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Abstract

For modeling the 3D world behind 2D images, which

3D representation is most appropriate? A polygon mesh

is a promising candidate for its compactness and geometric

properties. However, it is not straightforward to model a

polygon mesh from 2D images using neural networks be-

cause the conversion from a mesh to an image, or ren-

dering, involves a discrete operation called rasterization,

which prevents back-propagation. Therefore, in this work,

we propose an approximate gradient for rasterization that

enables the integration of rendering into neural networks.

Using this renderer, we perform single-image 3D mesh re-

construction with silhouette image supervision and our sys-

tem outperforms the existing voxel-based approach. Addi-

tionally, we perform gradient-based 3D mesh editing opera-

tions, such as 2D-to-3D style transfer and 3D DeepDream,

with 2D supervision for the first time. These applications

demonstrate the potential of the integration of a mesh ren-

derer into neural networks and the effectiveness of our pro-

posed renderer.

1. Introduction

Understanding the 3D world from 2D images is one of

the fundamental problems in computer vision. Humans

model the 3D world in their brains using images on their

retinas, and live their daily existence using the constructed

model. The machines, too, can act more intelligently by

explicitly modeling the 3D world behind 2D images.

The process of generating an image from the 3D world

is called rendering. Because this lies on the border between

the 3D world and 2D images, it is crucially important in

computer vision.

In recent years, convolutional neural networks (CNNs)

have achieved considerable success in 2D image under-

standing [7, 13]. Therefore, incorporating rendering into

neural networks has a high potential for 3D understanding.

What type of 3D representation is most appropriate for

modeling the 3D world? Commonly used 3D formats are

voxels, point clouds and polygon meshes. Voxels, which
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Figure 1. Pipelines for single-image 3D mesh reconstruction (up-

per) and 2D-to-3D style transfer (lower).

are 3D extensions of pixels, are the most widely used for-

mat in machine learning because they can be processed by

CNNs [2, 17, 20, 24, 30, 31, 34, 35, 36]. However, it is

difficult to process high resolution voxels because they are

regularly sampled from 3D space and their memory effi-

ciency is poor. The scalability of point clouds, which are

sets of 3D points, is relatively high because point clouds are

based on irregular sampling. However, textures and light-

ing are difficult to apply because point clouds do not have

surfaces. Polygon meshes, which consist of sets of vertices

and surfaces, are promising because they are scalable and

have surfaces. Therefore, in this work, we use the polygon

mesh as our 3D format.

One advantage of polygon meshes over other representa-

tions in 3D understanding is its compactness. For example,

to represent a large triangle, a polygon mesh only requires

three vertices and one face, whereas voxels and point clouds

require many sampling points over the face. Because poly-

gon meshes represent 3D shapes with a small number of

parameters, the model size and dataset size for 3D under-

standing can be made smaller.

Another advantage is its suitability for geometric trans-
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formations. The rotation, translation, and scaling of objects

are represented by simple operations on the vertices. This

property also facilitates to train 3D understanding models.

Can we train a system including rendering as a neural

network? This is a challenging problem. Rendering con-

sists of projecting the vertices of a mesh onto the screen

coordinate system and generating an image through regular

grid sampling [16]. Although the former is a differentiable

operation, the latter, referred to as rasterization, is difficult

to integrate because back-propagation is prevented by the

discrete operation.

Therefore, to enable back-propagation with rendering,

we propose an approximate gradient for rendering peculiar

to neural networks, which facilitates end-to-end training of

a system including rendering. Our proposed renderer can

flow gradients into texture, lighting, and cameras as well as

object shapes. Therefore, it is applicable to a wide range of

problems. We name our renderer Neural Renderer.

In the generative approach in computer vision and ma-

chine learning, problems are solved by modeling and in-

verting the process of data generation. Images are generated

via rendering from the 3D world, and a polygon mesh is an

efficient, rich and intuitive 3D representation. Therefore,

“backward pass” of mesh renderers is extremely important.

In this work, we propose the two applications illustrated

in Figure 1. The first is single-image 3D mesh reconstruc-

tion with silhouette image supervision. Although 3D recon-

struction is one of the main problems in computer vision,

there are few studies to reconstruct meshes from single im-

ages despite the potential capacity of this approach. The

other application is gradient-based 3D mesh editing with 2D

supervision. This includes a 3D version of style transfer [6]

and DeepDream [18]. This task cannot be realized with-

out a differentiable mesh renderer because voxels or point

clouds have no smooth surfaces.

