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Abstract

Most methods for object instance segmentation require

all training examples to be labeled with segmentation

masks. This requirement makes it expensive to annotate new

categories and has restricted instance segmentation models

to ∼100 well-annotated classes. The goal of this paper is to

propose a new partially supervised training paradigm, to-

gether with a novel weight transfer function, that enables

training instance segmentation models on a large set of cat-

egories all of which have box annotations, but only a small

fraction of which have mask annotations. These contribu-

tions allow us to train Mask R-CNN to detect and segment

3000 visual concepts using box annotations from the Visual

Genome dataset and mask annotations from the 80 classes

in the COCO dataset. We evaluate our approach in a con-

trolled study on the COCO dataset. This work is a first

step towards instance segmentation models that have broad

comprehension of the visual world.

1. Introduction

Object detectors have become significantly more accu-

rate (e.g., [10, 34]) and gained important new capabilities.

One of the most exciting is the ability to predict a fore-

ground segmentation mask for each detected object (e.g.,

[15]), a task called instance segmentation. In practice, typi-

cal instance segmentation systems are restricted to a narrow

slice of the vast visual world that includes only around 100

object categories.

A principle reason for this limitation is that state-of-the-

art instance segmentation algorithms require strong super-

vision and such supervision may be limited and expensive

to collect for new categories [23]. By comparison, bound-

ing box annotations are more abundant and less expensive

[4]. This fact raises a question: Is it possible to train high-

quality instance segmentation models without complete in-

stance segmentation annotations for all categories? With

this motivation, our paper introduces a new partially su-

pervised instance segmentation task and proposes a novel

transfer learning method to address it.
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Figure 1. We explore training instance segmentation models

with partial supervision: a subset of classes (green boxes) have

instance mask annotations during training; the remaining classes

(red boxes) have only bounding box annotations. This image

shows output from our model trained for 3000 classes from Visual

Genome, using mask annotations from only 80 classes in COCO.

We formulate the partially supervised instance segmen-

tation task as follows: (1) given a set of categories of in-

terest, a small subset has instance mask annotations, while

the other categories have only bounding box annotations;

(2) the instance segmentation algorithm should utilize this

data to fit a model that can segment instances of all object

categories in the set of interest. Since the training data is a

mixture of strongly annotated examples (those with masks)

and weakly annotated examples (those with only boxes), we

refer to the task as partially supervised.

The main benefit of partially supervised vs. weakly-

supervised training (c.f . [18]) is it allows us to build a large-

scale instance segmentation model by exploiting both types

of existing datasets: those with bounding box annotations

over a large number of classes, such as Visual Genome

[20], and those with instance mask annotations over a small

number of classes, such as COCO [23]. As we will show,

this enables us to scale state-of-the-art instance segmenta-

tion methods to thousands of categories, a capability that is

critical for their deployment in real world uses.

To address partially supervised instance segmentation,

we propose a novel transfer learning approach built on

Mask R-CNN [15]. Mask R-CNN is well-suited to our
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task because it decomposes the instance segmentation prob-

lem into the subtasks of bounding box object detection and

mask prediction. These subtasks are handled by dedicated

network ‘heads’ that are trained jointly. The intuition be-

hind our approach is that once trained, the parameters of

the bounding box head encode an embedding of each object

category that enables the transfer of visual information for

that category to the partially supervised mask head.

We materialize this intuition by designing a parameter-

ized weight transfer function that is trained to predict a cat-

egory’s instance segmentation parameters as a function of

its bounding box detection parameters. The weight transfer

function can be trained end-to-end in Mask R-CNN using

classes with mask annotations as supervision. At inference

time, the weight transfer function is used to predict the in-

stance segmentation parameters for every category, thus en-

abling the model to segment all object categories, including

those without mask annotations at training time.

We explore our approach in two settings. First, we use

the COCO dataset [23] to simulate the partially supervised

instance segmentation task as a means of establishing quan-

titative results on a dataset with high-quality annotations

and evaluation metrics. Specifically, we split the full set of

COCO categories into a subset with mask annotations and

a complementary subset for which the system has access to

only bounding box annotations. Because the COCO dataset

involves only a small number (80) of semantically well-

separated classes, quantitative evaluation is precise and re-

liable. Experimental results show that our method improves

results over a strong baseline with up to a 40% relative in-

crease in mask AP on categories without training masks.

