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Abstract

Image and sentence matching has made great progress

recently, but it remains challenging due to the large visual-

semantic discrepancy. This mainly arises from that the rep-

resentation of pixel-level image usually lacks of high-level

semantic information as in its matched sentence. In this

work, we propose a semantic-enhanced image and sentence

matching model, which can improve the image represen-

tation by learning semantic concepts and then organizing

them in a correct semantic order. Given an image, we first

use a multi-regional multi-label CNN to predict its semantic

concepts, including objects, properties, actions, etc. Then,

considering that different orders of semantic concepts lead

to diverse semantic meanings, we use a context-gated sen-

tence generation scheme for semantic order learning. It si-

multaneously uses the image global context containing con-

cept relations as reference and the groundtruth semantic or-

der in the matched sentence as supervision. After obtaining

the improved image representation, we learn the sentence

representation with a conventional LSTM, and then jointly

perform image and sentence matching and sentence genera-

tion for model learning. Extensive experiments demonstrate

the effectiveness of our learned semantic concepts and or-

der, by achieving the state-of-the-art results on two public

benchmark datasets.

1. Introduction

The task of image and sentence matching refers to mea-

suring the visual-semantic similarity between an image and

a sentence. It has been widely applied to the application

of image-sentence cross-modal retrieval, e.g., given an im-

age query to find similar sentences, namely image annota-

tion, and given a sentence query to retrieve matched images,

A quick cheetah is chasing a young 

gazelle on grass.

 Matched sentence:

 Semantic concepts:
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Figure 1. Illustration of the semantic concepts and order (best

viewed in colors).

namely text-based image search.

Although much progress in this area has been achieved,

it is still nontrivial to accurately measure the similarity be-

tween image and sentence, due to the existing huge visual-

semantic discrepancy. Taking an image and its matched

sentence in Figure 1 for example, main objects, properties

and actions appearing in the image are: {cheetah, gazelle,

grass}, {quick, young, green} and {chasing, running}, re-

spectively. These high-level semantic concepts are the es-

sential content to be compared with the matched sentence,

but they cannot be easily represented from the pixel-level

image. Most existing methods [12, 16, 23] jointly repre-

sent all the concepts by extracting a global CNN [30] fea-

ture vector, in which the concepts are tangled with each oth-

er. As a result, some primary foreground concepts tend to

be dominant, while other secondary background ones will

probably be ignored, which is not optimal for fine-grained

image and sentence matching. To comprehensively predic-

t all the semantic concepts for the image, a possible way

is to adaptively explore the attribute learning frameworks

[6, 21, 35, 37]. But such a method has not been well inves-

tigated in the context of image and sentence matching.

In addition to semantic concepts, how to correctly or-

ganize them, namely semantic order, plays an even more
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important role in the visual-semantic discrepancy. As illus-

trated in Figure 1, given the semantic concepts mentioned

above, if we incorrectly set their semantic order as: a quick

gazelle is chasing a young cheetah on grass, then it would

have completely different meanings compared with the im-

age content and matched sentence. But directly learning

the correct semantic order from semantic concepts is very

difficult, since there exist various incorrect orders that se-

mantically make sense. We could resort to the image global

context, since it already indicates the correct semantic order

from the appearing spatial relations among semantic con-

cepts, e.g., the cheetah is on the left of the gazelle. But it

is unclear how to suitably combine them with the semantic

concepts, and make them directly comparable to the seman-

tic order in the sentence.

Alternatively, we could generate a descriptive sentence

from the image as its representation. However, the image-

based sentence generation itself, namely image captioning,

is also a very challenging problem. Even those state-of-

the-art image captioning methods cannot always generate

very realistic sentences that capture all image details. The

image details are essential to the matching task, since the

global image-sentence similarity is aggregated from local

similarities in image details. Accordingly, these methods

cannot achieve very high performance for image and sen-

tence matching [3, 32].

In this work, to bridge the visual-semantic discrepan-

cy between image and sentence, we propose a semantic-

enhanced image and sentence matching model, which im-

proves the image representation by learning semantic con-

cepts and then organizing them in a correct semantic order.