The major contributions can be summarized as follows.

• We propose an approximate gradient for rendering of a

mesh, which enables the integration of rendering into

neural networks.

• We perform 3D mesh reconstruction from single im-

ages without 3D supervision and demonstrate our sys-

tem’s advantages over the voxel-based approach.

• We perform gradient-based 3D mesh editing opera-

tions, such as 2D-to-3D style transfer and 3D Deep-

Dream, with 2D supervision for the first time.

• We will release the code for Neural Renderer.

2. Related work

In this section, we briefly describe how 3D representa-

tions have been integrated into neural networks. We also

summarize works related to our two applications.

2.1. 3D representations in neural networks

3D representations are categorized into rasterized and

geometric forms. Rasterized forms include voxels and

multi-view RGB(D) images. Geometric forms include point

clouds, polygon meshes, and sets of primitives.

Rasterized forms are widely used because they can be

processed by CNNs. Voxels, which are 3D extensions

of pixels, are used for classification [17, 20, 24, 34, 35],

3D reconstruction and generation [2, 30, 31, 34, 36]. Be-

cause the memory efficiency of voxels is poor, some re-

cent works have incorporated more efficient representa-

tions [24, 30, 32]. Multi-view RGB(D) images, which rep-

resent a 3D scene through a set of images, are used for

recognition [20, 27] and view synthesis [29].

Geometric forms require some modifications to be in-

tegrated into neural networks. For example, systems that

handle point clouds must be invariant to the order of points.

Point clouds have been used for both recognition [12, 19,

21] and reconstruction [5]. Primitive-based representations,

which represent 3D objects using a set of primitives, such

as cuboids, have also been investigated [14, 39].

A Polygon mesh represents a 3D object as a set of ver-

tices and surfaces. Because it is memory efficient, suit-

able for geometric transformations, and has surfaces, it is

the de facto standard form in computer graphics (CG) and

computer-aided design (CAD). However, because the data

structure of a polygon mesh is a complicated graph, it is dif-

ficult to integrate into neural networks. Although recogni-

tion and segmentation have been investigated [10, 38], gen-

erative tasks are much more difficult. Rezende et al. [23]

incorporated the OpenGL renderer into a neural network

for 3D mesh reconstruction. Gradients of the black-box

renderer were estimated using REINFORCE [33]. In con-

trast, the gradients in our renderer are geometry-grounded

and presumably more accurate. OpenDR [15] is a differ-

entiable renderer. Unlike this general-purpose renderer, our

proposed gradients are designed for neural networks.

2.2. Single­image 3D reconstruction

The estimation of 3D structures from images is a tradi-

tional problem in computer vision. Following the recent

progress in machine learning algorithms, 3D reconstruction

from a single image has become an active research topic.

Most methods learn a 2D-to-3D mapping function using

ground truth 3D models. While some works reconstruct 3D

structures via depth prediction [4, 25], others directly pre-

dict 3D shapes [2, 5, 30, 31, 34].

Single-image 3D reconstruction can be realized without

3D supervision. Perspective transformer nets (PTN) [36]

learn 3D structures using silhouette images from multiple

viewpoints. Our 3D reconstruction method is also based

on silhouette images. However, we use polygon meshes

whereas they used voxels.
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(a) Example of mesh & pixels

(b) Standard rasterization

(c) Derivative of (b)

(d) Modification of (b)

(e) Derivative of (d)

Forward pass of 

proposed method

Backward pass of 

proposed method

�" = (�" , �")

�*	, �*(�")

�*

�"

�*

�"

�*

�"

�*

�"�, �-

No gradient flow

Blurred image

�"*

Figure 2. Illustration of our method. vi = {xi, yi} is one vertex

of the face. Ij is the color of pixel Pj . The current position of xi

is x0. x1 is the location of xi where an edge of the face collides

with the center of Pj when xi moves to the right. Ij becomes Iij
when xi = x1.

2.3. Image editing via gradient descent

Using a differentiable feature extractor and loss function,

an image that minimizes the loss can be generated via back-

propagation and gradient descent. DeepDream [18] is an

early example of such a system. An initial image is repeat-

edly updated so that the magnitude of its image feature be-

comes larger. Through this procedure, objects such as dogs

and cars gradually appear in the image.