In our second setting, we train a large-scale instance

segmentation model on 3000 categories using the Visual

Genome (VG) dataset [20]. VG contains bounding box an-

notations for a large number of object categories, however

quantitative evaluation is challenging as many categories

are semantically overlapping (e.g., near synonyms) and the

annotations are not exhaustive, making precision and recall

difficult to measure. Moreover, VG is not annotated with

instance masks. Instead, we use VG to provide qualitative

output of a large-scale instance segmentation model. Out-

put of our model is illustrated in Figure 1 and 5.

2. Related Work

Instance segmentation. Instance segmentation is a highly

active research area [12, 13, 5, 32, 33, 6, 14, 21, 19, 2], with

Mask R-CNN [15] representing the current state-of-the-art.

These methods assume a fully supervised training scenario

in which all categories of interest have instance mask anno-

tations during training. Fully supervised training, however,

makes it difficult to scale these systems to thousands of cat-

egories. The focus of our work is to relax this assumption

and enable training models even when masks are available

for only a small subset of categories. To do this, we develop

a novel transfer learning approach built on Mask R-CNN.

Weight prediction and task transfer learning. Instead of

directly learning model parameters, prior work has explored

predicting them from other sources (e.g., [11]). In [8], im-

age classifiers are predicted from the natural language de-

scription of a zero-shot category. In [38], a model regres-

sion network is used to construct the classifier weights from

few-shot examples, and similarly in [27], a small neural net-

work is used to predict the classifier weights of the compo-

sition of two concepts from the classifier weights of each in-

dividual concept. Here, we design a model that predicts the

class-specific instance segmentation weights used in Mask

R-CNN, instead of training them directly, which is not pos-

sible in our partially supervised training scenario.

Our approach is also a type of transfer learning [28]

where knowledge gained from one task helps with another

task. Most related to our work, LSDA [17] transforms

whole-image classification parameters into object detection

parameters through a domain adaptation procedure. LSDA

can be seen as transferring knowledge learned on an im-

age classification task to an object detection task, whereas

we consider transferring knowledge learned from bounding

box detection to instance segmentation.

Weakly supervised semantic segmentation. Prior work

trains semantic segmentation models from weak supervi-

sion. Image-level labels and object size constraints are used

in [30], while other methods use boxes as supervision for

expectation-maximization [29] or iterating between propos-

als generation and training [4]. Point supervision and ob-

jectness potentials are used in [3]. Most work in this area

addresses only semantic segmentation (not instance seg-

mentation), treats each class independently, and relies on

hand-crafted bottom-up proposals that generalize poorly.

Weakly supervised instance segmentation is addressed in

[18] by training an instance segmentation model over the

bottom-up GrabCut [35] foreground segmentation results

from the bounding boxes. Unlike [18], we aim to exploit

all existing labeled data rather than artificially limiting it.

Our work is also complementary in the sense that bottom-up

segmentation methods may be used to infer training masks

for our weakly-labeled examples. We leave this extension

to future work.

Visual embeddings. Object categories may be modeled by

continuous ‘embedding’ vectors in a visual-semantic space,

where nearby vectors are often close in appearance or se-

mantic ontology. Class embedding vectors may be obtained

via natural language processing techniques (e.g. word2vec

[26] and GloVe [31]), from visual appearance information

(e.g. [7]), or both (e.g. [37]). In our work, the parameters

of Mask R-CNN’s box head contain class-specific appear-

ance information and can be seen as embedding vectors
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Figure 2. Detailed illustration of our MaskX R-CNN method. Instead of directly learning the mask prediction parameters wseg, MaskX

R-CNN predicts a category’s segmentation parameters wseg from its corresponding box detection parameters wdet, using a learned weight

transfer function T . For training, T only needs mask data for the classes in set A, yet it can be applied to all classes in set A ∪ B at test

time. We also augment the mask head with a complementary fully connected multi-layer perceptron (MLP).

learned by training for the bounding box object detection

task. The class embedding vectors enable transfer learning

in our model by sharing appearance information between

visually related classes. We also compare with the NLP-

based GloVe embeddings [31] in our experiments.

