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Abstract

When learning functions on manifolds, we can improve per-

formance by regularizing with respect to the intrinsic manifold

geometry rather than the ambient space. However, when regu-

larizing tensor learning, calculating the derivatives along this

intrinsic geometry is not possible, and so existing approaches

are limited to regularizing in Euclidean space. Our new method

for intrinsically regularizing and learning tensors on Rieman-

nian manifolds introduces a surrogate object to encapsulate the

geometric characteristic of the tensor. Regularizing this instead

allows us to learn non-symmetric and high-order tensors. We

apply our approach to the relative attributes problem, and we

demonstrate that explicitly regularizing high-order relationships

between pairs of data points improves performance.

1. Introduction

Learning tensors from data has many applications in function

learning. Regression, classification, and clustering pose the func-

tion as a zeroth-order tensor; vector field learning poses the vec-

tor as a first-order tensor [41, 35]; and metric or covariance learn-

ing pose the metric as a symmetric second-order tensor [39, 37].

The generalization performance of the learned tensor h
depends crucially on how it is regularized—how the spatial

smoothness of h is enforced. In many problems, data lie on

low-dimensional manifolds [29, 25, 32], for which it helps

to regularize h with respect to the intrinsic geometry of the

data generating manifold M: to enforce smoothness along M
rather than in the ambient (Euclidean) space on which M is

embedded. This has shown improvement for semi-supervised

learning, and spectral embedding and clustering [36, 3, 6].

While Stokes’ theorem allows us to perform intrinsic regu-

larization of zeroth-order tensors (functions) on manifolds M ,

extending this idea to higher-order tensors is not straightforward:

as M itself is not directly observed, calculating the covariant

derivatives—the derivatives alongM—is not possible. Thus, ex-

isting tensor regularization approaches are limited to the special

case of Euclidean space [35, 30, 11, 12], the solutions to which

cannot be simply applied to general manifold-structured data.

We present a method to intrinsically regularize and learn ten-

sors on Riemannian manifolds. As manifolds are not directly ob-

served in practice, our strategy is to introduce a surrogate object—

a kernel function—that encapsulate the geometric characteristic

of the tensor. We estimate this kernel function from a point

cloud sampled from M , and regularize this instead. In contrast

to existing approaches for intrinsic tensor regularization which

can only learn symmetric positive definite tensors [18], we can

learn general non-symmetric tensors and high-order tensors.

To help the novice reader, our supplemental material

provides an introduction to regularization on Riemannian

manifolds, compares Euclidean and manifold regularization,

and discusses the challenge of regularizing tensors directly.

1.1. Application to relative attribute ranking.

We demonstrate our approach by learning a linear ordering,

which can be defined by specifying pairwise relations between

all data points, and can be represented by a second-order

anti-symmetric tensor.

Problem description. Binary labels which describe the

presence or absence of image objects or attributes are often

insufficient for many tasks [20, 40]. Imagine shopping for

shoes: there is no clear boundary between ‘pointy’ and ‘not

pointy’ shoes even though it is easy for a human to state that

one shoe is ‘pointier’ than another. Thus, measuring relative

attributes [28] broadens attribute-based image analysis to

abstract and non-categorical labels.

This is accomplished by asking users to describe the relation-

ship between pairs of data points, either as equal or with an order

(greater/less than): image x(i) and x(j) share the same amount

of attribute A; or, x(i) exhibits a stronger/weaker presence of at-

tribute A than x(j). While Parikh and Grauman focus on binary

classification [28], the technique can be thought of as implicitly

introducing a linear ordering to a dataset for a given attribute:

an ordering function f is learned such that f(x(i)) > f(x(j))
implies that the rank of x(i) is higher than that of x(j).

Relation to existing techniques. Rank learning relates to

the classical data retrieval problem of matching a query to a

database (Agresti [1] and Liu [24] survey the field). While

data retrieval is framed as the binary attribute problem of

splitting matches from non-matches, constructing a perfect

binary classifier is challenging. As such, it is commonly solved
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as a ranking problem where each database entry is assigned a

continuous rank score representing its relevance to the query.

This can be formulated as a regularization problem: Given a

set of training labels relating a query to its matches, identify

a ranking function f which trades supervised training error

with a regularization energy functional measuring the (inverse)

smoothness of f (a zero-th order tensor). Existing regularization

approaches for ranking can be interpreted as saying “if two data

points x and y are similar, then their rank scores f(x) and f(y)
with respect to a query data point should be similar.”