Image style transfer [6] is likely the most familiar and

practical example. Given a content image and style image,

an image with the specified content and style is generated.

Our renderer provides gradients of an image with respect

to the vertices and textures of a mesh. Therefore, Deep-

Dream and style transfer of a mesh can be realized by using

loss functions on 2D images.

3. Approximate gradient for rendering

In this section, we describe Neural Renderer, which is a

3D mesh renderer with gradient flow.

3.1. Rendering pipeline and its derivative

A 3D mesh consists of a set of vertices {vo
1 ,v

o
2 , ..,v

o
Nv

}
and faces {f1,f2, ..,fNf

}, where the object has Nv vertices

and Nf faces. vo
i ∈ R

3 represents the position of the i-

th vertex in the 3D object space and fj ∈ N
3 represents

the indices of the three vertices corresponding to the j-th

triangle face. To render this object, vertices {vo
i } in the

object space are transformed into vertices {vs
i }, vs

i ∈ R
2

in the screen space. This transformation is represented by a

combination of differentiable transformations [16].

An image is generated from {vs
i } and {fj} via sampling.

(a) Example of mesh & pixels

(b) Standard rasterization

(c) Derivative of (b)

(d) Modification of (b)

(e) Derivative of (d)

Forward pass of 
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proposed method
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Figure 3. Illustration of our method in the case where Pj is inside

the face. Ij changes when xi moves to the right or left.

This process is called rasterization. Figure 2 (a) illustrates

rasterization in the case of single triangle. In rasterization,

each pixel is painted in the color of the triangle face over-

lapping it. Since this is a discrete operation, the color of a

pixel cannot be differentiated by the position of faces. This

causes a problem in back-propagation.

3.2. Rasterization of a single face

For ease of explanation, we describe our method using

the x-coordinate xi of a single vertex vi = vs
i in the screen

space and a single gray-scale pixel Pj . We consider the

color of Pj to be a function Ij(xi) on xi and freeze all vari-

ables other than xi.

First, we assume that Pj is outside the face, as shown

in Figure 2 (a). The color of Pj is I(x0) when xi is at the

current position x0. If xi moves to the right and reaches the

point x1, where an edge of the face collides with the center

of Pj , Ij(xi) suddenly turns to the color of hitting point Iij .

Let δxi be the distance traveled by xi, let δxi = x1 − x0, and

let δIj represent the change in the color δIj = I(x1)−I(x0).

The partial derivative
∂Ij(xi)
∂xi

is zero almost everywhere, as

illustrated in Figure 2 (b–c).

Because the gradient is zero, the information that Ij(xi)
can be changed by δIj if xi moves by δxi to the right is

not transmitted to xi. This is because Ij(xi) suddenly

changes. Therefore, we replace the sudden change with a

gradual change between x0 and x1 using linear interpola-

tion. Then,
∂Ij
∂xi

becomes
δIj
δx
i

between x0 and x1, as shown

in Figure 2 (d–e).

The derivative of Ij(xi) is different on the right and left

sides of x0. How should one define a derivative at xi = x0?

We propose switching the values using the error signal δPj
back-propagated to Pj . The sign of δPj indicates whether

Pj should be brighter or darker. To minimize the loss, if
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δPj > 0, then Pj must be darker. On the other hand, the

sign of δIj indicates whether Pj can be brighter or darker. If

δIj > 0, Pj becomes brighter by pulling in xi, but Pj cannot

become darker by moving xi. Therefore, a gradient should

not flow if δPj > 0 and δIj > 0. From this viewpoint, we

define
∂Ij(xi)
∂xi

|xi=x0
as follows.

∂Ij(xi)
∂xi

∣

∣

∣

xi=x0

=

{

δIj
δx
i

; δPj δ
I
j < 0.

0; δPj δ
I
j ≥ 0.

(1)

Sometimes, the face does not overlap Pj regardless of

where xi moves. This means that x1 does not exist. In this

case, we define
∂Ij(xi)
∂xi

|xi=x0
= 0.

We use Figure 2 (b) for the forward pass because if we

use Figure 2 (d), the color of a face leaks outside of the

face. Therefore, our rasterizer produces the same images as

the standard rasterizer, but it has non-zero gradients.