3. Learning to Segment Every Thing

Let C be the set of object categories (i.e., ‘things’ [1])

for which we would like to train an instance segmentation

model. Most existing approaches assume that all training

examples in C are annotated with instance masks. We re-

lax this requirement and instead assume that C = A ∪ B

where examples from the categories in A have masks, while

those in B have only bounding boxes. Since the examples

of the B categories are weakly labeled w.r.t. the target task

(instance segmentation), we refer to training on the combi-

nation of strong and weak labels as a partially supervised

learning problem. Noting that one can easily convert in-

stance masks to bounding boxes, we assume that bounding

box annotations are also available for classes in A.

Given an instance segmentation model like Mask R-

CNN that has a bounding box detection component and a

mask prediction component, we propose the MaskX R-

CNN method that transfers category-specific information

from the model’s bounding box detectors to its instance

mask predictors.

3.1. Mask Prediction Using Weight Transfer

Our method is built on Mask R-CNN [15], because it

is a simple instance segmentation model that also achieves

state-of-the-art results. In brief, Mask R-CNN can be seen

as augmenting a Faster R-CNN [34] bounding box detec-

tion model with an additional mask branch that is a small

fully convolutional network (FCN) [24]. At inference time,

the mask branch is applied to each detected object in or-

der to predict an instance-level foreground segmentation

mask. During training, the mask branch is trained jointly

and in parallel with the standard bounding box head found

in Faster R-CNN.

In Mask R-CNN, the last layer in the bounding box

branch and the last layer in the mask branch both con-

tain category-specific parameters that are used to perform

bounding box classification and instance mask prediction,

respectively, for each category. Instead of learning the

category-specific bounding box parameters and mask pa-

rameters independently, we propose to predict a category’s

mask parameters from its bounding box parameters using a

generic, category-agnostic weight transfer function that can

be jointly trained as part of the whole model.

For a given category c, let wc
det be the class-specific ob-

ject detection weights in the last layer of the bounding box

head, and wc
seg be the class-specific mask weights in the

mask branch. Instead of treating wc
seg as model parame-

ters, wc
seg is parameterized using a generic weight prediction

function T (·):
wc

seg = T (wc
det; θ), (1)

where θ are class-agnostic, learned parameters.

The same transfer function T (·) may be applied to any

category c and, thus, θ should be set such that T gen-

eralizes to classes whose masks are not observed during

training. We expect that generalization is possible because

the class-specific detection weights wc
det can be seen as an

appearance-based visual embedding of the class.

T (·) can be implemented as a small fully connected neu-

ral network. Figure 2 illustrates how the weight transfer

function fits into Mask R-CNN to form MaskX R-CNN. As

a detail, note that the bounding box head contains two types

of detection weights: the RoI classification weights wc
cls and

the bounding box regression weights wc
box. We experiment

with using either only a single type of detection weights (i.e.

wc
det = wc

cls or wc
det = wc

box) or using the concatenation of

the two types of weights (i.e. wc
det = [wc

cls, w
c
box]).

3.2. Training

During training, we assume that for the two sets of

classes A and B, instance mask annotations are available
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only for classes in A but not for classes in B, while all

classes in A and B have bounding box annotations avail-

able. As shown in Figure 2, we train the bounding box

head using the standard box detection losses on all classes in

A∪B, but only train the mask head and the weight transfer

function T (·) using a mask loss on the classes in A. Given

these losses, we explore two different training procedures:

stage-wise training and end-to-end training.

Stage-wise training. As Mask R-CNN can be seen as aug-

menting Faster R-CNN with a mask head, a possible train-

ing strategy is to separate the training procedure into detec-

tion training (first stage) and segmentation training (second

stage). In the first stage, we train a Faster R-CNN using only

the bounding box annotations of the classes in A ∪ B, and

then in the second stage the additional mask head is trained

while keeping the convolutional features and the bounding

box head fixed. In this way, the class-specific detection

weights wc
det of each class c can be treated as fixed class em-

bedding vectors that do not need to be updated when train-

ing the second stage. This approach has the practical bene-

fit of allowing us to train the box detection model once and

then rapidly evaluate design choices for the weight transfer

function. It also has disadvantages, which we discuss next.