To learn the semantic concepts, we exploit a multi-regional

multi-label CNN that can simultaneously predict multiple

concepts in terms of objects, properties, actions, etc. The

inputs of this CNN are multiple selectively extracted region-

s from the image, which can comprehensively capture all

the concepts regardless of whether they are primary fore-

ground ones. To organize the extracted semantic concept-

s in a correct semantic order, we first fuse them with the

global context of the image in a gated manner. The context

includes the spatial relations of all the semantic concepts,

which can be used as the reference to facilitate the seman-

tic order learning. Then we use the groundtruth semantic

order in the matched sentence as the supervision, by forc-

ing the fused image representation to generate the matched

sentence.

After enhancing the image representation with both se-

mantic concepts and order, we learn the sentence represen-

tation with a conventional LSTM [10]. Then the represen-

tations of image and sentence are matched with a structured

objective, which is in conjunction with another objective of

sentence generation for joint model learning. To demon-

strate the effectiveness of the proposed model, we perform

several experiments of image annotation and retrieval on t-

wo publicly available datasets, and achieve the state-of-the-

art results.

2. Related Work

2.1. Visual­semantic Embedding Based Methods

Frome et al. [7] propose the first visual-semantic em-

bedding framework, in which ranking loss, CNN [17] and

Skip-Gram [25] are used as the objective, image and word

encoders, respectively. Under the similar framework, Kiros

et al. [15] replace the Skip-Gram with LSTM [10] for sen-

tence representation learning, Vendrov et al. [31] use a new

objective that can preserve the order structure of visual-

semantic hierarchy, and Wang et al. [34] additionally con-

sider within-view constraints to learn structure-preserving

representations.

Yan and Mikolajczyk [38] associate the image and sen-

tence using deep canonical correlation analysis as the objec-

tive, where the matched image-sentence pairs have high cor-

relation. Based on the similar framework, Klein et al. [16]

use Fisher Vectors (FV) [27] to learn more discriminative

representations for sentences, Lev et al. [18] alternatively

use RNN to aggregate FV and further improve the perfor-

mance, and Plummer et al. [28] explore the use of region-

to-phrase correspondences. In contrast, our proposed mod-

el considers to bridge the visual-semantic discrepancy by

learning semantic concepts and order.

2.2. Image Captioning Based Methods

Chen and Zitnick [2] use a multimodal auto-encoder for

bidirectional mapping, and measure the similarity using the

cross-modal likelihood and reconstruction error. Mao et al.

[24] propose a multimodal RNN model to generate sen-

tences from images, in which the perplexity of generating

a sentence is used as the similarity. Donahue et al. [3] de-

sign a long-term recurrent convolutional network for image

captioning, which can be extended to image and sentence

matching as well. Vinyals et al. [32] develop a neural im-

age captioning generator and show the effectiveness on the

image and sentence matching. These models are originally

designed to predict grammatically-complete sentences, so

their performance on measuring the image-sentence simi-

larity is not very well. Different from them, our work fo-

cuses on the similarity measurement, which is especially

suitable for the task of image and sentence matching.

3. Semantic-enhanced Image and Sentence

Matching

In this section, we will detail our proposed semantic-

enhanced image and sentence matching model from the fol-

lowing aspects: 1) sentence representation learning with a
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Figure 2. The proposed semantic-enhanced image and sentence matching model.

conventional LSTM, 2) semantic concept extraction with a

multi-regional multi-label CNN, 3) semantic order learn-

ing with a context-gated sentence generation scheme, and

4) model learning with joint image and sentence matching

and sentence generation.

3.1. Sentence Representation Learning

For a sentence, its included nouns, verbs and adjectives

directly correspond to the visual semantic concepts of ob-

ject, property and action, respectively, which are already

given. The semantic order of these semantic-related word-

s is intrinsically exhibited by the sequential nature of sen-

tence. To learn the sentence representation that can capture

those semantic-related words and model their semantic or-

der, we use a conventional LSTM, similar to [15, 31]. The

LSTM has multiple components for information memoriz-

ing and forgetting, which can well suit the complex proper-

ties of semantic concepts and order. As shown in Figure 2

(a), we sequentially feed all the words of the sentence into

the LSTM at different timesteps, and then regard the hidden

state at the last timestep as the desired sentence representa-

tion s ∈ R
H .

3.2. Image Semantic Concept Extraction

For images, their semantic concepts refer to various ob-

jects, properties, actions, etc. The existing datasets do not

provide these information at all but only matched sentences,

so we have to predict them with an additional model. To

learn such a model, we manually build a training dataset

following [6, 37]. In particular, we only keep the nouns, ad-

jectives, verbs and numbers as semantic concepts, and elim-

inate all the semantic-irrelevant words from the sentences.

