
InverseFaceNet: Deep Monocular Inverse Face Rendering

Hyeongwoo Kim 1, 2 Michael Zollhöfer 1, 2, 3 Ayush Tewari 1, 2

Justus Thies 4 Christian Richardt 5 Christian Theobalt 1, 2

1 Max-Planck-Institute for Informatics 2 Saarland Informatics Campus
3 Stanford University 4 Technical University of Munich 5 University of Bath

10m10mm

0mm

m

0mm

Input Esimate Geometry Error Input Esimate Geometry Error

Figure 1. Our single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry, reflectance and illumination estimate

from just a single input image. We jointly recover the facial pose, shape, expression, reflectance and incident scene illumination. From left

to right: the input photo, our estimated face model, its geometry, and the pointwise Euclidean geometry error compared to Garrido et al. [19].

Abstract

We introduce InverseFaceNet, a deep convolutional inverse

rendering framework for faces that jointly estimates facial

pose, shape, expression, reflectance and illumination from

a single input image. By estimating all parameters from

just a single image, advanced editing possibilities on a

single face image, such as appearance editing and relighting,

become feasible in real time. Most previous learning-based

face reconstruction approaches do not jointly recover all

dimensions, or are severely limited in terms of visual quality.

In contrast, we propose to recover high-quality facial pose,

shape, expression, reflectance and illumination using a deep

neural network that is trained using a large, synthetically

created training corpus. Our approach builds on a novel loss

function that measures model-space similarity directly in

parameter space and significantly improves reconstruction

accuracy. We further propose a self-supervised bootstrapping

process in the network training loop, which iteratively

updates the synthetic training corpus to better reflect the

distribution of real-world imagery. We demonstrate that

this strategy outperforms completely synthetically trained

networks. Finally, we show high-quality reconstructions and

compare our approach to several state-of-the-art approaches.

1. Introduction
Inverse rendering aims to reconstruct scene properties such as

geometry, reflectance and illumination from image data. This

reconstruction is fundamentally challenging, as it inevitably

requires inverting the complex real-world image formation

process. It is also an ill-posed problem as certain effects, such

as low-frequency reflectance and illumination, can be indis-

tinguishable [45]. Inverse rendering, for example, enables

relighting of faces by modifying the scene illumination and

keeping the face reflectance and geometry fixed.

Recently, optimization-based approaches for inverse face

rendering were introduced with convincing results [2, 19, 28,

34, 60]. One of the key ingredients that enables to disentangle

pose, geometry (both related to shape and facial expression),

reflectance and illumination are specific priors that constrain

parameters to plausible values and distributions. Formulating

such priors accurately for real faces is difficult, as they are

unknown a priori. The priors could be learned by applying

inverse rendering to a large dataset of real face images, but

this is highly challenging without having the priors a priori.

We take a different approach to solve this chicken-and-egg

problem. Instead of formulating explicit priors, we directly

learn inverse face rendering with a deep neural network

that implicitly learns priors based on the training corpus.

As annotated training data is hard to come by, we train

on synthetic face images with known model parameters

(geometry, reflectance and illumination). This is similar

to existing approaches [46, 47, 52], but the used parameter

distribution does not match that of real-world faces and

environments. As a result, the learned implicit priors are

rather weak and do not generalize well to in-the-wild images.

The approach of Li et al. [38] introduces a self-augmented

procedure for training a CNN to regress the spatially varying

surface appearance of planar exemplars. Our self-supervised

bootstrapping approach extends their training strategy to

handle unknown, varying geometry. In addition, we resample

14625



based on a mean-adaptive Gaussian in each bootstrapping

step, which helps to populate out-of-domain samples,

especially at the domain boundary.

In contrast to many other approaches, InverseFaceNet

also regresses color reflectance and illumination. Our main

technical contribution is the introduction of a self-supervised

bootstrapping step in our training loop, which continuously

updates the training corpus to better reflect the distribution

of real-world face images. The key idea is to apply the latest

version of the inverse face rendering network to real-world

images without ground truth, to estimate the corresponding

face model parameters, and then to create synthetic face

renderings for perturbed, but known, parameter values.

In this way, we are able to bootstrap additional synthetic

training data that better reflects the real-world distribution

of face model parameters, and our network therefore better

generalizes to the real-world setting. Our experiments

demonstrate that our approach greatly improves the quality

of regressed face models for real face images compared to

approaches that are trained exclusively on synthetic data.

The main contribution of our paper is InverseFaceNet –

a real-time, deep, single-shot inverse face rendering network

that estimates pose, shape, expression, color reflectance

and illumination from just a single input image in a single

forward pass, and is multiple orders of magnitude faster than

previous optimization-based methods estimating similar

models. To improve the accuracy of the results, we further

propose a loss function that measures model-space distances

directly in a modified parameter space. We further propose

self-supervised bootstrapping of a synthetic training corpus

based on real images without available ground truth to

produce labeled training data that follows the real-world

parameter distribution. This leads to significantly improved

reconstruction results for in-the-wild face photos.