End-to-end joint training. It was shown that for Mask R-

CNN, multi-task training can lead to better performance

than training on each task separately. The aforementioned

stage-wise training mechanism separates detection training

and segmentation training, and may result in inferior per-

formance. Therefore, we would also like to jointly train

the bounding box head and the mask head in an end-to-

end manner. In principle, one can directly train with back-

propagation using the box losses on classes in A ∪ B and

the mask loss on classes in A. However, this may cause

a discrepancy in the class-specific detection weights wc
det

between set A and B, since only wc
det for c ∈ A will re-

ceive gradients from the mask loss through the weight trans-

fer function T (·). We would like wc
det to be homogeneous

between A and B so that the predicted wc
seg = T (wc

det; θ)
trained on A can better generalize to B.

To address this discrepancy, we take a simple approach:

when back-propagating the mask loss, we stop the gradient

with respect to wc
det, that is, we only compute the gradient of

the predicted mask weights T (wc
det; θ) with respect to trans-

fer function parameter θ but not bounding box weight wc
det.

This can be implemented as wc
seg = T (stop grad(wc

det); θ)
in most neural network toolkits.

3.3. Baseline: Class­Agnostic Mask Prediction

DeepMask [32] established that it is possible to train

a deep model to perform class-agnostic mask prediction

where an object mask is predicted regardless of the cate-

gory. A similar result was also shown for Mask R-CNN

with only a small loss in mask quality [15]. In additional

experiments, [32] demonstrated if the class-agnostic model

is trained to predict masks on a subset of the COCO cate-

gories (specifically the 20 from PASCAL VOC [9]) it can

generalize to the other 60 COCO categories at inference

time. Based on these results, we use Mask R-CNN with

a class-agnostic FCN mask prediction head as a baseline.

Evidence from [32] and [15] suggest that this is a strong

baseline. Next, we introduce an extension that can improve

both the baseline and our proposed weight transfer function.

We also compare with a few other baselines for unsuper-

vised or weakly supervised instance segmentation in §4.3.

3.4. Extension: Fused FCN+MLP Mask Heads

Two types of mask heads are considered for Mask R-

CNN in [15]: (1) an FCN head, where the M × M mask

is predicted with a fully convolutional network, and (2) an

MLP head, where the mask is predicted with a multi-layer

perceptron consisting of fully connected layers, more sim-

ilar to DeepMask. In Mask R-CNN, the FCN head yields

higher mask AP. However, the two designs may be com-

plementary. Intuitively, the MLP mask predictor may better

capture the ‘gist’ of an object while the FCN mask predictor

may better capture the details (such as the object boundary).

Based on this observation, we propose to improve both the

baseline class-agnostic FCN and our weight transfer func-

tion (which uses an FCN) by fusing them with predictions

from a class-agnostic MLP mask predictor. Our experi-

ments will show that this extension brings improvements

to both the baseline and our transfer approach.

When fusing class-agnostic and class-specific mask pre-

dictions for K classes, the two scores are added into a final

K ×M ×M output, where the class-agnostic mask scores

(with shape 1×M×M ) are tiled K times and added to every

class. Then, the K×M×M mask scores are turned into per-

class mask probabilities through a sigmoid unit, and resized

to the actual bounding box size as final instance mask for

that bounding box. During training, binary cross-entropy

loss is applied on the K ×M ×M mask probabilities.

4. Experiments on COCO

We evaluate our method on the COCO dataset [23],

which is small scale w.r.t. the number of categories but

contains exhaustive mask annotations for 80 categories.

This property enables rigorous quantitative evaluation us-

ing standard detection metrics, like average precision (AP).

