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Abstract

This paper studies the problem of learning image seman-

tic segmentation networks only using image-level labels as

supervision, which is important since it can significantly

reduce human annotation efforts. Recent state-of-the-art

methods on this problem first infer the sparse and discrimi-

native regions for each object class using a deep classifica-

tion network, then train semantic a segmentation network

using the discriminative regions as supervision. Inspired

by the traditional image segmentation methods of seeded

region growing, we propose to train a semantic segmenta-

tion network starting from the discriminative regions and

progressively increase the pixel-level supervision using by

seeded region growing. The seeded region growing module

is integrated in a deep segmentation network and can bene-

fit from deep features. Different from conventional deep net-

works which have fixed/static labels, the proposed weakly-

supervised network generates new labels using the contex-

tual information within an image. The proposed method

significantly outperforms the weakly-supervised semantic

segmentation methods using static labels, and obtains the

state-of-the-art performance, which are 63.2% mIoU score

on the PASCAL VOC 2012 test set and 26.0% mIoU score

on the COCO dataset.

1. Introduction

Deep Convolutional Neural Networks (DCNN) have

achieved great successes on the image semantic segmen-

tation problem [5, 18] thanks to a large amount of fully-

annotated images. However, collecting large-scale accu-

rate pixel-level annotation is time-consuming and typically

requires substantial financial investments. Unlabeled and

weakly-labeled visual data, however, can be collected in

large amounts in a relatively fast and cheap manner. There-

fore, a promising direction in the computer vision research
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Figure 1. The top row orderly shows a training image with

the image-level labels, the segmentation result of our proposed

method only using image-level supervision, and the ground truth.

Our segmentation result is very close to the ground truth anno-

tated by human. The bottom row shows the dynamic supervi-

sion in several epochs during the training of the proposed weakly-

supervised semantic segmentation network. (The black represents

background and the white represents unlabeled/ignore pixels).

is to develop object recognition methods that can learn from

unlabeled or weakly labeled images [14, 32].

In this paper, we study the problem of learning seman-

tic segmentation networks from weakly-labeled images.

Among various settings of weak label, image-level anno-

tation is one of the most economical and most efficient set-

ting. In this context, every training image has its image

class/category labels. It means objects belonging to the

class labels appear in the image. However, the locations

of the objects are unknown. We need to infer the pixel-level

locations of the objects. Thus, the main problem in training

weakly-supervised semantic segmentation networks is how

to accurately assign image-level labels to their correspond-

ing pixels.

To establish the desired pixel-label correspondence
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in training, there is a very insightful research work.

Kolesnikov et al. [14] employed an image classification

network with classification activation maps (CAM) [37]

method to select the most discriminative regions, and used

the regions as pixel-level supervision for segmentation net-

works. Compared to the early weakly-supervised semantic

segmentation methods [22, 20], the discriminative region

based approach significantly improved the performance of

this challenging task. However, in [14], the discriminative

regions are small and sparse as shown in the epoch #0 image

in Figure 1. In training, the supervision of the semantic seg-

mentation network is fixed as the sparse discriminative re-

gions. Thus, we name the learning strategy in [14] as “static

supervision”. The static supervision setting deviates from

the requirement of semantic segmentation task that requires

accurate and complete object regions for training segmen-

tation models.

To address the issue, we propose to expand the discrim-

inative regions to cover the whole objects during training

segmentation networks. In practice, the pixels around the

discriminative regions are always belonging to the same ob-

jects because semantic labels of the same object have spa-

tial continuity. Our motivation is that, using the image la-

bels enables to find small and sparse discriminative regions

from the object of interest, termed as “seed cues”, the neigh-

boring pixels of seed cues with similar features (e.g. color,

texture or deep features) could have the same labels as the

seed cues. We utilize the classical Seeded Region Growing

(SRG) method [1] to model this process for generating ac-

curate and complete pixel-level labels. Here we can train

semantic segmentation networks under supervision of the

pixel-level labels. Different from [14, 19], the pixel-level

labels are dynamic. The dynamic supervision is quite dif-

ferent from traditional network training using fixed super-

vision. In our case, we let the network generate new labels

of the input training example, i.e., the training image. SRG

is integrated into the deep segmentation network and can

be optimized end-to-end and enjoys the deep features. We

name the proposed method as “deep seeded region growing

(DSRG)” for weakly-supervised semantic segmentation.