2. Related Work
Inverse Rendering (of Faces) The goal of inverse render-

ing is to invert the graphics pipeline, i.e., to recover the ge-

ometry, reflectance (albedo) and illumination from images

or videos of a scene – or, in our case, a face. Early work on

inverse rendering made restrictive assumptions like known

scene geometry and calibrated input images [45, 65]. How-

ever, recent work has started to relax these assumptions for

specific classes of objects such as faces. Deep neural networks

have been shown to be able to invert simple graphics pipelines

[32, 42], although these techniques are so far only applicable

to low-resolution grayscale images. In contrast, our approach

reconstructs full-color facial reflectance and illumination, as

well as geometry. Aldrian and Smith [2] use a 3D morphable

model for optimization-based inverse rendering. They sequen-

tially solve for geometry, reflectance and illumination, while

we jointly regress all dimensions at once. Thies et al. [60]

recently proposed a real-time inverse rendering approach for

faces that estimates a person’s identity and expression using a

blendshape model with reflectance texture and colored spher-

ical harmonics illumination. Their approach is designed for

reenactment and is visually convincing, but relies on non-

linear least-squares optimization, which requires good initial-

ization and a face model calibration step from multiple frames,

while our approach estimates a very similar face model in a

single shot, from a single in-the-wild image, in a fraction of

the time. Inverse rendering has also been applied to face image

editing [40, 55], for example to apply makeup [34, 35]. How-

ever, these approaches perform an image-based intrinsic de-

composition without an explicit 3D face model, as in our case.

Face Models The appearance and geometry of faces are

often modeled using 3D morphable models [5] or active

appearance models [14]. These seminal face models are

powerful and expressive, and remain useful for many

applications even though more complex and accurate

appearance models exist [30, 37]. Recently, a large-scale

parametric face model [7] was created from 10,000 facial

scans, Booth et al. [6] extend 3D morphable models to

“in-the-wild” conditions, and deep appearance models [17]

extend active appearance models by capturing geometry

and appearance of faces more accurately under large unseen

variations. We describe the face model we use in Section 4.

3D Face Reconstruction The literature on reconstructing

face geometry, often with appearance, but without any

illumination, is much more extensive compared to inverse

rendering. We focus on single-view techniques and do

not further discuss multi-view or multi-image approaches

[23, 29, 44, 48, 57]. Recent techniques approach monocular

face reconstruction by fitting active appearance models

[1, 17], blendshape models [9, 18, 19, 61], affine face models

[15, 16, 20, 46, 51, 54, 58, 62], mesh geometry [26, 33, 47, 48,

52], or volumetric geometry [24] to input images or videos.

Shading-based surface refinement can extract even fine-scale

geometric surface detail [11, 19, 26, 47, 48, 52]. Many

techniques use facial landmark detectors for more robustness

to changes in the head pose and expression, and we discuss

them in the next section. A range of approaches use RGB-D

input [e.g. 36, 59, 64], and while they achieve impressive

face reconstruction results, they rely on depth data which is

typically not available for in-the-wild images or videos.

Deep neural networks have recently shown promising

results on various face reconstruction tasks. In a paper before

its time, Nair et al. [42] proposed an analysis-by-synthesis

algorithm that iteratively explores the parameter space of

a black-box generative model, such as active appearance

models (AAM) [14], to learn how to invert it, e.g., to convert

a photo of a face into an AAM parameter vector. We are

inspired by their approach and incorporate a self-supervised

bootstrapping approach into our training process (see

Section 7) to make our technique more robust to unseen

inputs, in our case real photographs.

4626



Richardson et al. [46] use iterative error feedback [12] to

optimize the shape parameters of a grayscale morphable

model from a single input image. Richardson et al. [47]

build on this to reconstruct detailed depth maps of faces with

learned shape-from-shading. Sela et al. [52] learn depth and

correspondence maps directly using image-to-image transla-

tion, and follow this with non-rigid template mesh alignment.

Dou et al. [16] regress only the identity and expression com-

ponents of a face. All these approaches are trained entirely

on synthetic data [5]. Tran et al. [62] train using a photo

collection, but their focus lies on estimating morphable model

parameters to achieve robust face recognition. In contrast to

these approaches, ours not only recovers face geometry and

texture, but a more complete inverse rendering model that

also comprises color reflectance and illumination, from just a

single image without the need for iteration. Jackson et al. [24]

directly regress a volumetric face representation from a single

input image, but this requires a large dataset with matching

face images and 3D scans, and does not produce an editable

face model, as in our case. Schönborn et al. [51] optimize

a morphable model using Bayesian inference, which is

robust and accurate, but very slow compared to our approach

(taking minutes rather than milliseconds). Tewari et al. [58]

learn a face regressor in a self-supervised fashion based on

a CNN-based encoder and a differentiable expert-designed

decoder. Our self-supervised bootstrapping approach

combines the advantages of synthetic and real training data,

which leads to similar quality reconstructions without the

need for a hand-crafted differentiable rendering engine.