Considering that the size of the concept vocabulary is very

large, we ignore those words that have very low use fre-

quencies. In addition, we unify the different tenses of verbs,

and the singular and plural forms of nouns to further reduce

the vocabulary size. Finally, we obtain a vocabulary con-

taining K semantic concepts. Based on this vocabulary, we

can generate the training dataset by selecting multiple word-

s from sentences as the groundtruth semantic concepts.

Then, the prediction of semantic concepts is equiva-

lent to a multi-label classification problem. Many effec-

tive models on this problem have been proposed recent-

ly [8, 11, 13, 33, 35, 36, 37], which mostly learn various

CNN-based models as nonlinear mappings from images to

the desired multiple labels. Similar to [35, 37], we simply

use the VGGNet [30] pre-trained on the ImageNet dataset

[29] as our multi-label CNN. To suit the multi-label classifi-

cation, we modify the output layer to have K outputs, each

corresponding to the predicted confidence score of a seman-

tic concept. We then use the sigmoid activation instead of

softmax on the outputs, so that the task of multi-label clas-

sification is transformed to multiple tasks of binary clas-

sification. Given an image, its multi-hot representation of

groundtruth semantic concepts is yi ∈ {0, 1}K and the pre-

dicted score vector by the multi-label CNN is ŷi ∈ [0, 1]K ,

then the model can be learned by optimizing the following

objective:

Lcnn =
∑K

c=1
log(1 + e(−yi,cŷi,c)) (1)

During testing, considering that the semantic concepts

usually appear in image local regions and vary in size, we

perform the concept prediction in a regional way. Given a

testing image, we first selectively extract r image region-

s in a similar way as [35], and then resize them to square

shapes. As shown in Figure 2 (b), by separately feeding

these regions into the learned multi-label CNN, we can ob-

tain a set of predicted confidence score vectors. Note that

the model parameters are shared among all the regions. We

then perform element-wise max-pooling across these score

vectors to obtain a single vector, which includes the desired

confidence scores for all the semantic concepts.
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Figure 3. Illustration of using the global context as reference for

semantic order learning (best viewed in colors).

3.3. Image Semantic Order Learning

After obtaining the semantic concepts, how to reason-

ably organize them in a correct semantic order plays an

essential role to the image and sentence matching. Even

though based on the same set of semantic concepts, combin-

ing them in different orders could lead to completely oppo-

site meanings. For example in Figure 2 (b), if we organize

the extracted semantic concepts: giraffes, eating and bas-

ket as: a basket is eating two giraffes, then its meaning is

very different from the image content. To learn the seman-

tic order, we propose a context-gated sentence generation

scheme that uses the image global context as reference and

the sentence generation as supervision.

3.3.1 Global Context as Reference

It is not easy to learn the semantic order directly from sep-

arated semantic concepts, since the semantic order involves

not only the hypernym relations between concepts, but also

the textual entailment among phrases in high levels of se-

mantic hierarchy [31]. To deal with this, we propose to use

the image global context as auxiliary reference for semantic

order learning. As illustrated in Figure 3, the global context

can not only describe all the semantic concepts in a coarse

level, but also indicate their spatial relations with each oth-

er, e.g., two giraffe are standing in the left while the basket

is in the top left corner. When organizing the separated se-

mantic concepts, our model can refer to the global context

to find their relations and then combine them to facilitate

the prediction of semantic order. In practice, for efficient

implementation, we use a pre-trained VGGNet to process

the whole image content, and then extract the vector in the

last fully-connected layer as the desired global context, as

shown in Figure 2 (c).

To model such a reference procedure, a simple way is to

sum the global context with semantic concepts together. But

considering that the content of different images can be di-

verse, thus the relative importance of semantic concepts and

context is not equivalent in most cases. For those images

with complex content, their global context might be a bit

of ambiguous, so the semantic concepts are more discrim-

inative. To handle this, we design a gated fusion unit that

can selectively balance the relative importance of semantic

concepts and context. The unit acts as a gate that controls

how much information of the semantic concepts and con-

text contributes to their fused representation. As illustrated

in Figure 2 (d), after obtaining the normalized context vec-

tor x ∈ R
I and concept score vector p ∈ R

K , their fusion

by the gated fusion unit can be formulated as:

p̂ = ‖Wlp‖2, x̂ = ‖Wgx‖2, t = σ(Ulp + Ugx)

v = t ⊙ p̂ + (1 − t)⊙ x̂
(2)

where ‖·‖2 denotes the l2-normalization, and v ∈ R
H is the

fused representation of semantic concepts and global con-

text. The use of sigmoid function σ is to rescale each ele-

ment in the gate vector t ∈ R
H to [0, 1], so that v becomes

an element-wise weighted sum of p and x.