The derivative with respect to yi can be obtained by

swapping the x-axis and y-axis in the above discussion.

Next, we consider a case where Pj is inside the face, as

shown in Figure 3 (a). In this case, I(xi) changes when

xi moves to the right or left. Standard rasterization, its

derivative, an interpolated function, and its derivative are

shown in Figure 3 (b–e). We first compute the derivatives

on the left and right sides of x0 and let their sum be the

gradient at x0. Specifically, using the notation in Figure 3,

δI
a

j = I(xa
1)− I(x0), δ

Ib

j = I(xb
1)− I(x0), δ

a
x = xa

1 − x0

and δbx = xb
1 − x0, we define the loss as follows.

∂Ij(xi)
∂xi

∣

∣

∣

xi=x0

=
∂Ij(xi)
∂xi

∣

∣

∣

a

xi=x0

+
∂Ij(xi)
∂xi

∣

∣

∣

b

xi=x0

. (2)

∂Ij(xi)
∂xi

∣

∣

∣

a

xi=x0

=

{

δI
a

j

δax
; δPj δ

Ia

j < 0.

0; δPj δ
Ia

j ≥ 0.
(3)

∂Ij(xi)
∂xi

∣

∣

∣

b

xi=x0

=







δI
b

j

δbx
; δPj δ

Ib

j < 0.

0; δPj δ
Ia

j ≥ 0.
(4)

3.3. Rasterization of multiple faces

If there are multiple faces, our rasterizer draws only the

frontmost face at each pixel, which is the same as the stan-

dard method [16]. During the backward pass, we first check

whether or not the cross points Iij , Iaij , and Ibij are drawn,

and do not flow gradients if they are occluded by surfaces

not including vi.

3.4. Texture

Textures can be mapped onto faces. In our implementa-

tion, each face has its own texture image of size st×st×st.

We determine the coordinates in the texture space corre-

sponding to a position p on a triangle {v1,v2,v3} using

the centroid coordinate system. In other words, if p is ex-

pressed as p = w1v1 + w2v2 + w3v3, let (w1, w2, w3) be

the corresponding coordinates in the texture space. Bilinear

interpolation is used for sampling from a texture image.

3.5. Lighting

Lighting can be applied directly to a mesh, unlike vox-

els and point clouds. In this work, we use a simple ambient

light and directional light without shading. Let la and ld

be the intensities of the ambient light and directional light,

respectively, nd be a unit vector indicating the direction of

the directional light, and nj be the normal vector of a sur-

face. We then define the modified color of a pixel I lj on the

surface as I lj =
(

la +
(

nd · nj

)

ld
)

Ij .

In this formulation, gradients also flow into the intensi-

ties la and ld, as well as the direction nd of the directional

light. Therefore, light sources can also be included as an

optimization target.

4. Applications of Neural Renderer

We apply our proposed renderer to (a) single-image 3D

reconstruction with silhouette image supervision and (b)

gradient-based 3D mesh editing, including a 3D version of

style transfer [6] and DeepDream [18]. An image of a mesh

m rendered from a viewpoint φi is denoted R(m,φi).

4.1. Single image 3D reconstruction

Yan et al. [36] demonstrated that single-image 3D re-

construction can be realized without 3D training data. In

their setting, a 3D generation function G(x) on an image x

was trained such that silhouettes of a predicted 3D shape

{ŝi = R(G(x), φi)} match the ground truth silhouettes

{si}, assuming that the viewpoints {φi} are known. This

pipeline is illustrated in Figure 1. While Yan et al. [36]

generated voxels, we generate a mesh.

Although voxels can be generated by extending existing

image generators [8, 22] to the 3D space, mesh generation

is not so straightforward. In this work, instead of generating

a mesh from scratch, we deform a predefined mesh to gen-

erate a new mesh. Specifically, we use an isotropic sphere

with 642 vertices and move each vertex vi as vi + bi + c

using a local bias vector bi and global bias vector c. Addi-

tionally, we restrict the movable range of each vertex within

the same quadrant on the original sphere. The faces {fi} are

unchanged. Therefore, the intermediate outputs of G(x) are

b ∈ R
642×3 and c ∈ R

1×3. The mesh we use is specified by

642× 3 parameters, which is far less than the typical voxel

representation with a size of 323. This low-dimensionality

is presumably beneficial for shape estimation.