Face Alignment Many techniques in 3D face reconstruc-

tion, including ours, draw on facial landmark detectors for

robustly identifying the location of landmark keypoints in the

photograph of a face, such as the outline of the eyes, nose and

lips. These landmarks can provide valuable pose-independent

initialization. Chrysos et al. [13] and Jin and Tan [27]

provide two recent surveys on the many landmark detection

approaches that have been proposed in the literature. Perhaps

unsurprisingly, deep learning approaches [4, 68] are again

among the best available techniques. However, none of these

techniques works perfectly [8, 56]: facial hair, glasses and

poor lighting conditions pose the largest problems. In many

cases, these problems can be overcome when looking at

video sequences instead of single images [43], but this is a

different setting to ours.

3. Overview
We first detect a set of 66 2D facial landmarks [50], see

Figure 2. The landmarks are used to segment the face from the

background, and mask out the mouth interior to effectively

remove the parts of the image that cannot be explained by

our model. The masked face is input to our deep inverse face

rendering network (Section 6), which is trained on synthetic

facial imagery (Section 5) using a parametric face and image

Input Crop Esimate

S
in

g
le

-S
h

o
t

In
v

e
rs

e
 F

a
ce

R
e

n
d

e
ri

n
g

Figure 2. Our single-shot inverse face renderer regresses a dense

reconstruction of the pose, shape, expression, skin reflectance and

incident illumination from a single photograph.

formation model (Section 4). Starting from this low-quality

corpus, we apply our self-supervised bootstrapping approach

that updates the parameter distribution of the training

set (Section 7) to bootstrap a training corpus that better

approximates the real-world distribution. This leads to higher

quality reconstructions (Section 8). Finally, we discuss

limitations (Section 8.4) and conclude (Section 9).

4. The Space of Facial Imagery
We parameterize face images using m=350 parameters:

θ=
(

R,θ
[s]
,θ

[e]
,θ

[r]
,θ

[i]
)

∈R
m

. (1)

Here, R specifies the global rotation (3 parameters), θ[s] the

shape (128), θ[e] the expression (64), θ[r] the skin reflectance

(128), and θ
[i] the incident illumination (27). Note that we do

not include translation as our network works on consistently

segmented input images (see Figure 2 and Section 3).

4.1. Affine Face Model
We employ an affine face model to parameterize facial

geometry F [g] ∈R3V and reflectance F [r] ∈R3V , where V
is the number of vertices of the underlying manifold template

mesh. The geometry vectorF [g] stacks the V 3D coordinates

that define the mesh’s embedding in space. Similarly, the

reflectance vectorF [r] stacks the RGB per-vertex reflectance

values. The space of facial geometry is modeled by the shape

θ
[s]∈RNs and expression θ

[e]∈RNe parameters:

F [g](θ[s]
,θ

[e])=a
[g]+

Ns∑

i=1

b
[s]
i σ

[s]
i θ

[s]
i +

Ne∑

j=1

b
[e]
j σ

[e]
j θ

[e]
j . (2)

The spatial embedding is modeled by a linear combination of

orthonormal basis vectors b
[s]
i and b

[e]
j , which span the shape

and expression space, respectively. a[g]∈R3V is the average

geometry of a neutral expression, the σ[s]
i are the shape

standard deviations and the σ[e]
j are the standard deviations

of the expression dimensions.

Per-vertex reflectance is modeled similarly using a small

number of reflectance parameters θ[r]∈RNr :

F [r](θ[r]) = a
[r]+

Nr∑

i=1

b
[r]
i σ

[r]
i θ

[r]
i . (3)

Here, b
[r]
i are the reflectance basis vectors, a[r] is the average

reflectance and the σ[r]
i are the standard deviations.

The face model is computed from 200 high-quality 3D

scans [5] of Caucasians (100 male and 100 female) using

4627



PCA. We use the Ns =Nr = 128 most significant principal

directions to span our face space. The used expression

basis is a combination of the Digital Emily model [3] and

FaceWarehouse [10] (see Thies et al. [60] for details). We use

PCA to compress the over-complete blendshapes (76 vectors)

to a subspace of Ne= 64 dimensions.

4.2. Image Formation

We assume the face to be Lambertian, illumination to be

distant and smoothly varying, and there is no self-shadowing.

We thus represent the incident illumination on the face using

second-order spherical harmonics (SH) [41, 45]. Therefore,

the irradiance at a surface point with normal n is given by

B
(

n |θ[i]
)
=

b2∑

k=1

θ
[i]
k Hk(n), (4)

where Hk are the b2 =32 =9 SH basis functions, and the

θ
[i]
k are the corresponding illumination coefficients. Since

we consider colored illumination, the parameters θ
[i]
k ∈R

3

specify RGB colors, leading to 3·9=27 parameters in total.

We render facial images based on the SH illumination

using a full perspective camera model Π : R3→ R
2. We

render the face using a mask (painted once in a preprocessing

step) that ensures that the rendered facial region matches

the crops produced by the 66 detected landmark locations

(see Figure 2). The global rotation of the face is modeled with

three Euler angles usingR=Rotxyz(α,β,γ) that successively

rotate around the x-axis (up, α), y-axis (right, β), and z-axis

(front, γ) of the camera-space coordinate system.