In relative attributes problems, no query data point is ever

presented as the goal is to learn a linear ordering—that we have

learned the attribute ’shoe pointedness’ through pairwise com-

parison says nothing about the kind of shoe we desire. Thus, all

pairwise comparisons are important. Current relative attribute

approaches use standard ranking algorithms from classical data

retrieval to learn f , e.g., RankSVM, a support vector machine

with a rank loss [14, 16, 5], or deep neural networks [38]. Their

corresponding regularizers only enforce smoothness on the

underlying ranking function f , i.e., with respect to a specific

query point, and so they do not directly capture/propagate the

relative comparisons of all pairwise points. These pairwise

relationships can be represented as a second-order tensor, but

this requires the ability to regularize such a structure.

Our approach. We explicitly model the full pairwise relation-

ships by learning a second-order anti-symmetric tensor (kernel)

that directly expresses the rank relationships. Given the kernel

structure, our new regularization energy can be interpreted as

saying “if two data points x and y are similar, then their rank

scores f(x) and f(y) with respect to all data points should be

similar.” Due to the high time and memory complexities of

modeling all pairwise relationships, our approach is not directly

applicable to large-scale problems. Therefore, we also presents

an efficient low-rank approximation of the full kernel-based

ranking algorithm. Further, we present a simple algorithm to

convert the learned kernel into a linear ordering along with an in-

tuitive explanation based on the ranking of graph-structured data.

While enforcing smoothness on the ranking function f
implicitly enforces smoothness on all pairwise evaluations, our

approach conjectures that explicitly enforcing smoothness on

pairwise evaluations can help. This is motivated by the effec-

tiveness of high-order derivative-based function regularization:

Enforcing the smoothness of f by penalizing only its first-order

derivative norm implicitly penalizes all high-order derivative

norms, as the only null space of this norm is constant functions

which have zero high-order derivatives. Nonetheless, the use

of high-order regularizers is strongly supported by empirical

performance (e.g., Thin-plate energy). Our main contribution

is to demonstrate that adding this apparently-redundant explicit

control over the regularization of all kernel evaluations can

improve performance over existing regularizers.

2. Tensor regularization

To begin, we present a general framework for tensor regular-

ization on manifolds, from which we derive our kernel-based

ranking algorithm (KR) as its discretization. Our exposition will

focus on symmetric and anti-symmetric second-order tensors,

as used in metric learning and rank learning applications. Our

supplemental material shows how this can be extended to higher-

order tensors. We will use standard results from Riemannian ge-

ometry; we refer readers to our supplemental material for a brief

introduction to vectors and tensors on Riemannian manifolds,

and to more substantial texts [17, 22]. Readers interested only

in the algorithmic aspects of our approach may jump to Sec. 3.

2.1. Tensor regularization (direct case)

The Harmonic energy of a smooth function f ∈ C∞(M) (a

zeroth-order tensor) on a compact Riemannian manifold (M,g)
with metric g is obtained by integrating the squared norm of

the gradient vector ∇gf over M :

EH(f) :=

∫

M

‖∇gf(x)‖2gp(x)dV (x) (1)

= −

∫

M

f(x)[∆pf ](x)dV (x), (2)

where dV is the volume form of g, p is a probability density of x
on M , ∆p is the density p-weighted Laplace-Beltrami operator

∆p := 1
p(∇

g)∗p∇g, and Eq. 2 is obtained by applying Stokes’

theorem on M . Here, EH measures the first-order variation of f
as weighted by p. This energy is commonly used in regularizing

functions, e.g., in semi-supervised learning and spectral cluster-

ing and embedding. Once the regularization energy on M is de-

fined, learning a function f is facilitated by combining it with the

training error functions (e.g. ranking losses lP and lO; Eq. 14).

In general, taking a derivative of a tensor increases its order

by one: The derivative of function f is a vector, a first-order

tensor. Similarly, the derivative of a second order tensor h is

a third order tensor ∇gh. Generalizing the norm structure in

Eq. 1 to third or higher-order tensors is straightforward given

g (see supplemental Sec. 1). Based on these structures, we can

extend the harmonic energy to tensors:

EH(h) :=

∫

M

‖∇gh(x)‖2gp(x)dV (x). (3)

Then, we can learn a tensor h on manifolds by trading EH
with the training error defined on the tensor evaluations. For

instance, for metric learning, the measured distances induced

by the metric between a pair of sampled points should be large

if the line or geodesic joining them is orthogonal to the class or

cluster boundary directions, while the distance should be small

when the line is parallel to the boundaries.

When the manifold (M,g) is explicitly given, calculating the

tensor harmonic energy EH is straightforward (Eq. 3). Calculat-

ing ∇gh of h requires estimating the Christoffel symbols, which
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requires observing g directly. However, in practical applications,

we do not have access to the manifold or g. Instead, we ob-

tain a sampled point cloud X = {x(1), . . . ,x(n)} as a subset

of the ambient space R
m (i.e., ı(M) ⊂ R

m with ı being an

embedding), which does not allow us to explicitly evaluate ∇gh.