The generation function G(x) is trained using silhouette

loss Lsl and smoothness loss Lsm. Silhouette loss represents

how much the reconstructed silhouettes {ŝi} differ from the
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correct silhouettes {si}. Smoothness loss represents how

smooth the surfaces of a mesh are and acts as a regularizer.

The objective function is a weighted sum of these two loss

functions L = λslLsl + λsmLsm.

Let {si} and {ŝi} be binary masks, θi be the angle be-

tween two faces including the i-th edge in G(x), E be the

set of all edges in G(x), and ⊙ be an element-wise product.

We define the loss functions as:

Lsl(x|φi, si) = −
|ŝi ⊙ si|1

|ŝi + si − ŝi ⊙ si|1
. (5)

Lsm(x) =
∑

θi∈E

(cos θi + 1)2. (6)

Lsl corresponds to a negative intersection over union (IoU)

between the true and reconstructed silhouettes. Lsm ensures

that intersection angles of all faces are close to 180 degrees.

We assume that the object region in an image is seg-

mented via preprocessing in common with the exiting

works [5, 31, 36]. We input the mask of the object region

into the generator as an additional channel of an RGB im-

age.

4.2. Gradient­based 3D mesh editing

Gradient-based image editing techniques [6, 18] gener-

ate an image by minimizing a loss function L(x) on a 2D

image x via gradient descent. In this work, instead of gen-

erating an image, we optimize a 3D mesh m consisting of

vertices {vi}, faces {fi}, and textures {ti} based on its ren-

dered image R(m|φi).

4.2.1 2D-to-3D style transfer

In this section, we propose a method to transfer the style of

an image xs onto a mesh mc.

For 2D images, style transfer is achieved by minimizing

content loss and style loss simultaneously [6]. Specifically,

content loss is defined using a feature extractor fc(x) and

content image xc as Lc(x|x
c) = |fc(x)− fc(x

c)|
2
2. Style

loss is defined using another feature extractor fs(x) and

style image xs as Ls(x|x
s) = |M(fs(x))−M(fs(x

s))|
2
F .

M(x) transforms a vector into a Gram matrix.

In 2D-to-3D style transfer, content is specified as a 3D

mesh mc. To make the shape of the generated mesh similar

to that of mc, assuming that the vertices-to-faces relation-

ships {fi} are the same for both meshes, we redefine con-

tent loss as Lc(m|mc) =
∑

{vi,v
c
i
}∈(m,mc) |vi − vc

i |
2
2. We

use the same style loss as that in the 2D application. Specif-

ically, Ls(m|xs, φ) = |M(fs(R(m,φ)))−M(fs(xs))|
2
F .

We also use a regularizer for noise reduction. Let P de-

note the a set of colors of all pairs of adjacent pixels in

an image R(m,φ). We define this loss as Lt(m|φ) =
∑

{pa,pb}∈P |pa − pb|
2
2.

The objective function is L = λcLc + λsLs + λtLt.

We set an initial solution of m as mc and minimize L with

respect to {vi} and {ti}.

4.2.2 3D DeepDream

Let f(x) be a function that outputs a feature map of an

image x. For 2D images, a DeepDream of image x0

is achieved by minimizing −|f(x)|2F via gradient descent

starting from x = x0. Optimization is halted after a

few iterations. Following a similar process, we minimize

−|f(R(m,φ))|2F with respect to {vi} and {ti}.

5. Experiments

In this section, we evaluate the effectiveness of our ren-

derer through the two applications.

5.1. Single image 3D reconstruction

5.1.1 Experimental settings

To compare our mesh-based method with the voxel-based

approach by Yan et al. [36], we used nearly the same dataset

as they did1. We used 3D objects from 13 categories in

the ShapeNetCore [1] dataset. Images were rendered from

24 azimuth angles with a fixed elevation angle, under the

same camera setup, and lighting setup using Blender. The

render size was 64× 64 pixels. We used the same training,

validation, and test sets as those used in [36].

We compared reconstruction accuracy between the

voxel-based and retrieval-based approaches [36]. In the

voxel-based approach, G(x) is composed of a convolu-

tional encoder and deconvolutional decoder. While their en-

coder was pre-trained using the method in Yang et al. [37],

our network works well without any pre-training. In the

retrieval-based approach, the nearest training image is re-

trieved using the fc6 feature of a pre-trained VGG net-

work [26]. The corresponding voxels are regarded as a pre-

dicted shape. Note that the retrieval-based approach uses

ground truth voxels for supervision.