3.3.2 Sentence Generation as Supervision

To learn the semantic order based on the fused represen-

tation, a straightforward approach is to directly generate a

sentence from it, similar to image captioning [37]. Howev-

er, such an approach is infeasible resulting from the fol-

lowing problem. Although the current image captioning

methods can generate semantically meaningful sentences,

the accuracy of their generated sentences on capturing im-

age details is not very high. And even a little error in the

sentences can be amplified and further affect the measure-

ment of similarity, since the generated sentences are highly

semantic and the similarity is computed in a fine-grained

level. Accordingly, even the state-of-the-art image caption-

ing models [3, 24, 32] cannot perform very well on the im-

age and sentence matching task. We also implement a sim-

ilar model (as “ctx + sen”) in Section 4.3, but find it only

achieves inferior results.

In fact, it is unnecessary for the image and sentence

matching task to generate a grammatically-complete sen-

tence. We can alternatively regard the fused context and

concepts as the image representation, and supervise it using

the groundtruth semantic order in the matched sentence dur-

ing the sentence generation. As shown in Figure 2 (e), we

feed the image representation into the initial hidden state of

a generative LSTM, and ask it to be capable of generating

the matched sentence. During the cross-word and cross-

phrase generations, the image representation can thus learn

the hypernym relations between words and textual entail-

ment among phrases as the semantic order.

Given a sentence
{

wj |wj ∈ {0, 1}G
}
j=1,··· ,J

, where
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each word wj is represented as an one-hot vector, J is the

length of the sentence, and G is the size of word dictionary,

we can formulate the sentence generation as follows:

it = σ(Wwi(Fwt) +Whiht−1 + bi),

ft = σ(Wwf(Fwt) +Whfht−1 + bf),

ot = σ(Wwo(Fwt) +Whoht−1 + bo),

ĉt = tanh(Wwc(Fwt) +Whcht−1 + bc),

ct = ft ⊙ ct−1 + it ⊙ ĉt, ht = ot ⊙ tanh(ct),

qt = softmax(FT ht + bp), e = argmax(wt),

P (wt|wt−1,wt−2, · · · ,w0, x, p) = qt,e

(3)

where ct, ht, it, ft and ot are memory state, hidden state,

input gate, forget gate and output gate, respectively, e is the

index of wt in the word vocabulary, and F ∈ R
D×G is a

word embedding matrix. During the sentence generation, s-

ince all the words are predicted in a chain manner, the prob-

ability P of current predicted word is conditioned on all its

previous words, as well as the input semantic concepts p

and context x at the initial timestep.

3.4. Joint Matching and Generation

During the model learning, to jointly perform image and

sentence matching and sentence generation, we need to

minimize the following combined objectives:

L = Lmat + λ× Lgen (4)

where λ is a tuning parameter for balancing.

The Lmat is a structured objective that encourages the

cosine similarity scores of matched images and sentences

to be larger than those of mismatched ones:
∑

ik
max {0,m− sii + sik}+max {0,m− sii + ski}

where m is a margin parameter, sii is the score of matched

i-th image and i-th sentence, sik is the score of mismatched

i-th image and k-th sentence, and vice-versa with ski. We

empirically set the total number of mismatched pairs for

each matched pair as 128 in our experiments.

The Lgen is the negative conditional log-likelihood of

the matched sentence given the semantic concepts p and

context x:

−
∑

t
logP (wt|wt−1,wt−2, · · · ,w0, x, p)

where the detailed formulation of probability P is shown in

Equation 3. Note that we use the predicted semantic con-

cepts rather than groundtruth ones in our experiments.

All modules of our model excepting for the multi-

regional multi-label CNN can constitute a whole deep net-

work, which can be jointly trained in an end-to-end manner

from raw image and sentence to their similarity score. It

should be noted that we do not need to generate the sen-

tence during testing. We only have to compute the image

representation v from x and p, and then compare it with the

sentence representation s to obtain their cosine similarity s-

core.

4. Experimental Results

To demonstrate the effectiveness of the proposed model,

we perform several experiments in terms of image annota-

tion and retrieval on two publicly available datasets.