For the special case of the zero-th order tensor f , Stokes’

theorem (Eq. 2) allows us to calculate the harmonic energy

without having to explicitly evaluate ∇gf: Calculating the

Laplacian ∆f is sufficient. This facilitates practical applications

as the graph Laplacian is available as a consistent estimate

of ∆ [3, 13]: As |X | → ∞, f converges to a function f on

M (f := f|X = [f(x(1)), . . . , f(x(n))]⊤) and, in this case,

the graph Laplacian regularizer corresponds to a sample-based

approximation of EH(f) [3, 13]:

C(M,g)f
⊤Lf → EH(f) as n → ∞, (4)

where C(M,g) is a positive constant depending only on

(M,g). This result provides a theoretical justification of graph

Laplacian-based regularization approaches.

For higher-order tensors, even after applying Stokes’

theorem, the resulting object involves tensor derivatives and so

calculating the Christoffel symbols is unavoidable.

2.2. Tensor regularization (indirect case)

To regularize tensor h, we introduce an auxiliary function

H to encapsulate the behavior of h, then regularize H instead.

Roughly, we will construct the function H(p, q) as an integral

of h along the arc-length-parameterized geodesic joining p and

q. Once H is built, we can recover h by taking the derivative

of H along the geodesic.

First, we use a local diffeomorphism structure between the

tangent space TpM of M at p and M: The exponential map

expp : Up ⊂ TpM → M is defined as:

expp(Y ) = γY (1), (5)

where γY is a geodesic that agrees with Y ∈ TpM at p, i.e.

γY (0) = p and [∂γY /∂t](0) = Y . The radius of the domain

Up of expp (called normal neighborhood in which expp is a

diffeomorphism) is always positive [22].

Using this diffeomorphism, one can define a distance

function that corresponds to the metric g. We will develop

surrogate functions for other tensors by extension, in particular

anti-symmetric tensors for ranking applications.

The squared distance between p and q ∈ exp(Up)
can be calculated as the squared length ‖Y ‖2g of vector

Y = exp−1(q) ∈ Up, which defines our surrogate function

Gp(q) := ‖Y ‖2g at p. In general, ‖Y ‖2g can be obtained as a

second-order Taylor series approximation of Gp(q).
With this identification, each function Gp is defined only at

a small neighborhood exp(Up). Now, to apply this construction

to learn a new tensor g, we extend the domain of Gp (and Gp

for g) to the entire manifold. Actually, the local characterization

of {Gp} is sufficient to define the corresponding regularizer of

G and equivalently g, as the regularizers themselves are defined

only based on the local derivative evaluations (see Eq. 11).

However, we wish to fully exploit the potential supervision

information in learning a new tensor g: For instance, for metric

learning, a training label can relate a distinct pair of data points

p and q, i.e., q /∈ Up, e.g., “p and q belong to the same class

and should be close with respect to g”.

To extend the domains of {Gp}, we use the integration of

the metric along the geodesics {γ} joining p and q:

Gp(q) = inf
γ(0)=p,γ(a)=q

L(γ) (6)

L(γ) =

∫ a

0

g

(
∂γ(t)

∂t
,
∂γ(t)

∂t

)
dt. (7)

Now, a general distance function G : M × M → R
+ is

simply defined as G(p, q) := Gp(q). This is precisely how the

Riemannian manifold M becomes a metric space [17, 22], as

it can be shown that G satisfies the conditions of non-negativity,

symmetry, and triangle inequality. Further, given the distance

function Gp and a coordinate (x1, . . . , xd), restoring the metric

tensor g at p is straightforward: By evaluating the distance

between p and each element in {q(1), . . . , q(k)} ⊂ exp(U)
(k ≥ (d+ 1)d/2), one can calculate the corresponding lengths

of vectors Y (l) = exp−1(q(l)) =
∑

i y
i(l)∂/∂xi. This gives a

system of equations for the coefficients of g in local coordinates:

Gp(q) =
∑

ij=1,...,d

gijy
i(l)yj(l), for l = 1, . . . , k. (8)

A coordinate-independent way of reconstructing g from G is

to differentiate L(γ) with respect to t at a = 0 for the space of

geodesics {γ}. This provides a canonical way of reconstructing

the Riemannian structure from the metric space structure [27].

It also demonstrates that there’s no need to explicitly calculate

integrals over the geodesics as the metric g is characterized

entirely based on local behaviour of G. We adopt Eq. 8

to facilitate the g reconstruction when the manifold is only

indirectly observed based on a point cloud X .

This system should be solved exactly when G is calculated

from g as above. Let us suppose that we are estimating a new

metric g (or any other symmetric positive definite tensor) on

(M,g), e.g., in metric learning applications. In this case, we

could construct the corresponding auxiliary function G(p, q)
and equivalently {Gp(q) ∈ C∞(M)} as an object to be regu-

larized. As before, using Stokes’ theorem, we can calculate the

Harmonic energy of Gp by using the Laplacian ∆gGp instead

of explicitly calculating ∇gG or ∇gg. Once G is estimated, we

can restore g by constructing a least-square solution of Eq. 8.