5. Initial Synthetic Training Corpus
Training our deep inverse face rendering network requires

ground-truth training data {Ii, θi}
N
i=1 in the form of

corresponding pairs of image Ii and model parameters θi.

However, training on real images is challenging, since the

ground-truth parameters cannot easily be obtained for a large

dataset. We therefore train our network based on synthetically

rendered data, where exact ground-truth labels are available.

We sample N=200,000 parameter vectors θi and use the

model described in Section 4 to generate the corresponding

images Ii. Data generation can be interpreted as sampling

from a probability P (θ) that models the distribution of

real-world imagery. However, sampling from this distribution

is in general difficult and non-trivial. We therefore assume

statistical independence between the components of θ, i.e.,

P (θ)=P (R)P (θ[s])P (θ[e])P (θ[r])P (θ[i]). (5)

This enables us to efficiently generate a parameter vector θ

by independently sampling each subset of parameters.

We uniformly sample the yaw and pitch rotation angles

α,β∼U(−40°,40°) and the roll angle γ∼U(−15°,15°) to re-

flect common head rotations. We sample shape and reflectance

parameters from the Gaussian distributions provided by the

parametric PCA face model [5]. Since we already scale with

the appropriate standard deviations during face generation

(see Equations 2 and 3), we sample both from a standard nor-

mal distribution, i.e., θ[s],θ[r]∼N (0,1). The expression basis

is based on artist-created blendshapes that only approximate

the real-world distribution of the space of human expressions;

this will be addressed by the self-supervised bootstrapping

presented in Section 7. We thus uniformly sample the expres-

sion parameters using θ
[e]∼U(−12,12). To prevent closing

the mouth beyond anatomical limits, we apply a bias of 4.8 to

the distribution of the first parameter1. Finally, we sample the

illumination parameters using θ
[i]∼U(−0.2,0.2), except for

the constant coefficient θ
[i]
1 ∼U(0.6,1.2) to account for the

average image brightness, and set all RGB components to the

same value. The self-supervised bootstrapping step presented

in Section 7 automatically introduces colored illumination.

6. InverseFaceNet
Given the training data {Ii,θi}

N
i=1 consisting of N images

Ii and the corresponding ground-truth parameters θi, we

train a deep inverse face rendering network F to invert

image formation. In the following, we provide details on our

network architecture and the employed loss function.

6.1. Network Architecture

We have tested several different networks based on the

popular AlexNet [31] and ResNet [21] architectures, both

pre-trained on ImageNet [49]. In both cases, we resize the

last fully-connected layer to match the dimensionality of our

model (350 outputs), and initialize biases with 0, and weights

∼N (0,0.01). These minimally modified networks provide

the baseline we build on. We propose more substantial

changes to the training procedure by introducing a novel

model-space loss in Section 6.2, which more effectively trains

the same network architecture. The color channels of the input

images are normalized to the range [−0.5,0.5] before feeding

the data to the network. We show a comparison between the

results of AlexNet and ResNet-101 in Section 8.1, and thus

choose AlexNet for our results.

Input Pre-Processing The input to our network is a color

image of a masked face with a resolution of 240×240 pixels

(see Figure 2). We mask the face to remove any background

and the mouth interior, which cannot be explained by our face

model. For this, we use detected landmarks [50] and resize

their bounding box uniformly to fit inside 240×240 pixels,

to approximately achieve scale and translation invariance.

Training We train all our inverse face rendering networks

using the Caffe deep learning framework [25] with stochastic

gradient descent based on AdaDelta [66]. We perform

75K batch iterations with a batch size of 32 for training

our baseline approaches. To prevent overfitting, we use an

ℓ2-regularizer (aka weight decay) of 0.001. We train with a

base learning rate of 0.01.

1The first parameter mainly corresponds to mouth opening and closing.

4628



Training Corpus
Real World ImagesTraining Corpus

without Ground Truthwith Self-Supervised Bootstrapping

Source Domain Bootstrapping Domain Target Domain

Figure 3. Our approach updates the initial training corpus (left) based on real-world images without available ground truth (right) using a

self-supervised bootstrapping approach. The generated new training corpus (middle) better matches the real-world face distribution.

6.2. Model­Space Parameter Loss

We use a weighted norm to define a model-space loss between
the predicted parameters θ and ground-truth θg by taking the
statistics of the face model into account:

L(θ,θg)=
∥
∥θ−θg

∥
∥2

A
(6)

=(θ−θg)
⊤

A
︸︷︷︸

Σ
⊤
Σ

(θ−θg). (7)

Here, Σ is a weight matrix that incorporates the standard

deviations σ• of the different parameter dimensions:

Σ=diag(ωR13,ωsσ
[s]
,ωeσ

[e]
,ωrσ

[r]
,ωi127)∈R

m×m
. (8)

The coefficients ω• balance the global importance

of the different groups of parameters, and 1k is a k-

dimensional vector of ones. We use the same values

(ωR,ωs,ωe,ωr,ωi)= (400,50,50,100,20) for all our results.