In practice, the seed cues localized by classification net-

work is small but with high precision. It is a natural way

to choose the seed cues as the seed points in SRG. Besides,

to measure the similarity between the seed points and ad-

jacent pixels for region growing, we make use of the seg-

mentation map which is output of the segmentation network

as features. Thus, SRG treats the seed cues as initial seed

points; then the adjacent pixels in segmentation map with

high probabilities on their corresponding categories take the

same labels as the seed cues. This process is repeated until

there are no pixels satisfying the above constraints. In the

end, the output of DSRG is used as the supervision for train-

ing segmentation network. In the training phase, the super-

vision is used to form the loss function, termed as “seeding

loss”. In seeded regions, the loss is the same as full super-

vise loss function in [5]; the other positions are ignored by

the seeding loss.

During training, the DSRG approach gradually enriches

the supervision information of the segmentation network.

As shown in Figure 1, the supervision in epoch #0 is ac-

tually the seed cues generated by classification model, the

cues localize the head of person and the horse, which are

the most discriminative regions in the image. With the in-

creasing of epochs, the dynamic supervision gradually ap-

proaches the ground truth and cover the whole object con-

tent precisely. Meanwhile, the dynamic supervision ides

the network to produce competitive segmentation result. To

ensure the stability of training, DSRG always choose the

original seed cues as initial seed points.

In the experiments, we demonstrate the effectiveness of

our approach on the challenging PASCAL VOC 2012 Se-

mantic Segmentation benchmark [8] and COCO, and show

that we achieve the new state-of-the-art results. In addition,

we provide an analysis of the DSRG approach by carrying

out some ablation studies.

In summary, the main contributions of this paper are

summarized below:

• In deep semantic segmentation network, we utilize the

seeded region growing [1] mechanism, which enables

the network safely generates new pixel-level labels for

weakly-supervised semantic segmentation. Besides,

the network can be optimized in an end-to-end man-

ner and is easy to train.

• Our work obtains the state-of-the-art weakly-

supervised semantic segmentation performance on the

PASCAL VOC segmentation benchmark and COCO

dataset. The mIoU of our method are 61.4% and

63.2% on pascal voc val set and test set respectively,

which are better than many sophisticated systems and

are getting closer to the fully supervised segmentation

system [6] (67.6/70.3% mIoU on val/test set).

The rest of this paper is organized as follows. We first

review related work in Section 2 and describe the architec-

ture of our approach in Section 3. In Section 4, the detailed

procedure to improve the quality of dynamic supervision is

discussed and experimental results are analyzed. Section 5

presents our conclusion and future work.

2. Related work

The last years have seen a renewed interest on weakly-

supervised visual learning. Various weakly-supervised

methods have been proposed for learning to perform se-

mantic segmentation with coarser annotations, such as im-

age labels [20, 36], points [2], scribbles [16], and bounding
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boxes [7, 20] etc. In this work, we focus on using image

labels as the main form of supervision, which is a simple

supervision for training semantic segmentation models.

2.1. Pixel labeling from image level supervision

Pinheiro et al. [23] proposed a novel LSE pooling

method which puts more weight on pixels which are impor-

tant for classifying the image during training. Papandreou

et al. [20] adopted an alternating training procedure based

on the Expectation-Maximization algorithm to dynamically

predict semantic foreground and background pixels. Qi et

al. [24] proposed a unified framework that includes the se-

mantic segmentation and object localization branches. [27]

proposed a novel method to extract markedly more accurate

masks from the pre-trained network itself. Wei et al. [35]

presented a simple to complex learning method to gradually

enhance the segmentation network. [29] proposed a method

based on CNN-based class-specific saliency maps and fully-

connected CRF. Roy et al. [26] presented a novel deep ar-

chitecture which fuses three different cues toward semantic

segmentation.