4.1. Datasets and Protocols

The two evaluation datasets and their experimental pro-

tocols are described as follows. 1) Flickr30k [39] consists of

31783 images collected from the Flickr website. Each im-

age is accompanied with 5 human annotated sentences. We

use the public training, validation and testing splits [15],

which contain 28000, 1000 and 1000 images, respective-

ly. 2) MSCOCO [19] consists of 82783 training and 40504

validation images, each of which is associated with 5 sen-

tences. We use the public training, validation and testing

splits [15], with 82783, 4000 and 1000 (or 5000) images,

respectively. When using 1000 images for testing, we per-

form 5-fold cross-validation and report the averaged results.

4.2. Implementation Details

The commonly used evaluation criterions for image an-

notation and retrieval are “R@1”, “R@5” and “R@10”, i.e.,

recall rates at the top 1, 5 and 10 results. We also compute

an additional criterion “mR” by averaging all the 6 recal-

l rates, to evaluate the overall performance for both image

annotation and retrieval.

For images, the dimension of global context is I=4096
for VGGNet [30] or I=1000 for ResNet [9]. We perform

10-cropping [16] from the images and then separately feed

the cropped regions into the network. The final global con-

text is averaged over 10 regions. For sentences, the dimen-

sion of embedded word is D=300. We set the max length

for all the sentences as 50, i.e., the number of words J=50,

and use zero-padding when a sentence is not long enough.

Other parameters are empirically set as follows: H=1024,

K=256, λ=1, r=50 and m=0.2.

To systematically evaluate the contributions of differen-

t model components, we design various ablation models

as shown in Table 1. The variable model components are

explained as follows: 1) “1-crop” and “10-crop” refer to

cropping 1 or 10 regions from images, respectively, when

extracting the global context. 2) “concept” and “context”

denote using semantic concepts and global context, respec-

tively. 3) “sum” and “gate” are two different ways that com-

bine semantic concepts and context via feature summation

and gated fusion unit, respectively. 4) “sentence”, “gen-

eration” and “sampling” are three different ways to learn

the semantic order, in which “sentence” uses the state-of-

the-art image captioning method [32] to generate sentences
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Table 1. The experimental settings of ablation models.

1-crop 10-crop context concept sum gate sentence generation sampling shared non-shared

ctx (1-crop)
√ √

ctx
√ √

ctx + sen
√ √ √ √

ctx + gen (S)
√ √ √ √ √

ctx + gen (E)
√ √ √ √

ctx + gen
√ √ √ √

cnp
√

cnp + gen
√ √

cnp + ctx (C)
√ √ √ √

cnp + ctx
√ √ √ √

cnp + ctx + gen
√ √ √ √ √ √

Table 2. Comparison results of image annotation and retrieval by ablation models on the Flickr30k and MSCOCO (1000 testing) datasets.

Method

Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval
mR

Image Annotation Image Retrieval
mR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ctx (1-crop) 29.8 58.4 70.5 22.0 47.9 59.3 48.0 43.3 75.7 85.8 31.0 66.7 79.9 63.8

ctx 33.8 63.7 75.9 26.3 55.4 67.6 53.8 44.7 78.2 88.3 37.0 73.2 85.7 67.9

ctx + sen 22.8 48.6 60.8 19.1 46.0 59.7 42.8 39.2 73.3 85.5 32.4 70.1 83.7 64.0

ctx + gen (S) 34.4 64.5 77.0 27.1 56.3 68.3 54.6 45.7 78.7 88.7 37.3 73.8 85.8 68.4

ctx + gen (E) 35.5 63.8 75.9 27.4 55.9 67.6 54.3 46.9 78.8 89.2 37.3 73.9 85.9 68.7

ctx + gen 35.6 66.3 76.9 27.9 56.8 68.2 55.3 46.9 79.2 89.3 37.9 74.0 85.9 68.9

cnp 30.9 60.9 72.4 23.1 52.5 64.8 50.8 59.5 86.9 93.6 48.5 81.4 90.9 76.8

cnp + gen 31.5 61.7 74.5 25.0 53.4 64.9 51.8 62.6 89.0 94.7 50.6 82.4 91.2 78.4

cnp + ctx (C) 39.9 71.2 81.3 31.4 61.7 72.8 59.7 62.8 89.2 95.5 53.2 85.1 93.0 79.8

cnp + ctx 42.4 72.9 81.5 32.4 63.5 73.9 61.1 65.3 90.0 96.0 54.2 85.9 93.5 80.8

cnp + ctx + gen 44.2 74.1 83.6 32.8 64.3 74.9 62.3 66.4 91.3 96.6 55.5 86.5 93.7 81.8

from images and then regard the sentences as the image rep-

resentations, “generation” uses the sentence generation as

supervision as described in Section 3.3.2, and “sampling”

additionally uses the scheduled sampling [1]. 5) “share”

and “non-shared” indicate whether the parameters of two

word embedding matrices for sentence representation learn-

ing and sentence generation are shared or not.

