best knowledge, this problem is only

considered in several recent works [7, 21, 45, 9, 8]. In detail,

[7] aims to train a cross-domain image captioning model

with adversarial loss. The other four work [21, 45, 9, 8]

focus on domain adaptation to enhance the segmentation

performance on real images by networks trained on virtual

ones, which is also our concern in this work. Although

[21, 9] have utilized a discriminator to conduct adversarial

learning, they do not resort to a generator to perform do-

main adaption. Instead, they reply on some heuristic obser-

vations about pixel distribution, label statistics, etc. In this

work, we show the generator is indeed the key for structured

domain adaptation.

3. Methods

Given a labeled dataset in a source domain and an unla-

beled dataset in a target domain, our goal is to train a seman-

tic segmentation model in the source domain that general-

izes to the target domain. In this section, we start with ex-

plaining the general design of our conditional GAN model

in the context of structured domain adaptation. Then, the

detailed architecture of each component is elaborated.

3.1. Overview

To close the domain gap between synthetic images and

real images, we employ a generative adversarial objective

to encourage our conditional generator G to produce fea-

ture maps that appear to be extracted from the target do-

main images. Different from a vanilla GAN formulation
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Figure 2: Details of the proposed Structured Domain Adaptation network. (a) The backbone network is FCN-8s [26] initial-

ized with VGG-19 [38], we omit the skip connection for simplification. (b) The generator is a deep residual network which

takes the features with fine-grained details from the lower-level layer as input and passes them to 3 × 3 convolutional filters

to integrate the noise channel. Then B residual blocks are employed to learn the residual representation between the pooled

features from “Conv5” for source-domain images and the target-domain representation. (c) The discriminator takes the fea-

tures of target domain images and the enhanced representation of source domain features as inputs and tries to distinguish

them. The discriminator consists of three fully connected layers followed by sigmoid activation, which is used to estimate

the probability that the current input representation belongs to real images.

[18] in which the generator only takes a noise vector as in-

put, our generator is conditioned on the extra auxiliary in-

formation, i.e., the features maps xs of the synthetic image.

During training, our generator G(xs, z; θG) = xs
Conv5

+

Ĝ(xs, z; θG) transforms the feature maps xs of a synthetic

image and a noise map z to an adapted feature map xf .

Note that the generator produces the residual representation

Ĝ(xs, z; θG) between the Conv5 feature maps of real and

synthetic image, rather than directly computing xf .

We expect that xf preserves the semantic of the source

feature map xs, meanwhile appears as if it were extracted

from a target domain image, i.e., a real image. Therefore,

we feed xf to a discriminator branch D(x; θD), as well as

a pixel-wise classifier branch T (x; θT ). Specifically, the

discriminator branch D(x; θD) aims to distinguish between

transformed feature maps xf produced by the generator,

and the feature maps of a real image from the target domain

xt, while the pixel-wise classifier branch T (x; θT ) assigns

a class label to each pixel in input image, which is imple-

mented as deconvolution following FCN [26]. The overall

architecture of our model is shown in Figure 2.

Our goal is to optimize the following minimax objective:

min
θG,θT

max
θD

Ld(G,D) + αLt(G, T ), (1)

where α is a weight that controls the combination of the

losses. Ld represents the domain loss:

Ld(D,G) =Ext [logD(xt; θD)]+

Exs,z[log(1−D(G(xs, z; θG); θD))].
(2)

Following in FCN [26], we define the task loss Lt as multi-

nomial logistic loss (a.k.a. cross entropy loss):

Lt(G, T ) = Exs,ys,z

[

−

|Is|
∑

i=1

K
∑

k=1

1
yi=k log

(

T (xs
i ; θT )

)

−

|Is|
∑

i=1

K
∑

k=1

1
yi=k log

(

T (G(xs
i , z; θG); θT )

)

]

,

(3)

where
∑|Is|

i=1
and

∑K

k=1
indicate the summarization over

all |Is| pixels and K semantic classes, 1yi=k is a one-hot

encoding of the i-th pixel.

In our implementation, G is a convolutional neural net-

work with residual connections. Our discriminator D is

a multi-layer perceptron. The minimax optimization is

achieved by alternating between two steps. During the first

step, we update the pixel-wise classifier T and the discrim-

inator D, while keeping the conditional generator G and
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feature extractor Conv1 ∼ Conv5 fixed. During the second

step, we fix T , D and update G and Conv1 ∼ Conv5.