Recently, Kolesnikov et al. [14] proposed to localize

seed cues according to classification networks for training

segmentation network. However, [14] can only obtain small

and sparse object-related seeds for supervision. To solve

this problem, Oh et al. [19] proposed using a saliency model

as additional information to exploit object extent. Wei et

al. [33] used adversarial erasing manner to iteratively train

multiple classification networks for expanding discrimina-

tive regions. Arslan et al. [4] also utilized adversarial eras-

ing manner to allow the saliency detection network to dis-

cover new salient regions of object. Once true negative re-

gions are generated, they have no chance to be correct them.

In contrast, our proposed DSRG approach is very simple

and convenient to start from the seed cues and progressively

refine the pixel-level labels as the dynamic supervision in

training phase.

Both [20] and the proposed method generate dynamic

pixel-level labels to train semantic segmentation networks.

However, there are several major improvements in this pa-

per. Different from [20] where the latent pixel-level su-

pervision is approximated by applying argmax function on

biased segmentation maps, we instead propose to use the

Seeded Region Growing to find accurate and reliable latent

pixel-level supervision. With the help of the object seed

cues, our DSRG training approach is robust to very noisy

segmentation map in the beginning of training and generate

pixel-level supervision with high accuracy all along.

2.2. Seeded Region Growing

The Seeded Region Growing (SRG) [1] is an unsuper-

vised approach to segmentation that examines neighbor-

ing pixels of initial seed points and determines whether the

pixel neighbors should be added to the region depending on

a region similarity criterion. Two major concerns must be

handled when performing a segmentation based on region

growing: where to place the initial seeds in the image do-

main and which similarity criterion should be adopted to

characterize the image regions. The most common way

to select some seed pixels as seed based on simple hand-

crafted criterion [28] (e.g. color, intensity, or texture).

Meanwhile, the similarity criterion [3] is always defined

on hand-crafted features. These settings result in over-

segmentation and bad segmentation. In contrast, the DSRG

utilizes seed cues generated by classification network as the

initial seed to avoid wrong seed placement. Besides, We

compute pixel similarity using deep learning features which

have been proven to have high-level semantics. Thus, the

DSRG can reduce over-segmentation and do not have the

merge procedure of the traditional SRG.

3. Approach

In this section, we give the details of the proposed DSRG

training approach for weakly-supervised semantic segmen-

tation. At first, we will introduce how we generate seed cues

from a deep classification network. Then, we will introduce

a balanced seed loss function which uses seed cues as su-

pervision to guide the weakly-supervised semantic segmen-

tation network. At last, to address the problem that the seed

cues are small and sparse, we propose the DSRG training.

3.1. Seed generation with classification network

We utilize a deep classification network to locate dis-

criminative regions as seed cues under image-level super-

vision. Image-level labels do not explicitly provide any in-

formation about the position of semantic objects. But, re-

cently, it has been shown that high-quality seeds indicating

discriminative object regions can be obtained by learning a

classification network under the supervision of image-level

labels [30, 37]. The classification network is fully convolu-

tional and the position of discriminative object regions are

preserved in the deep layers of the network.

In our framework, we employ the CAMs [37] method

for localizing the foreground classes. The procedures are

briefly described as follows. We use a modified VGG-16

network [14] to initialize our classification network. In

the network, global average pooling (GAP) is applied on

conv7; the generated tensor is used as image representa-

tion and classified using a fully-connected layer; finally, the

fully-connected classifier is applied to conv7 to generate a

heatmap for each object class. Then the discriminative ob-

ject regions are obtained by applying a hard threshold to the

heatmap.

Besides of the seed cues in foreground, we also find seed

cues in the background. For localizing background, we uti-

lize the saliency detection technology from [12], and simply
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Figure 2. Overview of the proposed Deep Seeded Region Growing training approach. The Region Growing module takes the seed cues and

segmentation map as input produces latent pixel-wise supervision which is more accurate and more complete than seed cues. Our method

iterates between refining pixel-wise supervision and optimizing the parameters of a segmentation network.

select the regions in normalized saliency maps whose pixels

are with low saliency values as background. The resulted

seed cues from foreground and background are stacked to-

gether into a single channel segmentation mask.