4.1. Evaluation Protocol and Baselines

We simulate the partially supervised training scenario on

COCO by partitioning the 80 classes into sets A and B, as

described in §3. We consider two split types: (1) The 20/60

split used by DeepMask [32] that divides the COCO cate-

gories based on the 20 contained in PASCAL VOC [9] and

the 60 that are not. We refer to these as the ‘voc’ and ‘non-

voc’ category sets from here on. (2) We also conduct exper-
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voc → non-voc non-voc → voc

method AP on B AP on A AP on B AP on A

transfer w/ randn 15.4 35.2 19.9 31.1

transfer w/ GloVe [31] 17.3 35.2 21.9 31.1

transfer w/ cls 18.1 35.1 25.2 31.1

transfer w/ box 19.8 35.2 25.7 31.1

transfer w/ cls+box 20.2 35.2 26.0 31.2

class-agnostic (baseline) 14.2 34.4 21.5 30.7

fully supervised (oracle) 30.7 35.0 35.0 30.7

(a) Ablation on input to T . ‘cls’ is RoI classification weights, ‘box’

is box regression weights, and‘cls+box’ is both weights. We also com-

pare with the NLP-based GloVe vectors [31]. Our transfer function T
improves the AP on B while remaining on par with the oracle on A.

voc → non-voc non-voc → voc

method AP on B AP on A AP on B AP on A

transfer w/ 1-layer, none 19.2 35.2 25.3 31.2

transfer w/ 2-layer, ReLU 19.7 35.3 25.1 31.1

transfer w/ 2-layer, LeakyReLU 20.2 35.2 26.0 31.2

transfer w/ 3-layer, ReLU 19.3 35.2 26.0 31.1

transfer w/ 3-layer, LeakyReLU 18.9 35.2 25.5 31.1

(b) Ablation on the structure of T . We vary the number of fully connected lay-

ers in the weight transfer function T , and try both ReLU and LeakyReLU as acti-

vation function in the hidden layers. The results show that ‘2-layer, LeakyReLU’

works best, but in general T is robust to specific implementation choices.

voc → non-voc non-voc → voc

method AP on B AP on A AP on B AP on A

class-agnostic 14.2 34.4 21.5 30.7

class-agnostic+MLP 17.1 35.1 22.8 31.3

transfer 20.2 35.2 26.0 31.2

transfer+MLP 21.3 35.4 26.6 31.4

(c) Impact of the MLP mask branch. Adding the class-agnostic MLP

mask branch (see §3.4) improves the performance of classes in set B

for both the class-agnostic baseline and our weight transfer approach.

stop grad voc → non-voc non-voc → voc

method training on wdet AP on B AP on A AP on B AP on A

class-agnostic sw n/a 14.2 34.4 21.5 30.7

transfer sw n/a 20.2 35.2 26.0 31.2

class-agnostic e2e n/a 19.2 36.8 23.9 32.5

transfer e2e 20.2 37.7 24.8 33.2

transfer e2e X 22.2 37.6 27.6 33.1

(d) Ablation on the training strategy. We try both stage-wise (‘sw’) and end-

to-end (‘e2e’) training (see §3.2), and whether to stop gradient from T to wdet.

End-to-end training improves the results and it is crucial to stop gradient on wdet.

Table 1. Ablation study of our method. We use ResNet-50-FPN as our backbone network, and ‘cls+box’ and ‘2-layer, LeakyReLU’ as

the default input and structure of T . Results in (a,b,c) are based on stage-wise training, and we study the impact of end-to-end training in

(d). Mask AP is evaluated on the COCO dataset val2017 split between the 20 PASCAL VOC categories (‘voc’) and the 60 remaining

categories (‘non-voc’), as in [32]. Performance on the strongly supervised set A is shown in gray.

iments using multiple trials with random splits of different

sizes. These experiments allow us to characterize any bias

in the voc/non-voc split and also understand what factors in

the training data lead to better mask generalization.

Implementation details. We train our model on the COCO

train2017 split and test on val2017.1 Each class has a

1024-d RoI classification parameter vector wc
cls and a 4096-

d bounding box regression parameter vector wc
box in the

detection head, and a 256-d segmentation parameter vec-

tor wc
seg in the mask head. The output mask resolution is

M × M = 28 × 28. In all our experimental analysis be-

low, we use either ResNet-50-FPN or ResNet-101-FPN [22]

as the backbone architecture for Mask R-CNN, initialized

from a ResNet-50 or a ResNet-101 [16] model pretrained

on the ImageNet-1k image classification dataset [36].