Notice that we train T with both adapted and non-

adapted source feature maps. Training T solely on adapted

feature maps leads to similar performance, but requires

many runs with different initializations and learning rates

due to the instability of the GAN. Indeed, without train-

ing on source as well, the model is free to shift class as-

signments (e.g. class 1 becomes 2, class 2 becomes 3 etc.),

meanwhile the objective function is still optimized. Simil-

iar to [4], training classifier T on both source and adapted

images avoids this shift and greatly stabilizes training.

3.2. Conditional Generator Network Architecture

The generator network aims to generate real-image like

representations for synthetic images to reduce the domain

gap. To achieve this purpose, we design the generator as a

deep residual learning network that augments the represen-

tations of synthetic images through residual learning.

As shown in Figure 2, the generator consumes the fea-

ture from the bottom convolutional layer that preserves in-

formative low-level details for feature transformation. The

Conv1 feature maps are first augmented with an additional

noise channel to introduce randomness, then passed into the

3 × 3 convolution filters to adjust the feature dimension.

Afterwards, we use B residual blocks to learn the residual

representation between the features from synthetic and real

images, as a generative model. All residual blocks share

the identical layout consisting of two 3 × 3 convolutional

filters followed by batch-normalization layer and ReLU ac-

tivation. The learned residual representation is then used

to enhance the feature pooled from “Conv5” for the source

domain images by element-wise sum operations, produc-

ing transformed representations that appear to be generated

from the target domain.

3.3. Discriminator Network Architecture

As shown in Figure 2, the discriminator network is

trained to differentiate between the generated feature for the

source domain images and the original one from the target

domain images. Taking the vectorized feature maps as in-

put, the discriminator passes it through two fully-connected

layers followed by a sibling output layer with the sigmoid

activation, and predicts the probability that the input repre-

sentation is transformed. The output dimension of the first

two fully-connected layers are 4096 and 1024 respectively.

By trying to distinguish the generated representation

from the real image representation, an adversarial loss is

introduced to encourage the generator network to produce

the representation for the synthetic image similar to that of

the real image.

3.4. Testing on real images

In testing phase, a real image is passed through the CNN

feature extractor Conv1 ∼ Conv5 followed by the pixel-

wise classifier T . The generator G and D would not be

involved. Therefore, our network is supposed to have the

same inference complexity as the vanilla FCN-8s [26]. We

achieve 4.4 fps with one GeForce GTX 1080 Ti GPU.

4. Experiments

In this section, we present the experimental setup and

compare the results of our approach, its variations, and

some existing baseline methods.

4.1. Datasets and Evaluation

In our experiments, we use the Cityscapes datasets [10]

as target domain dataset, the SYNTHIA [35] or GTA [34]

dataset as source domain datasets. All of them are publicly

available.

Cityscapes [10] is a real-world, vehicle-egocentric image

dataset collected in 50 cities in Germany and nearby coun-

tries. It provides four disjoint subsets: 2,993 training im-

ages, 503 validation image, 1,531 test images, and 20,021

auxiliary images. All the training, validation, and test im-

ages are accurately annotated with per pixel category labels,

while the auxiliary set is coarsely labeled. There are 34 dis-

tinct categories in the dataset.

SYNTHIA [35] is a large dataset of synthetic im-

ages and provides a particular subset, called SYNTHIA-

RANDCITYSCAPES, to pair with Cityscapes. This sub-

set contains 9,400 images that are automatically annotated

with 12 object categories, one void class, and some un-

named classes. Note that the virtual city used to generate

the synthetic images does not correspond to any of the real

cities covered by Cityscapes. We abbreviate SYNTHIA-

RANDCITYSCAPES to SYNTHIA hereon.

GTA [34] is a synthetic, vehicle-egocentric image

dataset collected from the open world in the realistically

rendered computer game Grand Theft Auto V (GTA, or

GTA5). It contains 24,996 images, whose semantic seg-

mentation annotations are fully compatible with the classes

used in Cityscapes. Hence we use all the 19 official training

classes in our experiment.