Note that we do not scale the rotation and illumination dimen-

sions individually. Intuitively speaking, our model-space loss

enforces that the first PCA coefficients (higher variation basis

vectors) should match the ground truth more accurately than

the later coefficients (lower-variation basis vectors), since

the former have a larger contribution to the final 3D geometry

and skin reflectance of the reconstructed face in model space

(see Equations 2 and 3). As shown in Section 8, this leads to

more accurate reconstruction results. The difference to Zhu

et al. [68] is the computation of the weights, which leads to

a statistically meaningful metric.

7. Self-Supervised Bootstrapping

The real-world distribution of the model parameters θ is

in general unknown for in-the-wild images Ireal. Until now,

we have sampled from a manually prescribed probability

distribution P (θ), which does not exactly represent the

real-world distribution. The goal of the self-supervised

bootstrapping step is to make the training data distribution

better match the real-world distribution of a corpus R of

in-the-wild face photographs. To this end, we automatically

bootstrap the parameters for the training corpus. Note that this

step is unsupervised and does not require the ground-truth

parameters for images inR to be available.

Algorithm 1 Self-Supervised Bootstrapping

1: F ← train_network_on_synthetic_faces();

2: R← corpus_of_real_images();

3: for (number of bootstrapping steps Nboot) do

4: θr← inverse_rendering(R,F); ⊲ (step 1)

5: θ
′

r← resample_parameters(θr); ⊲ (step 2)

6: R′← {generate_images(θ′

r), θ′

r}; ⊲ (step 3)

7: F ← continue_training(F ,R′); ⊲ (step 4)

8: end for

7.1. Bootstrapping

Bootstrapping based on uniform resampling with replacement

Ir∼P (I)=1/N cannot solve the problem of mismatched

distributions. Hence, we propose a domain-adaptive approach

that resamples new proposals from a mean-adaptive Gaussian

distribution based on real images:

P (Ir(θ) |Ireal)∼θ(Ireal)+N (0,σ2), (9)

where Ir(θ) is the deterministic rendering process, we

compute the inverse of the rendering process θ(Ireal) using

InverseFaceNet, andN (·) is a noise distribution. This shifts

the distribution closer to the target distribution of real images

Ireal. Moreover, adding a non-zero variance σ2>0 populates

out-of-domain samples especially at the domain boundary.

Our approach takes the network of the last bootstrapping

iteration as final output, instead of averaging the intermediate

networks. This prevents from being biased to the manually

prescribed sampling distribution of earlier training stages.

7.2. Algorithm

Our self-supervised parameter bootstrapping is a four-step

process (see Algorithm 1). It starts with a deep neural

networkF initially trained on a synthetic training corpus (see

Section 5) for 15K batch iterations. This guarantees a suitable

initialization for all weights in the network. Given a set of im-

ages from the corpus of real-world imagesR, we first obtain

an estimate of the corresponding model parameters θr, i.e.,

θ(Ireal) in Equation 9, using the synthetically trained network

(step 1). These reconstructed parameters are used to seed

the bootstrapping. In step 2, we apply small perturbations to

the reconstructed parameters based on the noise distribution

N (0,σ2). This generates new data around the seed points

4629



0 1 2 3 4 5 6 7 8

400

500

600

700
≀≀

Bootstrap iteration

A
v
e

ra
g

e
te

s
t

e
rr

o
r

Baseline

Bootstrap

Figure 4. Model-space parameter loss (Equation 7) for the baseline

and bootstrapping approaches on a synthetic test corpus with

higher parameter variation than the used training corpus. While our

domain-adaptive bootstrapping approach, based on a high-variation

training corpus without available ground truth, continuously

decreases in loss, the baseline network fails to generalize.

in model space, and allows the network to slowly adapt to the

real-world parameter distribution. We use the following to re-

sample the pose, shape, expression, reflectance and illumina-

tion parameters, generating two perturbed parameter vectors

for each reconstruction:α,β,γ : U(−5°,5°),θ[s] : N (0,0.05),
θ

[r] : N (0,0.2), θ[e] : N (0,0.1), and θ
[i] : N (0,0.02). In step

3, we generate new synthetic training images Ir based on

the resampled parameters θ′

r, i.e., θ(Ireal)+N (0,σ2). The

result is a new synthetic training set R′ that better reflects

the real-world distribution of model parameters. Finally,

the networkF is fine-tuned for Niter=7.5K batch iterations

on the new training corpus (step 4). In total, we repeat this

process for Nboot= 8 self-supervised bootstrapping steps.

Over the iterations, the data distribution of the training

corpus adapts and better reflects the real-world distribution

of the provided in-the-wild facial imagery, as illustrated in

Figure 3. We also evaluate the parameter loss throughout

bootstrapping iterations in Figure 4, and observe a clear

reduction with our self-supervised bootstrapping. This leads

to higher quality results at test time, as shown in Section 8.