We follow the training hyper-parameters suggested for

Mask R-CNN in [15]. Each minibatch has 16 images ×

512 RoIs-per-images, and the network is trained for 90k it-

erations on 8 GPUs. We use 1e-4 weight decay and 0.9

momentum, and an initial learning rate of 0.02, which is

multiplied by 0.1 after 60k and 80k iterations. We evaluate

instance segmentation performance using average precision

(AP), which is the standard COCO metric and equal to the

mean of average precision from 0.5 to 0.95 IoU threshold

of all classes.

Baseline and oracle. We compare our method to class-

agnostic mask prediction using either an FCN or fused

1The COCO train2017 and val2017 splits are the same as the

trainval35k and minival splits used in prior work, such as [15].

FCN+MLP structure. In these approaches, instead of pre-

dicting each class c’s segmentation parameters wc
seg from

its bounding box classification parameters wc
det, all the cate-

gories share the same learned segmentation parameters wc
seg

(no weight transfer function is involved). Evidence from

DeepMask and Mask R-CNN, as discussed in §3.3, suggests

that this approach is a strong baseline. In addition, we com-

pare our approach with unsupervised or weakly supervised

instance segmentation approaches in §4.3.

We also evaluate an ‘oracle’ model: Mask R-CNN

trained on all classes in A ∪ B with access to instance

mask annotations for all classes in A and B at training time.

This fully supervised model is a performance upper bound

for our partially supervised task (unless the weight transfer

function can improve over directly learning wc
seg).

4.2. Ablation Experiments

Input to T . In Table 1a we study the impact of the input

to the weight transfer function T . For transfer learning to

work, we expect that the input should capture information

about how the visual appearance of classes relate to each

other. To see if this is the case, we designed several in-

puts to T : a random Gaussian vector (‘randn’) assigned

to each class, an NLP-based word embedding using pre-

trained GloVe vectors [31] for each class, the weights from

the Mask R-CNN box head classifier (‘cls’), the weights

from the box regression (‘box’), and the concatenation of

both weights (‘cls+box’). We compare the performance of

our transfer approach with these different embeddings to the

strong baseline: class-agnostic Mask R-CNN.

First, Table 1a shows that the random control (‘randn’)
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Figure 3. Each point corresponds to our method on a random A/B

split of COCO classes. We vary |A| from 20 to 60 classes and

plot the relative change in mask AP on the classes in set B (those

classes without mask annotations) vs. the average number of mask

annotations per class in set A.

yields results on par with the baseline; they are slightly bet-

ter on voc→non-voc and worse in the other direction, which

may be attributed to noise. Next, the GloVe embedding

shows a consistent improvement over the baseline, which

indicates that these embeddings may capture some visual

information as suggested in prior work [39]. However, in-

puts ‘cls’, ‘box’ and ‘cls+box’ all strongly outperform the

NLP-based embedding (with ‘cls+box’ giving the best re-

sults), which matches our expectation since they encode vi-

sual information by design.

We note that all methods compare well to the fully su-

pervised Mask R-CNN oracle on the classes in set A. In

particular, our transfer approach slightly outperforms the

oracle for all input types. This results indicates that our

approach does not sacrifice anything on classes with strong

supervision, which is an important property.

Structure of T . In Table 1b we compare different imple-

mentations of T : as a simple affine transformation, or as a

neural network with 2 or 3 layers. Since LeakyReLU [25]

is used for weight prediction in [27], we try both ReLU and

LeakyReLU as activation function in the hidden layers. The

results show that a 2-layer MLP with LeakyReLU gives the

best mask AP on set B. Given this, we select the ‘cls+box,

2-layer, LeakyReLU’ implementation of T for all subse-

quent experiments.

Comparison of random A/B splits. Besides splitting

datasets into voc and non-voc, we also experiment with ran-

dom splits of the 80 classes in COCO, and vary the number

of training classes. We randomly select 20, 30, 40, 50 or 60

classes to include in set A (the complement forms set B),

perform 5 trials for each split size, and compare the perfor-

mance of our weight transfer function T on classes in B to

the class-agnostic baseline. The results are shown in Figure

3, where it can be seen that our method yields to up to over

40% relative increase in mask AP. This plot reveals a corre-

lation between relative AP increase and the average number

of training samples per class in set A. This indicates that to

maximize transfer performance to classes in set B it may be

more effective to collect a larger number of instance mask

samples for each object category in set A.