4.3. Evaluation of Ablation Models

The results of the ablation models on the Flickr30k and

MSCOCO datasets are shown in Table 2, from which we

can obtain the following conclusions. 1) Cropping 10 image

regions (as “ctx”) can achieve much robust global contex-

t features than cropping only 1 region (as “ctx (1-crop)”). 2)

Directly using the pre-generated sentences as image repre-

sentations (as “ctx + sen”) cannot improve the performance,

since the generated sentences might not accurately include

the image details. 3) Using the sentence generation as su-

pervision for semantic order learning (as “ctx + gen”) is

very effective. But additionally performing the scheduled

sampling (as “ctx + gen (S)”) cannot further improve the

performance. It is probably because the groundtruth se-

mantic order is degenerated during sampling, accordingly

the model cannot learn it well. 4) Using a shared word

embedding matrix (as “ctx + gen (E)”) cannot improve the

performance, which might result from that learning a uni-

fied matrix for two tasks is difficult. 5) Only using the se-

mantic concepts (as “cnp”) can already achieve good per-

formance, especially when the training data are sufficient

on the MSCOCO dataset. 6) Simply summing the concep-

t and context (as “cnp + ctx (C)”) can further improve the

result, because the context contains the spatial relations of

concepts which are very useful. 7) Using the proposed gat-

ed fusion unit (as “cnp + ctx”) performs better, due to the

effective importance balancing scheme. 8) The best perfor-

mance is achieve by the “cnp + ctx + gen”, which combines

the 10-cropped extracted context with semantic concepts vi-

a the gated fusion unit, and exploits the sentence generation

for semantic order learning. Without using either semantic

concepts (as “ctx + gen”) or context (as “cnp + gen”), the

performance drops heavily. In the follow experiments, we

regard the “cnp + ctx + gen” as our default model.

In addition, we test the balancing parameter λ in Equa-

tion 4, by varying it from 0 to 100. The corresponding re-

sults are presented in Table 3, we can find that when λ=1,

the model can achieve its best performance. It indicates that

the generation objective plays an equally important role as

the matching objective.

4.4. Comparison with State­of­the­art Methods

We compare our proposed model with several recen-

t state-of-the-art models on the Flickr30k and MSCOCO

datasets in Table 4. The methods marked by “(Res)” use

the 152-layer ResNet [9] for context extraction, while the
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Table 3. Comparison results of image annotation and retrieval on the MSCOCO (1000 testing) dataset.

λ

Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval
mR

Image Annotation Image Retrieval
mR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0 42.4 72.9 81.5 32.4 63.5 73.9 61.1 65.3 90.0 96.0 54.2 85.9 93.5 80.8

0.01 43.1 72.8 83.5 32.8 63.2 73.6 61.5 66.3 91.2 96.5 55.4 86.5 93.7 81.6

1 44.2 74.1 83.6 32.8 64.3 74.9 62.3 66.6 91.8 96.6 55.5 86.6 93.8 81.8

100 42.3 73.8 83.1 32.5 63.3 74.0 61.5 65.0 90.5 96.1 54.9 86.3 93.7 81.1

Table 4. Comparison results of image annotation and retrieval on the Flickr30k and MSCOCO (1000 testing) datasets.