3.2. Seeding loss

After obtaining the seed cues, we introduce how to train

an image semantic segmentation network using the seed

cues. The balanced seeding loss is proposed to encourage

predictions of the segmentation network to match only seed

cues given by the classification network while ignoring the

rest of the pixels in the image. Considering the unbalanced

distribution of the seed cues of foreground and background,

the balanced seeding loss has two normalization coefficients

for foreground and background, respectively, which is dif-

ferent from the seed loss in [14].

Let C be the set of classes that are present in the image

(excluding background) and C̄ be the background. Suppose

that Sc is a set of locations that are classified to class c.

Then, the balanced seeding loss ℓseed is defined as follows:

ℓseed = −
1

∑

c∈C

|Sc|

∑

c∈C

∑

u∈Sc

logHu,c

−
1

∑

c∈C̄

|Sc|

∑

c∈C̄

∑

u∈Sc

logHu,c, (1)

in which Hu,c denotes the probability of class c at position

u of segmentation map H .

Besides, we use a boundary loss ℓboundary which pro-

posed in [14] to encourage segmentation map to match up

with object boundaries. Ultimately, the segmentation net-

work are optimized by minimizing a loss function:

ℓ = ℓseed + ℓboundary. (2)

3.3. Deep seeded region growing

In the introduced seeding loss, we can find the seed cues

are sparse. In practice, there are about 40% pixels have

labels. During training, the labels are fixed following con-

ventional setting of training deep networks. Our idea is to

grow the seed cues to unlabeled pixels. Thus, we could

have denser supervision to train better segmentation net-

works. The basis of seed cues growing is that in image there

are small homogeneous regions in which the pixels should

have the same label. The small homogeneous regions are

usually used in low-level vision, such as generating super-

pixels [25]. To formulate the seed cues growing problem,

here we refer to a classical algorithm, Seeded Region Grow-

ing (SRG) [1].

In SRG, some seed pixels are initially selected based on

some simple hand-crafted criterion (e.g. color, intensity,

or texture). Once the initial seeds are placed, the growth

process seeks to obtain homogeneous image regions, i.e.,

it tries to segment the image into regions with the property

that each connected component of a region contains exactly

one of the initial seeds.

We propose to integrate SRG into deep segmentation

networks for weakly-supervised semantic segmentation.

The yield method is termed as “deep seeded region growing

(DSRG)”.

Once the initial seeds are initialized by classification net-

work, the regions are then grown from these seed points to

adjacent unlabeled points depending on a region similarity

criterion. The similarity criterion defines whether a candi-

date pixel should be incorporated into a specific region or

not. Now, the major concerns must be handled when per-

forming learning a semantic segmentation network based

on region growing: which similarity criterion should be
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adopted to characterize the image regions? In the follow-

ing, we detail the strategies to handle the problem.

The similarity criteria P we make here is the simple

probability threshold value of a pixel in segmentation map

H generated by segmentation network.

P (Hu,c, θc) =















TRUE Hu,c ≥ θc and

c = argmax
c′

Hu,c′ ,

FALSE otherwise.

(3)

in which Hu,c refers to the probability value of the pixel

at position u that belongs to class c . And θ is the proba-

bility threshold value. In practice, we do not set different

thresholds for different categories. The foreground cate-

gories share a same threshold θf and the background has

another threshold θb. Traditional SRG usually has a phe-

nomenon of over-segmentation since low-level image fea-

tures is not robust to inter-class appearance of object. In

DSRG, we compute pixel similarity using deep learning

features which have been proven to have high-level seman-

tics. Thus, the DSRG can reduce over-segmentation and do

not have the merge procedure of the traditional SRG.

Now, we can take segmentation map H and seed cues

S as inputs to perform region growing. DSRG is an iter-

ative visiting process for each class. We denote the itera-

tive visiting process of class c as Vc, c ∈ [0, |C|], where

c = 0 means the background class. In an iteration of Vc,

we visit all the positions in Sc in a row-first manner. When

visiting a pixel Q, we denote the set of unlabeled pixels

in Q’s 8-connectivity neighborhoods as R. For Ru ∈ R,

its probability of being class c is denoted as Hu,c as de-

scribed above. Then Ru is classified based on P as fol-

lows:

1: if P (Hu,c, θc) then

2: the pixel at u is labeled as c;

3: else

4: the pixel at u keeps unlabeled state.