Now, we apply this framework to an anti-symmetric tensor k
for ranking applications (Fig. 1). First we note that the (squared)

distance G(p, q) between two data points p and q are defined as

an infimum of the length of geodesics joining p and q (Eq. 6).

4351



Figure 1. Integrating the Riemannian metric g over the vector field ∂γ∗

of the shortest path γ∗ between p and q gives Riemannian distance

G(p, q). Integrating an anti-symmetric tensor k over γ∗ gives our

kernel K(p, q). K and k contain the same amount of information.

For a compact manifold, such a geodesic γ∗ always exists.1

Based on this minimal geodesic γ∗ = argmin(L), the surro-

gate function K of an anti-symmetric tensor k is defined as:

K(p, q) = Kp(q) =

∫ a

0

k

(
∂γ∗(t)

∂t
,−

∂γ∗(t)

∂t

)
dt. (9)

Note the minus sign in the second argument of k. By construc-

tion, K(p, q) is antisymmetric. Furthermore, given the antisym-

metric functionKp, the corresponding antisymmetric tensor k at

p can be restored by simply taking the derivatives of Kp with re-

spect to t: Similarly to metric tensor case, k can be interpreted as

an evaluation of K along an infinitesimally short path (a vector):

By construction,K is consistent with the local k evaluation inU :

k(X,Y ) = Kp(q), (10)

with exp(X) = p, exp(Y ) = q for infinitesimal X and Y .

Applying this to a set {q(l)}kl=1 (k ≥ (d−1)d/2) in a small

neighborhood of p, we obtain a system of equations similar to

Eq. 8. As noted, we do not directly observe the manifold (M,g)
but are provided with a sample X from ı(M,g). These linear

equations can be constructed based on Riemannian normal

coordinates, as estimated by applying the principal component

analysis to a local neighborhood of each data point x ∈ X [9].

Given the construction of a surrogate function Kp and K
accordingly, we now introduce our (surrogate function-based)

tensor harmonic energy:

EH(K) =

∫

M

∫

M

‖∇gKp(q)‖
2
gdV (p)dV (q). (11)

The interpretation of this energy is straightforward. At

each point q, the function Kp(q) = K(p, q) represents the

relationship between q and p. We enforce that, as q varies, the

function Kp(q) varies smoothly (the outer integral) and this has

to be the case for all points p ∈ M (the inner integral).

Our tensor harmonic energy is constructed entirely based

on tensor evaluations and so it respects the intrinsic geometry of

1This is not the case for general non-compact manifolds. When

M = [0,1]2\(0.5,0.5) endowed with a Euclidean metric, the distance

between two points represented as (0,0) and (1,1) in canonical coordinates

is
√
2, but there is no geodesic of length

√
2 joining the two points.

M (equivalently, it is coordinate independent). An alternative

to this construction is to explicitly learn the latent Riemannian

structure of the data [34, 2]. These latent variable models enjoy

simple Riemannian structure once identified. However, they

limit generality as they assume that the data manifold admits

a global coordinate representation. In contrast, our discrete

approximation has complementary strength of better generality

as we assume no global coordinate chart.

3. Kernel-based ranking algorithm

We present a practical algorithm that uses a consistent

approximation of this energy. Suppose that we are given a

set of data points X = {x(1), . . . ,x(n)} ⊂ R
m, along with

pairwise inequality and equality relationships, respectively,

P = {(i, j)} and O = {(i, j)}, where (i, j) ∈ P implies that

the rank of i-th data point is higher than j-th data point (as

denoted as Rank(x(i)) > Rank(x(j))). Similarity, (i, j) ∈ O
means Rank(x(i)) = Rank(x(j)).

RankSVM (RS). In the original Relative Attributes

work [28], the desired ordering is obtained by applying an

ordering function f : Rm → R to X :

f(x) = w⊤x, (12)

where the parameter vector w is estimated as the minimizer

of the RankSVM (RS) energy functional [5, 28]:

ERS(w) =
∑

(i,j)∈P

lP (fi − fj) +
∑

(i,j)∈O

lO(fi − fj) + λ‖w‖2,

(13)

where λ is a hyper-parameter and fi = f(x(i)). The inequality

loss lP and equality loss lO are given respectively as

lP (a) = max(0,1− a)2 and lO(a) = a2, (14)

while other loss (or inverse likelihood) functions are also

possible. For all algorithms discussed in this paper, we use these

two loss functions. Therefore, the differences between these

algorithms lie only in the respective regularizers. This enables

to compare the performance of supervised and semi-supervised

learning approaches, and our new regularizer in the kernel-based

learning setting. In general, other losses can be adopted in all

algorithms compared in this paper (e.g., logistic loss [1]).