The variance σ2 could be adaptively scaled based on the pho-

tometric error of estimates. However, we found empirically

that our framework works well with a fixed variance.

8. Experiments and Results
We evaluate our InverseFaceNet on several publicly available

datasets. We validate our design choices regarding network

architecture, model-space loss, and self-supervised bootstrap-

ping. We then show quantitative and qualitative results and

comparisons on the datasets LFW (Labeled Faces in the Wild)

[22], 300-VW (300 Videos in the Wild) [53], CelebA [39],

FaceWarehouse [10], Volker [63] and Thomas [18]. For more

results, we refer to our supplemental document and video2.

Error Measures We compute the photometric error

using the RMSE of RGB pixel values (within the mask of

the input image) between the input image and a rendering of

the reconstructed face model. An error of 0 is a perfect color

match, and 255 is the difference between black and white (i.e.

2Project page: http://gvv.mpi-inf.mpg.de/projects/InverseFaceNet

Input (crop) Esimate Geometry Error Contours

Al
ex

N
et

(M
SL

 +
 B

oo
ts

tr
ap

)
Al

ex
N

et
(M

S
L)

Re
sN

et
10

1
(M

S
L)

Figure 5. Qualitative comparison of ResNet-101 [21] and AlexNet

[31] applied to inverse face rendering, both with model-space loss

(MSL): ResNet-101 produces lower geometric error (see heatmap)

while AlexNet has lower photometric error (also on average, see

Table 1). AlexNet with MSL and bootstrapping clearly improves the

reconstruction of reflectance and geometry, in all error categories.

lower is better). The geometric error measures the RMSE

in mm between corresponding vertices in our reconstruction

and the ground-truth geometry. We quantify the image-space

overlap of the estimated face model and the input face image

using the intersection over union (IOU) of face masks (e.g.

see ‘contours’ in Figure 5). An IOU of 0% means no overlap,

and 100% means perfect overlap (i.e. higher is better).

8.1. Evaluation of Design Choices

Table 1 evaluates different design choices on a test dataset

of 5,914 images (one shown in Figure 5) from CelebA

[39] using the error measures described earlier (using

our implementation of Garrido et al. [19] as ground-truth

geometry, up to blendshape level).

Network Architecture We first compare the results of the

AlexNet [31] and ResNet-101 [21] architectures, both with

our model-space loss (see Section 6). Reconstructions using

ResNet-101 have smaller geometric errors, but worse photo-

metric error and IOU than AlexNet, which is exemplified by

Figure 5. ResNet-101 is significantly deeper than AlexNet, so

training takes about 10× longer and testing about 5× longer.

We thus use AlexNet for our inverse face rendering network,

which only requires 3.9 ms for the forward pass (on an Nvidia

Titan Xp). Landmark detection takes 4.5 ms and face morph-

ing 1 ms (on the GPU). In total, our approach requires 9.4 ms.

Importance of Model-Space Loss Table 1 shows that

our model-space loss improves on baseline AlexNet [31] in

all error categories, particularly the photometric error and

IOU. As our model-space loss does not modify the network

architecture, the time for the forward pass remains the same

fast 3.9 ms as before.

Importance of Self-supervised Bootstrapping Our

self-supervised bootstrapping (see Section 7) significantly

improves the reconstruction quality and produces the lowest

errors in all categories, as shown in Table 1. This can also

4630

http://gvv.mpi-inf.mpg.de/projects/InverseFaceNet/


Table 1. Quantitative architecture comparison, model-space parameter loss and our bootstrapping step on 5,914 test images from CelebA

[39]. The best values for each column are highlighted in bold. Training time includes all steps except the initial training data generation.

Test times are averaged over 5K images. Training on a GTX Titan and testing on a Titan Xp. Errors show means and standard deviations. ∗For

bootstrapping, we first train 15K iterations on normal synthetic face images (see Section 5), and then bootstrap for 60K iterations (see Section 7).

InverseFaceNet (AlexNet [31] with model-space loss and bootstrapping) produces the best geometric error and intersection over union.

Training

iterations

Training

time [h]

Test time

[ms / image]

Photometric

error [8 bits]

Geometric

error [mm]

Intersection

over union [%]Approach

AlexNet [31] 75K 4.14 3.9 46.26 ± 12.42 2.91 ± 0.99 90.44 ± 3.81

+ model-space loss 75K 4.36 3.9 39.71 ± 9.86 2.77 ± 1.00 92.51 ± 2.59

+ bootstrap (= InverseFaceNet) 75K∗ 29.40 3.9 34.03 ± 7.56 2.11 ± 0.84 93.96 ± 2.08

ResNet-101 [21] + model-space loss 150K 40.99 21.0 41.23 ± 10.58 2.54 ± 0.87 92.07 ± 2.87

MoFA [58] — — 3.9 17.23 ± 4.42 3.94 ± 1.34 84.20 ± 4.23

Table 2. Quantitative evaluation of the geometric accuracy on 180

meshes of the FaceWarehouse [10] dataset.