5: end if

After visiting all the positions, we append all the newly

labeled pixels to Sc. Once Sc is changed, we will visit

the updated Sc again. Otherwise, Vc stops. The termina-

tion criteria is different with classical SRG in which ev-

ery pixel must have a label. Because it is difficult to tell

the label of a pixel with a low confidence predicted by seg-

mentation network. However, with increasing capability of

segmentation network, the amount of unlabeled pixels de-

creases and the objects extent are covered with correct la-

bels. Besides, to reduce the redundancy visits in Vc, we

first compute connected components of regions that meet

the requirement in Eqn (3), and then the connected compo-

nents which consist the initial seed regions take the same

label as the initial seed. These connected components are

selected as new supervision for training segmentation net-

work. We denote the |C| + 1 iterative visiting process as

DSRG(S,H), which means a region growing step. The

final updated S = [S0, · · · , SC ] is used as the supervision

and applied to train segmentation network with seeding loss

in Eqn (1). In Figure 2, the DSRG(S,H) is plugged into

the framework of the proposed segmentation network.

4. Experiments

4.1. Experimental setup

Dataset and Evaluation Metrics We evaluate the pro-

posed approach on the PASCAL VOC 2012 segmentation

benchmark dataset [8] and COCO dataset [17]. PASCAL

VOC: It contains three parts: training (train, 1464 images),

validation (val, 1449 images) and testing (test, 1456 im-

ages). Following the common practice [6, 33], we aug-

ment the training part by additional images from [9]. In our

experiments, only image-level labels are utilized for train-

ing. We compare our method with other state-of-the-arts

on both val and test sets. The standard intersection over

union (IOU) criterion and pixel-wise accuracy are adopted

for evaluation on PASCAL val dataset. The result on the

test set is obtained by submitting the predicted results to the

official PASCAL VOC evaluation server. COCO: its train-

ing set contains 80k samples with only image-level labels

and it’s val set contains 40k samples for evaluation. Per-

formance is evaluated in terms of pixel IoU averaged on 81

categories. Experimental analysis of the proposed approach

is conducted on the val set.

Training/Testing Settings

We adopt the slightly modified version of the 16-layer

VGG network from [14] for the classification network and

DeepLab-ASPP from [6] for the segmentation network.

They are all initialized by the VGG-16 [31] pretrained on

ImageNet. SGD with mini-batch is used for training classi-

fication and segmentation network. We use the momentum

of 0.9 and a weight decay of 0.0005. The batch size is 20,

the dropout rate is 0.5 and the weight decay parameter is

0.0005. The initial learning rate is 5e-4 and it is decreased

by a factor of 10 every 2000 iterations.

For seed generation, those pixels belonging to top 20%

of the largest value (a fraction suggested by [14, 33]) in the

heatmap are considered as foreground object regions. We

use saliency maps from [12] to produce the background lo-

calization cues. We adopt the normalized saliency value

0.06 as the threshold to obtain background localization cues

(i.e. pixels whose saliency values are smaller than 0.06 are

considered as background). For the similarity criteria in

DSRG, we set θb and θf to 0.99 and 0.85, respectively. For

CRF, we use the default values from the Koltun public im-

plementation as parameters for the pairwise interactions.

In test phase, the learned segmentation network is ap-
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Table 1. Comparison of weakly-supervised semantic segmentation

methods on VOC 2012 val and test set

Method Training Val Test

Supervision: Image-level Labels

(* methods implicitly use pixel-level supervision)

(† methods implicitly use box supervision)

SN B* [34] 10k 41.9 40.6

MIL-seg* [23] 700k 42.0 43.2

TransferNet* [10] 70k 52.1 51.2

AF-MCG* [24] 10k 54.3 55.5

GuidedSeg† [19] 20k 55.7 56.7

Supervision: Image-level Labels

MIL-FCN [22] 10k 25.7 24.9

CCNN [21] 700k 35.3 35.6

MIL-bb [23] 700k 37.8 37.0

EM-Adapt [20] 10k 38.2 39.6

DCSM [29] 10k 44.1 45.1

BFBP [27] 10k 46.6 48.0

STC [35] 50k 49.8 51.2

SEC [14] 10k 50.7 51.7

AF-SS [24] 10k 52.6 52.7

Combining Cues [26] 10k 52.8 53.7

AE-PSL [33] 10k 55.0 55.7

DCSP [4] 10k 58.6 59.2

Supervision: Image-level Labels

DSRG (VGG16) 10k 59.0 60.41

DSRG (Resnet101) 10k 61.4 63.22

plied to produce probability map for each testing image.