Semi-supervised RankSVM (SSR). This extension of

RankSVM can be obtained by replacing the ambient regularizer

(‖w‖2 in Eq. 13) with a manifold regularizer:

ESSR(w) =
∑

(i,j)∈P

lP (fi − fj)

+
∑

(i,j)∈O

lO(fi − fj) + λf⊤Lf, (15)
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where f = f|X with f given as Eq. 12, and L is the graph

Laplacian constructed from X : L = D−W , where

Wij =





exp
(
−‖x(i)−x(j)‖2

σ2

)
if x(i) ∈ N (x(j))

∧ x(j) ∈ N (x(i))
0 otherwise,

(16)

We use the k-nearest neighborhood for N , with scale parameter

σ2 and number of neighbors k as hyper-parameters.

This type of semi-supervised ranking extension has been

used in data retrieval applications and has demonstrated superior

performance over supervised ranking approaches [25, 15, 31].

Transductive ranking (TR). If our goal is to introduce an

ordering to a given fixed dataset X , as is typical in making

inferences on graph-structured data, then semi-supervised

ranking can be formulated as transductive learning, thereby

eliminating the model assumption on f (Eq. 12). In this case,

the learning algorithm directly estimates the ranking evaluations

f but not f itself. The corresponding energy functional ETR

is the same as ESSR (Eq. 15) but without the model assumption

of Eq. 12. Roughly, minimizing the regularizer f⊤Lf implies

that if x(i) and x(j) are similar in the input space R
m, the

corresponding rank estimates fi and fj should also be similar.

This framework has been proven to be effective in many

semi-supervised learning and spectral clustering applications.

Furthermore, it provides a very intuitive explanation for data

retrieval applications: “if x(i) and x(j) are similar, their

relevance to the query x should be similar as well”. This

non-parametric approach can be regarded as a direct adaptation

to the relative attributes setting of existing semi-supervised

and graph Laplacian-based ranking algorithms, which were

originally for data retrieval problems [43, 45].

In our supplemental material, we compare RS, SSR, and

TR from the manifold regularization perspective providing a

theoretical justification of TR and our approach (KR).

Kernel-based transductive ranking (KR). In data retrieval

applications of ranking, we care about the relevance of each data

point to a single query point, often to build a binary classifier.

However, in applications with pairwise relations, we care about

the relative comparisons of all possible pairs of data points in

X (equivalent to a linear ordering of X ). We exploit the rich

structure of all joint relationships to build a new regularizer. To

facilitate this process, we introduce an antisymmetric kernel K :
R
m ×R

m → R which contains relative ordering information:

K(x,y) = −K(y,x)

{
> 0 if Rank(x) > Rank(y),
< 0 if Rank(x) < Rank(y).

A simple example of K is:

K(x,y) = f(x)− f(y) (17)

assuming that an underling linear ordering function f exists.

Given the kernel function K, our new kernel-based ranking

energy functional (KR) is obtained as:

EKR(K) =
∑

(i,j)∈P

lP (Kij) +
∑

(i,j)∈O

lO(Kij)

+ λtr[K⊤LK], (18)

where tr[A] is the trace of A, and Kij := K(x(i),x(j)). We

abuse notation and use K to denote a function and a matrix as

its sample evaluation. A similar regularizer was used to build

a match graph for 3D scene reconstruction [19].

If we adopt the kernel example of Eq. 17, the loss functions

(the first two terms in Eq. 18) are the same as in RS, SSR,

and TR. Therefore, the main difference of KR from the other

algorithms is that we use K instead of f as an object to

be learned. This perspective enables us to introduce a new

sample-based regularizer EH(K) := tr[K⊤LK]. The i-th
row K[i,:] of the kernel matrix K stores the results of relative

comparisons between x(i) and all the other data points in

X . Therefore, minimizing this regularization energy enforces

the smoothness of all pairwise relationships as weighted by

W (Eq. 16): “If x(i) and x(j) are similar, their relative rank

comparisons with respect to all other data points should be

similar as well”. Furthermore, if required, converting the

estimated kernel evaluations K to linear ordering f based on

Eq. 17 is straightforward (shown at the end of this section).