Our approach Other approaches

Bootstrap Baseline
Garrido

et al. [19]

Tewari

et al. [58]

MonoFit

(see text)

Error 2.11 mm 2.33 mm 1.59 mm 2.19 mm 2.71 mm

SD 0.46 mm 0.47 mm 0.30 mm 0.54 mm 0.52 mm

be seen in Figure 5, which shows plausible reconstruction

of appearance and geometry, the lowest geometric errors, and

improved contour overlap for our network with bootstrapping.

Note that the training time for self-supervised bootstrapping

includes all steps (see Algorithm 1), in particular reconstruct-

ing 100K face models (0.25 h), rendering 200K synthetic

faces (2.8 h) and training for 7.5K iterations (0.5 h) for each

of the 8 bootstrapping iterations (on an Nvidia GeForce GTX

Titan). AlexNet with bootstrapping significantly outperforms

ResNet-101 without bootstrapping in reconstruction quality,

training time and test time. Note that our approach is better

than Tewari et al. [58] in terms of geometry and overlap, and

worse in terms of the photometric error on this test set.

8.2. Quantitative Evaluation

We compare the geometric accuracy of our approach to

state-of-the-art monocular reconstruction techniques in

Figure 6. As ground truth, we use the high-quality stereo

reconstructions of Valgaerts et al. [63]. Compared to Thies

et al. [60], our approach obtains similar quality results,

but without the need for explicit optimization. Therefore,

our approach is two orders of magnitude faster (9.4 ms vs

600 ms) than optimization-based approaches. Note that while

Thies et al. [60] run in real time for face tracking, it requires

significantly longer to estimate all model parameters from an

initialization based on the average model. In contrast to the

state-of-the-art learning-based methods by Richardson et al.

[46, 47], Jackson et al. [24] and Tran et al. [62], ours obtains

a reconstruction of all dimensions, including pose, shape,

expression, and colored skin reflectance and illumination.

In addition, we performed a large quantitative ground-truth

comparison on the FaceWarehouse [10] dataset, see Table 2.

We show the mean error (in mm) and standard deviation

(SD) for 180 meshes (9 different identities, each with 20

different expressions). As can be seen, our bootstrapping

approach increases accuracy. Our approach is only slightly

worse than the optimization-based approach of Garrido et al.

[19], while being orders of magnitude faster. Bootstrapping

is on par with the weakly supervised approach of Tewari et al.

[58], which is trained on real images and landmarks. We

also compare to a baseline network ‘MonoFit’ that has been

directly trained on the monocular fits of Garrido et al. [19] on

the CelebA [39] dataset. Our self-supervised bootstrapping

approach obtains higher accuracy results.

8.3. Qualitative Evaluation
We next compare our reconstruction results qualitatively to

current state-of-the-art approaches. Figure 7 compares our

reconstruction to optimization-based approaches that fit a

parametric face model [19] or a person-specific template

mesh [18]. Our learning-based approach is significantly

faster (9.4 ms vs about 2 minutes [19]), and orthogonal

to optimization-based approaches, since it can be used to

provide a good initial solution.

In Figure 8, we also compare to the state-of-the-art

deep-learning-based approaches by Richardson et al. [46, 47],

Sela et al. [52], Jackson et al. [24], Tran et al. [62] and Tewari

et al. [58]. We obtain high-quality results in 9.4 ms. Most

of the other approaches are slower, do not estimate colored

skin reflectance and illumination [24, 46, 47, 52], do not

regress the facial expressions [62], or suffer from geometric

shrinking artifacts [58]. Note, we compare to Richardson

et al.’s ‘CoarseNet’ [47], which corresponds to their earlier

method [46], and estimates pose, shape and expression,

followed by a model-based optimization of monochrome

reflectance and illumination. We also compare to Sela et

al.’s aligned template mesh. We don’t compare to ‘FineNet’

[47] or ‘fine detail reconstruction’ [52] as these estimate a

refined depth map/mesh, and we are interested in comparing

the reconstructed parametric face models.

Figure 9 shows several monocular reconstruction results

obtained with our InverseFaceNet. As can be seen, our

approach obtains good estimates of all model parameters.

8.4. Limitations
We propose a solution to the highly challenging problem

of inverse face rendering from a single image. Similar

to previous learning-based approaches, ours has a few

4631



Input Ground Truth Richardson17 Ours

20mm

0mm

Ours (complete model)

2.38mm3.30mmmean error:

Tran17

2.87mm3.27mm

Jackson17Thies16

1.85mm

Figure 6. Quantitative comparison of geometric accuracy compared to Thies et al. [60], Richardson et al. [47], Jackson et al. [24] and Tran

et al. [62] on Volker [63]. The heat maps visualize the pointwise Hausdorff distance (in mm) between the input and the ground-truth. The

ground-truth has been obtained by the high-quality binocular reconstruction approach of Valgaerts et al. [63].
Input Ours Garrido13 Garrido16

Figure 7. Qualitative comparison to optimization-based approaches

[18, 19] on Thomas [18]. For more, see our supplemental document.