Method

Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval
mR

Image Annotation Image Retrieval
mR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

m-RNN [24] 35.4 63.8 73.7 22.8 50.7 63.1 51.6 41.0 73.0 83.5 29.0 42.2 77.0 57.6

FV [16] 35.0 62.0 73.8 25.0 52.7 66.0 52.4 39.4 67.9 80.9 25.1 59.8 76.6 58.3

DVSA [14] 22.2 48.2 61.4 15.2 37.7 50.5 39.2 38.4 69.9 80.5 27.4 60.2 74.8 58.5

MNLM [15] 23.0 50.7 62.9 16.8 42.0 56.5 42.0 43.4 75.7 85.8 31.0 66.7 79.9 63.8

m-CNN [23] 33.6 64.1 74.9 26.2 56.3 69.6 54.1 42.8 73.1 84.1 32.6 68.6 82.8 64.0

RNN+FV [18] 34.7 62.7 72.6 26.2 55.1 69.2 53.4 40.8 71.9 83.2 29.6 64.8 80.5 61.8

OEM [31] - - - - - - - 46.7 78.6 88.9 37.9 73.7 85.9 68.6

VQA [20] 33.9 62.5 74.5 24.9 52.6 64.8 52.2 50.5 80.1 89.7 37.0 70.9 82.9 68.5

RTP [28] 37.4 63.1 74.3 26.0 56.0 69.3 54.3 - - - - - - -

DSPE [34] 40.3 68.9 79.9 29.7 60.1 72.1 58.5 50.1 79.7 89.2 39.6 75.2 86.9 70.1

sm-LSTM [12] 42.5 71.9 81.5 30.2 60.4 72.3 59.8 53.2 83.1 91.5 40.7 75.8 87.4 72.0

2WayNet [4] 49.8 67.5 - 36.0 55.6 - - 55.8 75.2 - 39.7 63.3 - -

DAN [26] 41.4 73.5 82.5 31.8 61.7 72.5 60.6 - - - - - - -

VSE++ [5] 41.3 69.0 77.9 31.4 59.7 71.2 58.4 57.2 85.1 93.3 45.9 78.9 89.1 74.6

Ours 44.2 74.1 83.6 32.8 64.3 74.9 62.3 66.6 91.8 96.6 55.5 86.6 93.8 81.8

RRF (Res) [22] 47.6 77.4 87.1 35.4 68.3 79.9 66.0 56.4 85.3 91.5 43.9 78.1 88.6 73.9

DAN (Res) [26] 55.0 81.8 89.0 39.4 69.2 79.1 68.9 - - - - - - -

VSE++ (Res) [5] 52.9 79.1 87.2 39.6 69.6 79.5 68.0 64.6 89.1 95.7 52.0 83.1 92.0 79.4

Ours (Res) 55.5 82.0 89.3 41.1 70.5 80.1 69.7 69.9 92.9 97.5 56.7 87.5 94.8 83.2

rest ones use the default 19-layer VGGNet [30].

Using either VGGNet or ResNet on the MSCOCO

dataset, our proposed model outperforms the current state-

of-the-art models by a large margin on all 7 evaluation cri-

terions. It demonstrates that learning semantic concepts and

order for image representations is very effective. When us-

ing VGGNet on the Flickr30k dataset, our model gets lower

performance than 2WayNet on the R@1 evaluation criteri-

on, but obtains much better overall performance on the rest

evaluation criterions. When using ResNet on the Flickr30k

dataset, our model is able to achieve the best result. Note

that our model obtains much larger improvements on the

MSCOCO dataset than Flickr30k. It is because the MSCO-

CO dataset has more training data, so that our model can be

better fitted to predict more accurate image-sentence simi-

larities.

The above experiments on the MSCOCO dataset follow

the first protocol [14], which uses 1000 images and their

associated sentences for testing. We also test the second

protocol that uses all the 5000 images and their sentences

for testing, and present the comparison results in Table 5.

From the table we can observe that the overall results by all

the methods are lower than the first protocol. It probably

results from that the target set is much larger so there exist

more distracters for a given query. Among all the model-

Table 5. Comparison results of image annotation and retrieval on

the MSCOCO (5000 testing) dataset.

Method
Image Annotation Image Retrieval

mR
R@1 R@5 R@10 R@1 R@5 R@10

DVSA [14] 11.8 32.5 45.4 8.9 24.9 36.3 26.6

FV[16] 17.3 39.0 50.2 10.8 28.3 40.1 31.0

VQA [20] 23.5 50.7 63.6 16.7 40.5 53.8 41.5

OEM [31] 23.3 50.5 65.0 18.0 43.6 57.6 43.0

VSE++ [5] 32.9 61.6 74.7 24.1 52.0 66.2 51.9

Ours 40.2 70.1 81.3 31.3 61.5 73.9 59.7

VSE++ (Res) [5] 41.3 69.2 81.2 30.3 59.1 72.4 58.9

Ours (Res) 42.8 72.3 83.0 33.1 62.9 75.5 61.6

s, the proposed model still achieves the best performance,

which again demonstrates its effectiveness. Note that our

model has much larger improvements using VGGNet than

ResNet, which results from that “Ours (Res)” only uses the

ResNet for extracting global context but not semantic con-

cepts.