Then, we upscale the predicted probability map to match

the size of the input image, and then apply a fully-connected

CRF [15] to refine the segmentation result.

Reproducibility. Our approach is implemented based

on Caffe [11]. All networks are trained on a single NVIDIA

GeForce GTX TITAN X GPU. The code is available at

https://github.com/speedinghzl/DSRG.

4.2. Comparisons with state­of­the­arts

Results of other state-of-the-art weakly-supervised se-

mantic segmentation solutions on PASCAL VOC valida-

tion and test dataset are summarized in Table 1. We pro-

1http://host.robots.ox.ac.uk:8080/anonymous/

ZZT4TI.html
2http://host.robots.ox.ac.uk:8080/anonymous/

LWX93L.html

Image Prediction Ground Truth  

Figure 3. Qualitative segmentation results on the VOC 2012 val

set. One failure case is shown in the last row.

vide these results for reference and emphasize that they

should not be directly compared with our method. Because

the methods were trained on different training sets or with

different kinds of annotations, bounding boxes, spots and

image-level labels. Among the approaches, CCNN [21],

MIL-seg [23], STC [35], GuidedSeg [19], and TransferNet

[10] use more images for training (700K, 700K, 50K, 20K

and 70K, respectively). All the other methods are based on

10K training images and built on top of the VGG16 model.

The results show that our method substantially outper-

forms all the previous techniques using image-level labels

for weak supervision. AE-PSL [33] and DCSP [4] achieve

the best performance among the baselines. However, adver-
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Table 2. Comparison of mIoU using different settings of our approach on VOC 2012 val set

Method b
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tv mIoU

baseline 82.5 67.5 23.2 65.7 29.7 47.5 71.8 66.8 76.7 23.3 51.7 26.2 69.7 54.2 63.2 57.2 33.7 64.5 33.5 48.7 46.1 52.5

+BSL 82.4 71.9 29.1 67.7 32.4 49.8 75.5 67.9 74.7 22.8 54.9 26.6 64.3 55.7 64.7 56.0 35.0 67.7 32.7 50.2 45.8 53.6

+DSRG 86.6 70.5 28.8 70.6 34.7 55.7 74.9 70.1 80.2 24.1 63.6 24.8 76.6 64.1 64.9 72.3 38.5 68.7 35.8 51.8 51.9 57.6

+Retrain 87.5 73.1 28.4 75.4 39.5 54.5 78.2 71.3 80.6 25.0 63.3 25.4 77.8 65.4 65.2 72.8 41.2 74.3 34.1 52.1 53.0 59.0

sarial erasing is employed by AE-PSL to expand the seed

cues for supervision, which needs to iteratively train multi-

ple classification networks. DCSP also utilizes adversarial

erasing manner to allow the saliency network to discover

new salient regions of object. It does not require the re-

training of the network after each erasing, but DCSP may

introduce some true negative regions due to over erasing.

In contrast, the proposed DSRG approach is very simple

and convenient to refine supervision online and our method

obtains better results than DCSP and AE-PSL. Compared

with those methods only using image-level labels for su-

pervision, the proposed DSRG(VGG16) method improves

upon the best performance by over 1.2% on test set. It can

be seen that our method achieves 60.4% mIoU on test set.

Besides, Our DSRG (Resnet101) achieves 63.2% mIOU on

test set.

4.3. Qualitative results

Fig. 3 shows some successful segmentation results. It

shows our method can produce accurate segmentations even

for complicated images and recover fine details of the

boundary. One typical failure case is given in the bot-

tom row of Fig. 3. This failure mode is that the model

cannot pick out object regions from background precisely.

As is typical for weakly-supervised systems, strongly co-

occurring categories (such as train and rails, sculls and oars,

snowbikes and snow) cannot be separated without finner-

grained information [13].