Impact of the MLP mask branch. As discussed in §3.4,

a class-agnostic MLP mask branch can be fused with either

the baseline or our transfer approach. In Table 1c we see

that either mask head fused with the MLP mask branch con-

sistently outperforms the corresponding unfused version.

This confirms our intuition that FCN-based mask heads and

MLP-based mask heads are complementary in nature.

Effect of end-to-end training. Up to now, all ablation

experiments use stage-wise training, because it is signifi-

cantly faster (the same Faster R-CNN detection model can

be reused for all experiments). However, as noted in §3.2,

stage-wise training may be suboptimal. Thus, Table 1d

compares stage-wise training to end-to-end training. In the

case of end-to-end training, we investigate if it is neces-

sary to stop gradients from T to wdet, as discussed. In-

deed, results match our expectation that end-to-end train-

ing can bring improved results, however only when back-

propagation from T to wdet is disabled. We believe this

modification is necessary in order to make the embedding

of classes in A homogeneous with those in B; a property

that is destroyed when only the embeddings for classes in

A are modified by back-propagation from T .

4.3. Results and Comparison of Our Full Method

Table 2 compares our full MaskX R-CNN method (i.e.,

Mask R-CNN with ‘transfer+MLP’ and T implemented

as ‘cls+box, 2-layer, LeakyReLU’) and the class-agnostic

baseline using end-to-end training. In addition, we also

compare with the following baseline approaches: a) un-

supervised mask prediction using GrabCut [35] foreground

segmentation over the Faster R-CNN detected object boxes

(Faster R-CNN tested w/ GrabCut) and b) weakly super-

vised instance segmentation similar to [18], which trains an

instance segmentation method (here we use Mask R-CNN)

on the GrabCut segmentation of the ground-truth boxes

(Mask R-CNN trained w/ GrabCut).

MaskX R-CNN outperforms these approaches by a large

margin (over 20% relative increase in mask AP). We also

experiment with ResNet-101-FPN as the backbone network

in the bottom half of Table 2. The trends observed with

ResNet-50-FPN generalize to ResNet-101-FPN, demon-

strating independence of the particular backbone used thus

far. Figure 4 shows example mask predictions from the

class-agnostic baseline and our approach.

5. Large-Scale Instance Segmentation

Thus far, we have experimented with a simulated ver-

sion of our true objective: training large-scale instance seg-

mentation models with broad visual comprehension. We
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Figure 4. Mask predictions from the class-agnostic baseline (top row) vs. our MaskX R-CNN approach (bottom row). Green boxes

are classes in set A while the red boxes are classes in set B. The left 2 columns are A = {voc} and the right 2 columns are A = {non-voc}.

voc → non-voc: test on B = {non-voc} non-voc → voc: test on B = {voc}

backbone method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

class-agnostic 19.2 36.4 18.4 11.5 23.3 24.4 23.9 42.9 23.5 11.6 24.3 33.7

Faster R-CNN tested w/ GrabCut 12.6 24.0 11.9 4.3 12.0 23.5 12.1 27.7 8.9 4.3 12.0 23.5

R-50-FPN Mask R-CNN trained w/ GrabCut 19.5 39.2 17.0 6.5 20.9 34.3 19.5 46.2 14.2 4.7 15.9 32.0

MaskX R-CNN (ours) 23.7 43.1 23.5 12.4 27.6 32.9 28.9 52.2 28.6 12.1 29.0 40.6

fully supervised (oracle) 33.0 53.7 35.0 15.1 37.0 49.9 37.5 63.1 38.9 15.1 36.0 53.1

class-agnostic 18.5 34.8 18.1 11.3 23.4 21.7 24.7 43.5 24.9 11.4 25.7 35.1

Faster R-CNN tested w/ GrabCut 13.0 24.6 12.1 4.5 12.3 24.4 12.3 27.6 9.5 4.5 12.3 24.4

R-101-FPN Mask R-CNN trained w/ GrabCut 19.7 39.7 17.0 6.4 21.2 35.8 19.6 46.1 14.3 5.1 16.0 32.4