Experiment setup. As in [21, 45], the Cityscapes vali-

dation set is used as our test set. We split 500 images out

of the Cityscapes training set for validation (i.e., to monitor

the convergence of the networks). In training, we randomly

sample mini-batches from the images (and their labels) in

source domain dataset and the real images (without labels)

in target domain dataset.

For the SYNTHIA dataset [35], we consider the 16 com-

mon classes shared with Cityscapes [10]: sky, building,

road, sidewalk, fence, vegetation, pole, car, traffic sign, per-
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Method IoU (/%)
Class-wide IoU (/%)

bike fence wall t-sign pole mbike t-light sky bus rider veg building car person sidewalk road

NoAdapt [21] 17.4 0.0 0.0 1.2 7.2 15.1 0.1 0.0 66.8 3.9 1.5 30.3 29.7 47.3 51.1 17.7 6.4

FCN Wld [21] 20.2 0.6 0.0 4.4 11.7 20.3 0.2 0.1 68.7 3.2 3.8 42.3 30.8 54.0 51.2 19.6 11.5

CL [45] 29.0 13.1 0.5 0.1 3.0 10.7 0.7 3.7 70.6 20.7 8.2 76.1 74.9 43.2 47.1 26.1 65.2

CCA [9] - 4.6 - - 5.4 - 1.2 1.2 81.0 16.1 6.4 81.3 78.3 63.5 37.4 25.6 62.7

Ours 41.2 29.5 3.0 3.4 21.3 31.5 17.9 19.5 69.4 41.6 25.0 67.4 73.5 76.5 68.5 25.8 85.0

Table 1: Comparison results for the semantic segmentation of the Cityscapes images [10] by adapting from SYNTHIA [35].

The IoUs of CCA [9] for fence, wall and pole are not reported, thus we could not show the mean IoU of CCA [9] for all the

16 classes. For the remaining 13 classes, the mean IoU of CCA [9] is 35.7%, while our method achieves 47.7%.

Method IoU (/%)
Class-wise IoU (/%)

bike fence wall t-sign pole mbike t-light sky bus rider veg terrain train building car person truck sidewalk road

NoAdapt [21] 21.1 0.0 3.1 7.4 1.0 16.0 0.0 10.4 58.9 3.7 1.0 76.5 13 0.0 47.7 67.1 36 9.5 18.9 31.9

FCN Wld [21] 27.1 0.0 5.4 14.9 2.7 10.9 3.5 14.2 64.6 7.3 4.2 79.2 21.3 0.0 62.1 70.4 44.1 8.0 32.4 70.4

CL [45] 28.9 14.6 11.9 6.0 11.1 8.4 16.8 16.3 66.5 18.9 9.3 75.7 13.3 0.0 71.7 55.2 38.0 18.8 22.0 74.9

Ours 44.5 35.4 10.9 13.5 33.7 38.5 25.5 29.4 65.8 45.2 32.4 77.9 37.6 0.0 70.7 77.8 75.1 39.2 49.0 89.2

Table 2: Comparison results for the semantic segmentation of the Cityscapes images [10] by adapting from GTA [34]. CCA

[9] does not report the experimental results on GTA dataset [34], thus is omitted in this table.

son, bicycle, motorcycle, traffic light, bus, wall, and rider.

For the GTA dataset [34], we consider the 19 common

classes shared with Cityscapes [10]: bike, fence, wall, traf-

fic sign, pole, motorcycle, traffic light, sky, bus, rider, veg-

etation, terrain, train, building, car, person, truck, sidewalk

and road.

Evaluation. We use the evaluation code released along

with the Cityscapes dataset to evaluate our results. It calcu-

lates the PASCAL VOC [13] intersection-over-union, i.e.,

IoU = TP
TP + FP + FN

, where TP, FP, and FN are the numbers

of true positive, false positive, and false negative pixels, re-

spectively, determined over the whole test set. Since we

have to resize the images before feeding them to the seg-

mentation network, we resize the output segmentation mask

back to the original image size before running the evaluation

against the groundtruth annotations.