4.4. Ablation studies

In order to further prove the effect of the different com-

ponents, we conduct some ablation experiments with differ-

ent settings of VGG16 based DSRG. In Table 2, the “base-

line” denotes our implemented SEC [14], our result is much

better than [14] (50.4 mAP without Lexpand), due to the dif-

ferent background locating technology [12] and details. The

“+BSL” denotes replacing the original seeding loss with the

balanced seeding loss in Eqn (1); the “+DSRG” denotes

adding DSRG training approach. We can observe that the

weighted seeding loss improves the performance by 1.1%

compared with baseline. And, DSRG improves further the

performance by 4%, demonstrating the significant effective-

ness of DSRG. It is most noticeable for animals and person,

Table 3. Per-class IOU on COCO using image tags during training

Cat.   Class SEC BFBP Ours Cat.   Class SEC BFBP Ours

BG   background 74.3 68.8 80.6   wine glass 22.3 17.5 24.0

P   person 43.6 27.5   cup 17.9 5.6 20.4

  bicycle 24.2 18.2 30.4   fork 1.8 0.5 0.0

  car 15.9 7.2 22.1   knife 1.4 1.0 5.0

  motorcycle 52.1 40.5 54.2   spoon 0.6 0.6 0.5

  airplane 36.6 32.0 45.2   bowl 12.5 13.3 18.8

  bus 37.7 39.2 38.7   banana 43.6 44.9 46.4

  train 30.1 26.5 33.2   apple 23.6 18.9 24.3

  truck 24.1 17.5 25.9   sandwich 22.8 21.4 24.5

  boat 17.3 16.5 20.6   orange 44.3 35.0 41.2

  traffic light 16.7 3.9 16.2   broccoli 36.8 27.0 35.7

  fire hydrant 55.9 33.1 60.4   carrot 6.7 16.0 15.3

  stop sign 48.4 28.4 51.0   hot dog 31.2 22.5 24.9

  parking meter 25.2 25.5 26.3   pizza 50.9 57.8 56.2

  bench 16.4 12.4 22.3   donut 32.8 36.2 34.2

  bird 34.7 31.1 41.5   cake 12.0 17.0 6.9

  cat 57.2 52.8 62.2   chair 7.8 8.2 9.7

  dog 45.2 44.1 55.6   couch 5.6 13.9 17.7

  horse 34.4 34.2 42.3   potted plant 6.2 7.4 14.3

  sheep 40.3 38.0 47.1   bed 23.4 29.8 32.4

  cow 41.4 42.1 49.3   dining table 0.0 2.0 3.8

  elephant 62.9 65.2 67.1   toilet 38.5 30.1 43.6

  bear 59.1 57.0 62.6   tv 19.2 14.8 25.3

  zebra 59.8 65.0 63.2   laptop 20.1 19.9 21.1

  giraffe 48.8 55.6 54.3   mouse 3.5 0.4 0.9

  backpack 0.3 3.2 0.2   remote 17.5 9.9 20.6

  umbrella 26.0 28.1 35.3   keyboard 12.5 19.9 12.3

  handbag 0.5 1.1 0.7   cell phone 32.1 26.1 33.0

  tie 6.5 5.5 7.0   microwave 8.2 9.8 11.2

  suitcase 16.7 21.3 23.4   oven 13.7 16.4 12.4

  frisbee 12.3 5.6 13.0   toaster 0.0 0.0 0.0

  skis 1.6 1.0 1.5   sink 10.8 9.5 17.8

  snowboard 5.3 2.8 16.3   refrigerator 4.0 13.2 15.5

  sports ball 7.9 1.9 9.8   book 0.4 7.5 12.3

  kite 9.1 10.3 17.4   clock 17.8 16.5 20.7

  baseball bat 1.0 1.7 4.8   vase 18.4 13.4 23.9

  baseball glove 0.6 0.5 1.2   scissors 16.5 12.2 17.3

  skateboard 7.1 6.6 14.4   teddy bear 47.0 41.0 46.3

  surfboard 7.7 3.3 13.5   hair dryer 0.0 0.0 0.0

  tennis racket 9.1 5.5 6.8   toothbrush 2.8 2.0 4.5

  bottle 13.2 9.6 22.3   mean IOU 22.4 20.4 26.0
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e.g. the improvement for segmenting dog/horse/cow/person

is about 10%. Besides, we first employ the trained seg-

mentation model of “+DSRG” to on all the training im-

ages. Then, the predicted segmentation masks are used as

supervision for training the segmentation network for an-

other round in a fully-supervised way. As shown in Table 2,

the performance provided by this extra training (denoted as

“+Retrain”) is further improved from 57.6% to 59.0%. We

do not observe further performance gain by performing ad-

ditional retrain steps.