MaskX R-CNN (ours) 23.8 42.9 23.5 12.7 28.1 33.5 29.5 52.4 29.7 13.4 30.2 41.0

fully supervised (oracle) 34.4 55.2 36.3 15.5 39.0 52.6 39.1 64.5 41.4 16.3 38.1 55.1

Table 2. End-to-end training of MaskX R-CNN. As in Table 1, we use ‘cls+box, 2-layer, LeakyReLU’ implementation of T and add the

MLP mask branch (‘transfer+MLP’), and follow the same evaluation protocol. We also report AP50 and AP75 (average precision evaluated

at 0.5 and 0.75 IoU threshold respectively), and AP over small (APS), medium (APM ), and large (APL) objects. Our method significantly

outperforms the baseline approaches in §4.3 on set B without mask training data for both ResNet-50-FPN and ResNet-101-FPN backbones.

believe this goal represents an exciting new direction for

visual recognition research and that to accomplish it some

form of learning from partial supervision may be required.

To take a step towards this goal, we train a large-

scale MaskX R-CNN model following the partially super-

vised task, using bounding boxes from the Visual Genome

(VG) dataset [20] and instance masks from the COCO

dataset [23]. The VG dataset contains 108077 images, and

over 7000 category synsets annotated with object bounding

boxes (but not masks). To train our model, we select the

3000 most frequent synsets as our set of classes A ∪ B for

instance segmentation, which covers all the 80 classes in

COCO. Since the VG dataset images have a large overlap

with COCO, when training on VG we take all the images

that are not in COCO val2017 split as our training set,

and validate our model on the rest of VG images. We treat

all the 80 VG classes that overlap with COCO as our set A

with mask data, and the remaining 2920 classes in VG as

our set B with only bounding boxes.

Training. We train our large-scale MaskX R-CNN model

using the stage-wise training strategy. Specifically, we train

a Faster R-CNN model to detect the 3000 classes in VG

using ResNet-101-FPN as our backbone network following

the hyper-parameters in §4.1. Then, in the second stage,

we add the mask head using our weight transfer function

T and the class-agnostic MLP mask prediction (i.e., ‘trans-

fer+MLP’), with the ‘cls+box, 2-layer, LeakyReLU’ imple-

mentation of T . The mask head is trained on subset of 80

COCO classes (set A) using the mask annotations in the

train2017 split of the COCO dataset.

Qualitative results. Mask AP is difficult to compute on

VG because it contains only box annotations. Therefore

we visualize results to understand the performance of our

model trained on all the 3000 classes in A ∪ B using our

weight transfer function. Figure 5 shows mask prediction

examples on validation images, where it can be seen that

our model predicts reasonable masks on those VG classes

not overlapping with COCO (set B, shown in red boxes).

This visualization shows several interesting properties of

our large-scale instance segmentation model. First, it has

learned to detect abstract concepts, such as shadows and

paths. These are often difficult to segment. Second, by sim-

ply taking the first 3000 synsets from VG, some of the con-

cepts are more ‘stuff’ like than ‘thing’ like. For example,
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Figure 5. Example mask predictions from our MaskX R-CNN on 3000 classes in Visual Genome. The green boxes are the 80 classes

that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without

mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,

but tends to fail at segmentation when the detected ‘tree’ is

more like a forest. Finally, the detector does a reasonable

job at segmenting whole objects and parts of those objects,

such as windows of a trolley car or handles of a refrigera-

tor. Compared to a detector trained on 80 COCO categories,

these results illustrate the exciting potential of systems that

can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance

segmentation by formulating a partially supervised learn-

ing paradigm in which only a subset of classes have in-

stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,

where a learned weight transfer function predicts how each

class should be segmented based on parameters learned

for detecting bounding boxes. Experimental results on the

COCO dataset demonstrate that our method greatly im-

proves the generalization of mask prediction to categories

without mask training data. Using our approach, we build a

large-scale instance segmentation model over 3000 classes

in the Visual Genome dataset. The qualitative results are en-

couraging and illustrate an exciting new research direction

into large-scale instance segmentation. They also reveal that

scaling instance segmentation to thousands of categories,

without full supervision, is an extremely challenging prob-

lem with ample opportunity for improved methods.
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