To evaluate the reconstruction performance quantita-

tively, we voxelized both the ground truth meshes and the

generated meshes to compute the intersection over union

(IoU) between the voxels. The size of voxels was set to

323. For each object in the test set, we performed 3D recon-

struction using the images from 24 viewpoints, calculated

the IoU scores, and reported the average score.

We used an encoder-decoder architecture for the genera-

tor G(x). Our encoder is nearly identical to that of [36],

which encodes an input image into a 512D vector. Our

1The dataset we used was not exactly the same as that used in [36].

The rendering parameters for the input images were slightly different. Ad-

ditionally, while our silhouette images were rendered by Blender from the

meshes in the ShapeNetCore dataset, theirs were rendered by their PTNs

using voxelized data.
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Figure 4. 3D mesh reconstruction from a single image. Results are rendered from three viewpoints. First column: input images. Second

through fourth columns: mesh reconstruction (proposed method). Fifth through seventh columns: voxel reconstruction [36].

airplane bench dresser car chair display lamp

Retrieval [36] 0.5564 0.4875 0.5713 0.6519 0.3512 0.3958 0.2905
Voxel-based [36] 0.5556 0.4924 0.6823 0.7123 0.4494 0.5395 0.4223

Mesh-based (ours) 0.6172 0.4998 0.7143 0.7095 0.4990 0.5831 0.4126

loudspeaker rifle sofa table telephone vessel mean

Retrieval [36] 0.4600 0.5133 0.5314 0.3097 0.6696 0.4078 0.4766
Voxel-based [36] 0.5868 0.5987 0.6221 0.4938 0.7504 0.5507 0.5736
Mesh-based (ours) 0.6536 0.6322 0.6735 0.4829 0.7777 0.5645 0.6016

Table 1. Reconstruction accuracy measured by voxel IoU. Higher is better. Our mesh-based approach outperforms the voxel-based ap-

proach [36] in 10 out of 13 categories.

Figure 5. Generation of the back side of a CRT monitor

with/without smoothness regularizer. Left: input image. Center:

prediction without regularizer. Right: prediction with regularizer.

decoder is composed of three fully-connected layers. The

sizes of the hidden layer are 1024 and 2048.

The render size of our renderer is set to 128 × 128 and

downsampled them to 64 × 64. We rendered only the sil-

houettes of objects without using textures and lighting. We

set λsl = 1 and λsm = 0.001 in Section 5.1.2, and λsm = 0
in Section 5.1.3. We trained our generator using the Adam

optimizer [11] with α = 0.0001. The batch size was set

to 64. In each minibatch, we included silhouettes from two

viewpoints per input image.

5.1.2 Qualitative evaluation

We trained 13 models with images from each class. Fig-

ure 4 presents a part of results from the test set by our

mesh-based method and the voxel-based method [36]2. Ad-

ditional results are presented in the supplementary materi-

als. These results demonstrate that a mesh can be correctly

reconstructed from a single image using our method.

Compared to the voxel-based approach, the shapes re-

constructed by our method are more visually appealing

from the two points. One is that a mesh can represent

small parts, such as airplane wings, with high resolution.

The other is that there is no cubic artifacts in a mesh. Al-

though low resolutions and artifacts may not be a problem

in tasks such as picking by robots, they are disadvanta-

geous for computer graphics, computational photography,

and data augmentation.

Without using the smoothness loss, our model some-

times produces very rough surfaces. That is because the

2We trained generators using the code from the authors and our dataset.
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smoothness of surfaces has little effect on silhouettes. With

the smoothness regularizer, the surface becomes smoother

and looks more natural. Figure 5 illustrates the effective-

ness of the regularizer. However, if the regularizer is used,

the voxel IoU for the entire dataset becomes slightly lower.

5.1.3 Quantitative evaluation

We trained a single model using images from all classes.

The reconstruction accuracy is shown in Table 1. Our mesh-

based approach outperforms the voxel-based approach [36]

for 10 out of 13 categories. Our result is significantly bet-

ter for the airplane, chair, display, loudspeaker, and

sofa categories. The basic shapes of the loudspeaker and

display categories are simple. However, the size and posi-

tion vary depending on the objects. The fact that meshes are

suitable for scaling and translation presumably contributes

to the performance improvements in these categories. The

variations in shapes in the airplane, chair and sofa cat-

egories are also relatively small.