In addition, we tried different values of θf and θb to

find the best performing region growing strategy. The re-
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Table 4. Performance on PASCAL VOC 2012 val dataset for dif-

ferent θ

θb

θf
0.99 0.95 0.90 0.85 0.80

0.99 57.45 57.59 57.63 57.69 57.66

0.95 57.43 57.56 57.64 57.67 57.63

0.90 57.23 57.35 57.40 57.44 57.45

sults are shown for different values of θ in Tab 4. The re-

sults show that our method is robust to the region growing

thresholds θ. To explore the effect of only performing re-

gion growing for foreground or background object, we set

θb = ∞, θf = 0.85 for only conducting region growing

for foreground object, the performance on PASCAL VOC

val dataset is 55.9% mIoU. When θb = 0.99, θf = ∞,

the performance is 54.3% mIoU. The results show that only

conducting region growing for foreground object or back-

ground object is also improve the performance. However,

it can achieve best performance when simultaneously con-

ducting region growing for foreground object and back-

ground object.

4.5. The quality improvement of dynamic supervi­
sion over epochs

In this section the qualities of the new pixel labels as dy-

namic supervision, obtained from DSRG, at each epoch, are

evaluated. Compared with ground truths that are annotated

by human, we could use the mean accuracy, mean recall and

IoU to measure the quality of the supervision refined by our

approach. In Fig. 4, the supervision that generated by classi-

fication network has somewhat high precision(62.6%), low

recall(32.1%) and low IoU(30.0%). With the increasing of

epochs, the precision of seed remains a high value, and the

recall and IoU get significant improvements. At epoch #12,

the mean precision, mean recall and mean IoU are 63.9%,

65.4%, and 57.1%, respectively. It demonstrates that DSRG

can find the object extent and improve the quality of su-

pervision, which explains why the proposed DSRG training

procedure works excellently on the weakly supervised se-

mantic segmentation task. Additional examples in the sup-

plementary materials shows the gradually refining supervi-

sion starting from seed cues during training.

4.6. COCO results

To further demonstrate the generality of our method, we

conducted a set of experiments on COCO. Unlike in PAS-

CAL VOC, the majority of COCO samples were collected

from non-iconic images in a complex natural context. We

provide the per-class IoU of SEC [14], BFBP [27] and our

approach in Table 3. Our VGG16 based DSRG obtains re-

markable better results, especially in Person, Animal, Ve-
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Figure 4. The quality of the dynamic supervision (%) with respect

to the epochs.

hicle etc, but performs poorly on small ones, such as In-

door and Kitchenware. Altogether, our DSRG method im-

proves upon the best performance by over 3.6% on val set.

It can be seen that our method achieves 26.0% mIoU on val

set. Meanwhile, compared with the performance of fully

supervised method (40.98% mIoU), these results on COCO

evidence that there is much space for progress in weakly-

supervised semantic segmentation. Developing solutions

that handle small objects could be an interesting direction

for future research.

5. Conclusion and future work

We have addressed the problem of training semantic

segmentation networks only using image-level supervision.

Image-level labels alone can provide high-quality seeds, or

discriminative object regions, but inferring full object ex-

tents is a very difficult problem. We propose a DSRG train-

ing approach gradually improves the quality and extent ob-

ject regions and itself is supervised the object regions. We

demonstrate that our approach outperforms previous state-

of-the-art methods under the same experimental conditions.

We also clearly identify the effectiveness of region growing

mechanism within the semantic segmentation network in

the experiments. In future work, we will focus on designing

more effective weakly-supervised strategies and improving

seed quality.
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