4.5. Analysis of Image Annotation Results

To qualitatively validate the effectiveness of our pro-

posed model, we analyze its image annotation results as fol-

lows. We select several representative images with complex

content, and retrieve relevant sentences by 3 ablation mod-

els: “ctx”, “cnp + ctx” and “cnp + ctx + gen”. We show
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1. a dinner table with various plates of food 

and a glass of water on the table

2. a table top with some plates of food on it

3. a table set for three with food and wine

1. a meal is being displayed on a table

2. a table with bowls of grains and fruit and 

a hand with a plate

3. a table top with some plates of food on it

1. a person holding a bowl of oats next to 

bowls of other condiments

2. a meal is being displayed on a table

3. a table with bowls of grains and fruit and 

a hand with a plate

1. a man on a skateboard performing a trick

2. a man riding a skateboard up the side of a 

ramp

3. a man at a skate park with his foot on the 

side of the skateboard

1. its a cloudy night for a ride on the 

motorcycle

2. a motorcyclist surveys the sunlit road into 

the horizon

3. a close up of a person riding a motorcycle 

on a long empty road

1. a motorcyclist surveys the sunlit road 

into the horizon

2. a close up of a person riding a motorcycle 

on a long empty road

3. a photo taken from a car looking at a 

skateboarder on the side of the road

1. a couple of giraffes look around the 

ground in the zoo

2. two giraffe standing near brick building

3. a pair of giraffes standing around in their 

enclosure

1. a pair of giraffes standing around in their 

enclosure

2. a couple of giraffes eating hay from a 

trough

3. two giraffes that are eating from a basket

1. a couple of giraffes eating hay from a 

trough

2. a couple of giraffes eating out of a basket

3. two giraffes stand and eat food out of a 

basket

Query
ctx cnp + ctx cnp + ctx + gen

Retrieved top-3 relevant sentences

Figure 4. Results of image annotation by 3 ablation models. Groundtruth matched sentences are marked as red and bold, while some

sentences sharing similar meanings as groundtruths are marked as underline (best viewed in colors).

the retrieved top-3 relevant sentences by the 3 models in

Figure 4, and the predicted top-10 semantic concepts with

confidence scores in Figure 5.

From Figure 5, we can see that our multi-regional multi-

label CNN can accurately predict the semantic concept-

s with high confidence scores for describing the detailed

image content. For example, road, motorcycle and riding

are predicted from the second image. We also note that

the skate is incorrectly assigned, which might result from

the reason that this image content is complicated and the

smooth country road looks like some skating scenes.

As shown in Figure 4, without the aid of the predicted

semantic concepts, “ctx” cannot accurately capture the se-

mantic concepts from complex image content. For example,

the retrieved sentences contain some clearly wrong seman-

tic concepts including water and wine for the first image,

and lose important concepts such as eating and basket for

the third image. After incorporating the predicted seman-

tic concepts, the retrieved sentences by “cnp + ctx” have

very similar meanings as the images, and are able to rank

groundtruth sentences into top-3. But the top-1 sentences

still do not involve partial image details, e.g., bowl, sun and

eating for the three images, respectively. By further learn-

ing the semantic order with sentence generation, the “cnp +

ctx + gen” is able to associate all the related concepts and

retrieve the matched sentences with all the image details.

5. Conclusions and Future Work

In this work, we have proposed a semantic-enhanced im-

age and sentence matching model. Our main contribution

is improving the image representation by learning seman-

tic concepts and then organizing them in a correct semantic

order. This is accomplished by a series of model compo-

nents in terms of multi-regional multi-label CNN, gated fu-
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0.82

0.97

1

Figure 5. Predicted top-10 semantic concepts with their confidence

scores from the 3 images.

sion unit, and joint matching and generation learning. We

have systematically studied the impact of these components

on the image and sentence matching, and demonstrated the

effectiveness of our model by achieving significant perfor-

mance improvements.

In the future, we will replace the used VGGNet with

ResNet in the multi-regional multi-label CNN to predict the

semantic concepts more accurately. Our model can perform

image and sentence matching and sentence generation, so

we would like to extend it for the image captioning task.
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