Our approach did not perform very well for the car,

lamp, and table categories. The shapes of the objects in

these categories are relatively complicated, and they are dif-

ficult to be reconstructed by deforming a sphere.

5.1.4 Limitation

Although our reconstruction method already surpasses the

voxel-based method in terms of visual appeal and voxel

IoU, it has a clear disadvantage in that it cannot generate

objects with various topologies. In order to overcome this

limitation, it is necessary to generate the faces-to-vertices

relationship {fi} dynamically. This is beyond the scope

of this study, but it is an interesting direction for future re-

search.

5.2. Gradient­based 3D editing via 2D loss

5.2.1 Experimental settings

We applied 2D-to-3D style transfer and 3D DeepDream

to the objects shown in Figure 6. Optimization was con-

ducted using the Adam optimizer [11] with β1 = 0.9, and

β2 = 0.999. We rendered images of size 448 × 448 and

downsampled them to 224× 224 to eliminate aliasing. The

batch size was set to 4. During optimization, images were

rendered at random elevations and azimuth angles. Texture

size was set to st = 4.

For style transfer, the style images we used were se-

lected from [3, 9]. λc, λs, and λt are manually tuned for

each input. The feature extractors fs for style loss were

conv1 2, conv2 3, conv3 3, and conv4 3 from the VGG-

16 network [26]. The intensities of the lights were la = 0.5
and ld = 0.5, and the direction of the light was randomly

set during optimization. The α value of Adam was set to

2.5e−4, 5e−2 for {vi}, {ti}. The number of parameter up-

dates was set to 5, 000.

In DeepDream, images are rendered without lighting.

The feature extractor was the inception 4c layer from

GoogLeNet [28]. The α value of Adam was set to

5e−5, 1e−2 for {vi}, {ti}. Optimization is stopped after

1, 000 iterations.

5.2.2 2D-to-3D Style Transfer

Figure 7 presents the results of 2D-to-3D style transfer. Ad-

ditional results are shown in the supplementary materials.

The styles of the paintings were accurately transferred to

the textures and shapes. From the outline of the bunny and

the lid of the teapot, we can see the straight style of Cou-

pland and Gris. The wavy style of Munch was also trans-

ferred to the side of the teapot. Interestingly, the side of the

tower of Babel was transferred only to the side, not to the

upside, of the bunny.

The proposed method provides a way to edit 3D models

intuitively and quickly. This can be useful for rapid proto-

typing for product design as well as art production.

5.2.3 3D DeepDream

Figure 8 presents the results of DeepDream. A nose and

eyes emerged on the face of the bunny. The spout of the

teapot expanded and became the face of the bird, while

the body appeared similar to a bus. These transformations

matched the 3D shape of each object.

6. Conclusion

In this paper, we enabled the integration of rendering of a

3D mesh into neural networks by proposing an approximate

gradient for rendering. Using this renderer, we proposed

a method to reconstruct a 3D mesh from a single image,

the performance of which is superior to the existing voxel-

based approach [36] in terms of visual appeal and the voxel

IoU metric. We also proposed a method to edit the vertices

and textures of a 3D mesh according to its 3D shape us-

ing a loss function on images and gradient descent. These

applications demonstrate the potential of integrating mesh

renderers into neural networks and the effectiveness of the

proposed renderer.

The applications of our renderer are not limited to those

presented in this paper. Other problems will be solved

through incorporating our module in other systems.

Acknowledgment

This work was partially funded by ImPACT Program of

Council for Science, Technology and Innovation (Cabinet

Office, Government of Japan) and partially supported by

JST CREST Grant Number JPMJCR1403, Japan.

3913



Figure 6. Initial state of meshes in style transfer and DeepDream. Rendered from six viewpoints.

Figure 7. 2D-to-3D style transfer. The leftmost images represent styles. The style images are Thomson No. 5 (Yellow Sunset) (D. Coupland,

2011), The Tower of Babel (P. Bruegel the Elder, 1563), The Scream (E. Munch, 1910), and Portrait of Pablo Picasso (J. Gris, 1912).

Figure 8. DeepDream of 3D mesh.
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