Now we provide an interpretation of this energy from the

tensor regularization perspective of Sec. 2: Our kernel-based

approximate Harmonic energy EH(K) is a consistent

discretization of the tensor Harmonic energy EH (Eq. 11):

Proposition 1. If M is a compact submanifold of R
m and

X = {x(1), . . . ,x(n)} be a sample from a uniform distribution

on M , then there is a constant CM > 0 such that for

K ∈ C∞(M ×M) and σ2
x(n) = n−1/(d+2+α) with α > 0

as n → ∞:

1

n3(σ2(u))d/2+1
EK(K)

p
−→ CMEK(K). (19)

This result combines the convergence properties of two objects:

The convergence of graph Laplacian L to Laplacian ∆ and the

convergence of kernel evaluation matrix K to the corresponding

kernel function K ∈ C∞(M ×M).
The proof is a straightforward applications of Theorem

4 by Zhou and Belkin [44]: Since K ∈ C∞(M × M),
Kp(·) ∈ C∞(M) for each p ∈ M . Applying the conver-

gence result of graph Laplacian to Kp(i)(·) for a fixed p(i)
(p(i) ∼ x(i)) [3], we have for each q(j) ∈ X ,

[LK]ji
n2(σ2(n))d/2+1

p
−→ ∆Kp(i)(p(j)). (20)

Then Eq. 19 is obtained by applying Eq. 20 to each point p(j)
and the Stokes’ identity (Eq. 1).
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Low-rank kernel-based ranking. Our preliminary exper-

iments have indicated that the kernel-based ranking (KR)

approach (Eq. 18) significantly improves ordering performance

over RS, SSR, TR. However, a major drawback of this

approach is its high computational and memory complexities:

It requires explicitly optimizing an n× n-sized kernel matrix

K. Therefore, directly applying KR to large-scale problems

is infeasible. We overcome this limitation by adopting a

low-rank factorized approximation of K: Given a factor

matrix B ∈ R
n×p (p ≪ n), an antisymmetric kernel matrix

K̃ ∈ R
n×n of rank p is constructed as:

K̃ = BQB⊤, (21)

where Q = R⊤ −R with R being the lower triangular matrix

of ones. By regarding K̃ as an approximation of K, we take the

low-rank matrix B as a new variable to optimize. Unfortunately,

reformulating the KR optimization problem (Eq. 18) based on

this factorization:

EKR(B) = LP (B) +LO(B) + λR(B)

=
∑

(i,j)∈P

lP ([BQB⊤]ij) +
∑

(i,j)∈O

lO(([BQB⊤]ij)

+ λtr[BQ⊤B⊤LBQB⊤], (22)

renders the energy functional EKR non-convex with respect to

the parameter matrix B. However, we empirically observed

that when B is initialized with all ones (i.e. B = [1]n[1]
⊤
p

with 1 = [1, . . . ,1]⊤), the resulting optimized solutions lead

to competitive ranking results. In our supplemental material,

we further support this factorization and the optimization

initialization approach by by evaluating their pure reconstruction

capability in image reconstruction as an example.

We minimize EKR(B) using gradient descent. The deriva-

tives of the regularization energy and the two loss terms are:

∂R(B)

∂B
= −2BQB⊤LBQ− 2LBQB⊤BQ, (23)

∂LP (B)

∂B⊤
[t,:]

=
∑

(i,t)∈P

max
[
0,2(Tit −B[i,:]QB⊤

[t,:])
]
QB⊤

[i,:]

−
∑

(t,j)∈P

max
[
0,2(Ttj −B[t,:]QB⊤

[j,:])
]
QB⊤

[j,:]

∂LO(B)

∂B⊤
[t,:]

=
∑

(i,t)∈O

2(Tit −B[i,:]QB⊤
[t,:])QB⊤

[i,:]

−
∑

(t,j)∈O

2(Ttj −B[t,:]QB⊤
[j,:])QB⊤

[j,:] (24)

where B[i,:] is the i-th row of the matrix B, and Q = −Q⊤.

Reconstruction of f givenK. While the estimated kernel ma-

trix K may not satisfy the reconstruction constraint of f (Eq. 17)

Input: Data points X ; pairwise relationship

labels P and O; regularization parameter λ.

Output: Rank evaluations f∗.

Initialize B: B = [1]n[1]
⊤
p ;

Minimize EKR(B) using gradient descent (Eq. 22);

Construct f∗:

f∗ = HBQB⊤1−
(
h[h⊤BQB⊤

1]
1+1⊤h

)
(Eqs. 21 and 25);

Algorithm 1: Kernel-based ranking.

for all pairs (x(i),x(j)) ∈ X ×X , f can be easily identified as

the least-square approximation (see supplemental for details):

f∗ = HK1−

(
h[h⊤K1]

1 + 1⊤h

)
, (25)

where H = 1/(n + ǫ)I, h = H1, and ǫ is a regularization

parameter fixed at 10−8. Note that H and h can be calculated

before K is optimized. When the low-rank approximation

BQB⊤ of K is adopted (Eq. 21), each occurrence of K in

Eq. 25 can be replaced by BQB⊤ in Eq. 25. We summarize

our approach in Algorithm 1.