4.2. Implementation Details

In our experiments, we use FCN-8s [26] as our backbone

network. We initialize it with VGG-19 [38], and then train

it using the Adam optimizer [23]. Each mini-batch consists

of 5 source images and 5 target images, while we use the

largest possible minibatch of 15 source images when we

train the baseline network with no adaptation. The network

is implemented in PyTorch. Our machine is equipped with

190 GB memory and 8 GeForce GTX 1080 Ti GPUs.

All images are resized to 480×960, thus, the feature map

of Conv1 output is [64, 339, 579]. Consequently, z is a ma-

trix of 339 × 579 elements, each of which is sampled from

a uniform distribution zij ∼ U(−1, 1). z is concatenated

to the Conv1 feature map as an extra channel, and fed to a

3× 3 convolutional layer with input channel 65 and output

channel 64. We set B = 16 for the number of the residual

blocks, where each block contains 64 convolutional filters.

4.3. Performance Comparison

We report the final semantic segmentation results on the

test data of the target domain in this section. We compare

our approach to the following competing methods.

No adaptation (NoAdapt). We directly train the FCN-

8s model on SYNTHIA and GTA without any domain adap-

tation. This is the most basic baseline for our experiments.

FCNs in the wild (FCN Wld) [21] introduces a pixel-

level adversarial loss to the intermediate layers of the net-

work and impose constraints on label statistics to the net-

work output.

Curriculum learning (CL) [45] proposes a curriculum-

style learning approach to minimize the domain gap in se-

mantic segmentation. The curriculum domain adaptation

first solves easy tasks such as estimating label distributions,

then infers the necessary properties about the target domain.

Cross city adaptation (CCA) [9] refines the pre-trained

semantic segmentation network by integrating static-object

priors with the global class-specific learning framework.

Their method is particularly designed for cross-domain dis-

crimination on road scene images across different cities.

The comparison results are shown in Table 1 and Ta-

ble 2. We note that all domain adaptation results are sig-

nificantly better than those without adaptation (NoAdapt),

which demonstrates the large domain gap between syn-

thetic urban images and real images. In both datasets,

our proposed method achieves higher class-wise IoU than

the NoAdapt baseline for any class, and the mean IoU of

our method is around 23% higher than that of the NoAd-

apt baseline. These results verify the effectiveness of the

proposed structured domain adaptation method. Compared

with the state-of-the-arts approach [21, 45, 9], our method

also outperforms them by a large margin of around 12% ∼
20% IoU. Note that the IoUs of CCA [9] of fence, wall and
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(a) Input image. (b) From SYNTHIA. (c) From GTA. (d) Groundtruth.

Figure 3: Qualitative Results. (a). Input images. (b). Testing results of the model adapted from SYNTHIA dataset [35]. (c).

Testing results of the model adapted from GTA dataset [34]. (d). Groundtruth annotations.

pole are not reported, thus we could not show the mean IoU

of CCA [9] for all the 16 classes. For the remaining 13

classes, the IoU of CCA [9] is 35.7%, while our method

achieves 47.7%, a significant improvement of 12%. Sev-

eral representative results are shown in Figure 3.

4.3.1 On the amount of synthetic data

From Table 1, 2 and Figure 3, we observe that the adap-

tation from GTA [34] is better than the adaptation from

SYNTHIA [35], partly due to the reason that GTA dataset

contains more images than SYNTHIA dataset (24, 996 v.s.

9, 400). Thus, a natural question to ask is: given that the

synthetic images are easy to collect and annotate, what is

the trend of segmentation performance w.r.t the amount of

synthetic data? We experimentally investigate this problem.

As shown in Figure 4a, the IoUs of models adapted from

both SYNTHIA [35] and GTA [34] monotonously increase

w.r.t the portion of source dataset (i.e., the number of train-

ing synthetic images), yet the gains are dropping slowly

when more synthetic images are used, especially for GTA

as it contains more images. The trends in Figure 4a indicate:

1) Using more synthetic training data does improve the seg-

mentation performance considerably, e.g., using 25% v.s.

50% of SYNTHIA data, the IoU improves by about 10%;

2) The IoU tends to be saturate when more synthetic images

are added. Beyond a substantial amount of synthetic data,

the diversity of the scenes in the training images may mat-
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Figure 4: (a) The change of IoU w.r.t various portions of

synthetic images. (b) The change of training time w.r.t var-

ious portions of synthetic images.

ter more than the number of the training samples. Figure 4b

presents the training time using different portions of source

dataset.