4. Experiments

We compare our kernel-based transductive ranking algorithm

(KR) to 1) the relative attributes RankSVM approach (RS,

Eq. 13 [28]); 2) its model-based semi-supervised extension

(SSR, Eq. 15) which can be regarded as an example of existing

work in data retrieval applications [15, 31]; 3) its straightforward

transductive extension (TR); and 4) deep neural networks that

are optimized based on stochastic gradient descent (DR) [38].

Datasets. We use eight datasets for evaluation. The first three

are Outdoor Scene Recognition (OSR, 2,688 images from 8

categories) and Public Figure Faces (PubFig, 8 people, 100

images each) as evaluated by Parikh and Grauman [28], and the

Shoes dataset (14,658 images in 10 categories) used to evaluate

the WhittleSearch extension of relative attributes [20]. We use

their categories as ground truths. For OSR, 512-dimensional

GIST descriptors are used as features. For PubFig and Shoes,

GIST features are combined with color histograms [28].

Each of these datasets has corresponding target attributes to

learn [28], e.g., OSR has 6 attributes: natural, open, perspective,

large-objects, diagonal-plane, and close-depth. Similarly, Pub-

Fig and Shoes have 11 and 10 attributes, respectively. Our goal

is to induce a linear ordering per attribute for each dataset. The

training labels (pairwise equality and inequality relationships)

are provided at the category level: A small subset of data points

is sampled from each class. From these training sets, the equal-

ity and inequality labels are generated as all possible pairwise

relationships. We use the training data points, including the or-

dering of data points based on attributes, as provided by Parikh
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Figure 2. Improvement from RS in mean rank correlation coefficients (y-axis) of different ranking algorithms for eight datasets. In all but PubFig,

our KR is comparable or better. First row: x-axis shows the number of labels per class. Second row (2–4): x-axis corresponds to the indices of

attributes to learn. The absolute rank correlation coefficients including the RS results can be found in the supplemental.

and Grauman and Kovashka et al. [20]. In general, relative

attributes can be used when the labels are provided per image or

object pairs. However, following Parikh and Grauman, we use

the category-level labels as they facilitate objective, quantitative

evaluation. For evaluation, we measure Kendall’s rank correla-

tion coefficient on all inequality pairs: It counts the difference

between the number of correctly ordered pairs and the number of

incorrectly ordered pairs normalized by the number of total pairs.

The ETH-80 dataset contains 3,280 object images from 8

different categories [23]. Each data point is represented based

on the HOG (histogram of oriented gradients) descriptors as

provided by Ebert et al. [10]. The MNIST training dataset

consists of 60,000 isolated digit images of size 28×28. We

use the gray-level values as features. The cropped Street View

House Numbers (SVHN) dataset contains 26,032 cropped

digit images. This dataset has a similar format as MNIST;

however, it exhibits large intra-class variations and includes

complex photometric distortions that make the learning problem

challenging [26]. Each data point is originally presented as a

32×32-sized color image. We reduced the dimensionality of

the dataset to 100 using principal component analysis. The

CIFAR-10 dataset is a labeled subset of 80-million tiny images

datasets [33]. It consists of 60,000 32×32-sized color images

in 10 classes [21]. Each image in this dataset is represented

based on RGB color values leading to a 3,072-dimensional

vector. We applied principal component analysis to reduce

the dimensionality to 700 which contains around 99% of total

variance. The Describable Textures Dataset (DTD) [7] contains

5,640 texture images arranged based on 47 manually-assigned

semantic attributes (e.g., chequered and bumpy; 120 images per

attribute). We use the semantic attribute indices as class labels.

Method. To evaluate these eight datasets, we assigned linear

ground-truth ranking based on their class labels, e.g., for

MNIST, digit 1 has a higher rank than 2. The evaluation criteria

is the same as the first three datasets (Kendall’s correlation

coefficients). However, the training labels are collected in a dif-

ferent way: Instead of pre-selecting a set of training data points

and extracting all possible pairwise labels therein, we randomly

selected a prescribed number of pairwise labels from the entire

database. For a dataset consisting of c categories, l different

labels are selected per class leading to c(c− 1)/2× l inequality

and c× l equality labels. We report the performances of ranking

algorithms with respect to varying number l of labels per class.

Our kernel-based algorithm produces a pairwise rank

matrix (K or B) as an output. While Kendall’s correlation

coefficients can be directly calculated from these outputs, for

fair comparison with other algorithms, we explicitly reconstruct

a linear ordering f using Eq. 25. This slightly reduced the

performance in terms of correlation coefficients. For all datasets,

we repeated the experiments 10 times.
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Results. Figure 2 shows the improvement of mean rank

coefficients from RankSVM (RS) with corresponding error

bars (with length twice the standard deviation). Deep learning

algorithm (DR) outperformed RS for all datasets demonstrating

the effectiveness of deep learning for ranking problems. Also,

except for PubFig, the two transductive learning algorithms

TR and KR constantly outperformed RankSVM (RS). This

demonstrates the effectiveness of exploiting unlabeled data in

relative attribute applications. However, unlike TR and KR,

performance of the model-based semi-supervised extension

(SSR) is roughly on par with RS (it is better than RS on ETH-80

and DTD, and worse on OSR and PubFig). Our kernel-based

ranking algorithm (KR) significantly improves upon the other

algorithms including the baseline transductive ranking (TR).

In particular, for MNIST, KR resulted in ≈ 40% higher rank

coefficients than other algorithms when the number of labels

per class were less than 10. On OSR, DR and KR perform

best. The improvement of KR over TR is especially significant

when the number of labels l is limited. As l increases, the

performance gap between these two algorithms narrows and

eventually, they become almost identical as shown in the

corresponding results of DTD.

Although the performances of KR and TR on this dataset

are roughly equal, their performance variations across different

attributes are significantly large. This suggests that, from the

performance perspective, DR and KR are complementary. In

our supplemental material, we demonstrate that by combining

DR and KR we can construct a ranker that frequently

outperforms other algorithms.

A notable exception to this tendency is PubFig, where DR is

clear winner. This indicates that semi-supervised learning might

not be always useful. One possible explanation is that PubFig

has insufficient data points to reveal the underlying manifold

structure upon which the semi-supervised algorithms build

(only 772 data points, while other datasets are of order thousand

or ten thousand). Another explanation is simply that the data do

not lie on a low-dimensional manifold. Unfortunately, verifying

these possibilities is a challenging problem. Furthermore, it is

not straightforward to predict which (class of) algorithms would

lead to better performances on specific datasets or problems. In

practice, users would interact (provide labels) with data and be

able to provide feedback on the utility of different algorithms. In

this respect, the experiments demonstrate that our kernel-based

ranking algorithm provides a good alternative to RankSVM and

deep learning.

Hyper-parameters and time complexity. The RS, SSR, TR,

and KR compared in the experiments have a regularization

hyper-parameter λ. In addition, all semi-supervised learning

algorithms (SSR, TR, KR) require determining the k number of

nearest neighbors and the scaling parameterσ2 to build the graph

Laplacian (Eq. 16). We determined σ2 adaptively for each data

point x(i) such that σ2
i becomes half of the mean distance from

x(i) to its k-NNs [4]. The remaining hyper-parameters λ and k
were optimized based on a separate validation label sets which

have the same size as the corresponding training set for each

experiment. For DN, the number of hidden layers was fixed at 6,

while the size of each layer (number of units) and the number of

epochs were automatically tuned as hyper-parameters. For each

run of DN, the network was trained with 5 random initializations,

and the one with the smallest validation error was chosen.

The time complexity of our low-rank kernel-based ranking

algorithm depends on the number n of data points, the rank

p of K factorization (Eq. 21), and the k nearest neighbors

used to build the graph Laplacian (Eq. 16). In each gradient

calculation step (Eqs. 23-24), BQ can be pre-calculated and

QB⊤ = −Q⊤B⊤. Therefore, the most demanding computa-

tion is to calculate LB and B⊤[BQ]. The time complexity of

B⊤[BQ] is O(np2) while LB takes O(knp). In our Matlab

implementation, evaluating the gradient of B on 60,000 MNIST

points with p = 50, k = 8, took ≈ 0.004 seconds on a 3.6GHz

machine. The time complexities of RS and TR are O(m) and

O(n), respectively with m being the input space dimensionality.

While lower performing, RS is faster when m is smaller than

the number of data points n. Further, KR is less suitable for

interactive applications when n is very large. That said, KR

is the first algorithm that fully considers all relationships in the

ordering task when designing a regularization energy.

5. Discussion and conclusion

We have empirically verified our conjecture on the

effectiveness of modeling and regularizing full pairwise

rank relationships with second-order tensors (kernels). Our

algorithm was obtained as a discrete approximation of

tensor regularization framework on manifolds. To cope with

large-scale problems, we have proposed sparse factorizations.

In supplemental material, we describe how our framework can

be applied to learning other tensors, e.g., future work could

address how to apply it to learning metric tensors.

Our low-rank factorization approach (Eq. 21) was inspired by

approximating the dense kernel matrix from the computational

complexity perspective. Therefore, the rank p of the matrix

B was prescribed by the expected computational and memory

complexities (fixed at 50 throughout the entire experiments) and

therefore, we haven’t actively explored the performance effect

of varying rank. However, it is well known that low-rank approx-

imation by itself has a regularization effect and it has been ac-

tively exploited in estimating matrices, e.g., in compressed sens-

ing [8], photometric stereo and structure from motion [42], and

metric learning [39]. Accordingly, future work should analyze

the low-rank approximation from the regularization perspective.
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