4.4. Ablation Studies

We investigate the effectiveness of different components

of the proposed structured domain adaptation framework.

The performance achieved by different variants and param-

eter settings are reported in the following.

4.4.1 The effectiveness of conditional generator

To verify the importance of our conditional generator in en-

hancing the feature maps, we compare it with a simple base-

line “Skip Pooling” proposed in [2]. We also try to train our
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IoU (/%) SYNTHIA GTA

Skip Pooling 22.7 24.9

Without Generaror 17.1 20.5

With Generator 41.2 44.5

Table 3: With/Without the conditional generator.

network without the conditional generator, i.e., we remove

the conditional generator G, and only keep the feature ex-

tractor, pixel-wise classifier T and the discriminator D. We

note that this shares the spirit with [14] that tries to learn

domain-invariant features with a domain classifier.

The experimental results are shown in Table 3. Our con-

ditional generator outperforms “Skip Pooling” by around

20% mean IoU in both datasets, which validates that our

method can effectively incorporate fine-grained details from

low-level layers to improve semantic segmentation.

When the conditional generator is removed, the IoU sig-

nificantly drops around 24%. This outcome verifies our

previous hypothesis, e.g., simply learning domain-invariant

features fails to handle the structured domain adaptation

problem due to the large prediction space. In view of the

importance of the conditional generator, we investigate its

different design choices by the following experiments.

4.4.2 Different lower layers for learning generator

The proposed generator leverages fine-grained details of

synthetic images from representations of lower-level convo-

lutional layers. In particular, we employ the features from

“Conv1” as the inputs for learning the generator. To validate

the effectiveness of this setting, we conduct additional ex-

periments using features from “Conv2” to “Conv5”, as well

as from the original input image directly for learning the

generator, respectively. As shown in Figure 5a, the perfor-

mance consistently decreases by employing the representa-

tions from higher convolutional layers.

In general, deep features in standard CNNs eventually

evolve from general to specific along the network, and

the transferability of features and classifiers will decrease

when the cross-domain discrepancy increases [44]. In other

words, the shifts in the data distributions linger even af-

ter multilayer feature abstractions, and the lower layers

can capture more low-level details than the higher layers.

Therefore, using low-level features from “Conv1” provides

the best performance among all convolutional layers.

In addition, we observe that directly learning the gen-

erator from the input images produces similar or slightly-

higher IoU in testing phase. However, the size of “Conv1”

feature maps is only half of the original image due to the fact

that the “Conv1” layer has stride 2, hence we feed “Conv1”

layer outputs rather than the original images to the generator

for efficient computation.

Image Conv1 Conv2 Conv3 Conv4 Conv5

input to generator
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(a) Different lower layer.

1 2 4 8 16 32

#residual blocks

20

25

30

35

40

45

50

Io
U

GTA

SYNTHIA

(b) Number of residual blocks.

Figure 5: Different design choices for the conditional gener-

ator. (a) The tesing IoU for domain adaptation from differ-

ent lower layers. (b) The testing IoU w.r.t different numbers

of the residual blocks.

IoU (/%) SYNTHIA GTA

Without Noise 40.7 43.2

With Noise 41.2 44.5

Table 4: With/Without the noise channel.

4.4.3 On the number of residual blocks

We also vary the number of residual blocks. As shown in

Figure 5b, the testing IoU grows w.r.t. the number of resid-

ual blocks B, but the gains are diminishing when B is rela-

tively large. Due to the minor IoU gap between B = 16 and

B = 32, we simply use B = 16 for computation efficiency.

4.4.4 How much does the noise channel contribute?

We conduct controlled experiments to verify the effective-

ness of the noise channel. As shown in Table 4, the noise

channel can marginally improve the IoU of the proposed

methods. By conditioning on both source image feature

map and noise input, our model can even create an unlim-

ited number of training samples.

5. Conclusion

In this paper, we address structured domain adaptation

for the semantic segmentation of urban scenes. We propose

a GAN-based approach to this problem, and learn a condi-

tional generator to transform the feature maps of source do-

main images as if they were extracted from target domain

images. We use a discriminator to encourage realistic trans-

formations. Our method outperforms other state-of-the-art

approaches that concern domain adaptation from simulated

images to real photos of urban traffic scenes.
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