Input Geometry Geometry

R
ich

a
rd
so
n
1
7

S
e
la
1
7

Ja
ck
so
n
1
7

T
ra
n
1
7

T
e
w
a
ri1

7

Ours State-of-the-arts

Figure 8. Comparison to a wide range of state-of-the-art learning-

based approaches. From top to bottom: Comparison to Richardson

et al. [47], Sela et al. [52], Jackson et al. [24], Tran et al. [62] and

Tewari et al. [58]. We obtain high-quality results in 9.4 ms. Most

other approaches are significantly slower, do not estimate colored

skin reflectance and illumination (empty box), do not regress facial

expressions (yellow arrow), or suffer from geometric shrinking (red

arrow). Images from LFW [22], 300-VW [53], CelebA [39] and Face-

Warehouse [10]. For more results, see our supplemental document.

limitations. Our approach does not perfectly generalize to

inputs that are outside of the training corpus. Profile views of

the head are problematic and hard to reconstruct, even if they

are part of the training corpus. Note that even state-of-the-art

landmark trackers often fail in this scenario. Handling these

cases robustly remains an open research question. Incorrect

landmark localization might produce inconsistent input to

Input Geometry Contours

Figure 9. Qualitative results on LFW [22] and 300-VW [53]. Top

to bottom: input image, our estimated face model and geometry,

and contours (red: input mask, green: ours). Our approach achieves

high-quality reconstructions from just a single input image. For

more results, we refer to the supplemental document.

our network, which harms the quality of the regressed face

model. This could be addressed by more sophisticated face

detection algorithms, or by joint learning of landmarks and

reconstruction. Occlusions of the face, such as hair, beards,

sun glasses or hands, can also be problematic. To handle

these situations robustly, our approach could be trained in an

occlusion-aware manner by augmenting our training corpus

with artificial occlusions, similar to Zhao et al. [67].

9. Conclusion
We have presented InverseFaceNet – a single-shot inverse

face rendering framework. Our key contribution is to

overcome the lack of well-annotated image datasets by self-

supervised bootstrapping of a synthetic training corpus that

captures the real-world distribution. This enables high-quality

face reconstruction from just a single monocular image. Our

evaluation shows that our approach compares favorably to

the state of the art. InverseFaceNet could be used to quickly

and robustly initialize optimization-based reconstruction

approaches close to the global minimum. We hope that our

approach will stimulate future work in this exciting field.

Acknowledgments. We thank True-VisionSolutions Pty

Ltd for kindly providing the 2D face tracker, and we thank

Aaron Jackson, Anh Tran, Mata Sela and Elad Richardson

for the comparisons. This work was supported by ERC

Starting Grant CapReal (335545), RCUK grant CAMERA

(EP/M023281/1) and the Max Planck Center for Visual

Computing and Communications (MPC-VCC).

4632



References
[1] J. Alabort-i Medina and S. Zafeiriou. A unified framework

for compositional fitting of active appearance models. IJCV,

121(1):26–64, 2017.

[2] O. Aldrian and W. A. P. Smith. Inverse rendering of faces with

a 3D morphable model. IEEE TPAMI, 35(5):1080–1093, 2013.

[3] O. Alexander, M. Rogers, W. Lambeth, J.-Y. Chiang, W.-C.

Ma, C.-C. Wang, and P. Debevec. The Digital Emily Project:

Achieving a photorealistic digital actor. IEEE Computer

Graphics and Applications, 30(4):20–31, 2010.

[4] C. Bhagavatula, C. Zhu, K. Luu, and M. Savvides. Faster than

real-time facial alignment: A 3D spatial transformer network

approach in unconstrained poses. In ICCV, 2017.

[5] V. Blanz and T. Vetter. A morphable model for the synthesis

of 3D faces. In SIGGRAPH, pages 187–194, 1999.

[6] J. Booth, E. Antonakos, S. Ploumpis, G. Trigeorgis,

Y. Panagakis, and S. Zafeiriou. 3D face morphable models

“in-the-wild”. In CVPR, 2017.

[7] J. Booth, A. Roussos, A. Ponniah, D. Dunaway, and

S. Zafeiriou. Large scale 3D morphable models. IJCV, 126

(2):233–254, 2018.

[8] A. Bulat and G. Tzimiropoulos. How far are we from solving

the 2D & 3D face alignment problem? (and a dataset of

230,000 3D facial landmarks). In ICCV, 2017.

[9] C. Cao, Y. Weng, S. Lin, and K. Zhou. 3D shape regression for

real-time facial animation. ACM ToG, 32(4):41:1–10, 2013.

[10] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou. FaceWare-

house: A 3D facial expression database for visual computing.

IEEE TVCG, 20(3):413–425, 2014.

[11] C. Cao, D. Bradley, K. Zhou, and T. Beeler. Real-time

high-fidelity facial performance capture. ACM ToG, 34(4):

46:1–9, 2015.

[12] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Human

pose estimation with iterative error feedback. In CVPR, 2016.

[13] G. G. Chrysos, E. Antonakos, P. Snape, A. Asthana, and

S. Zafeiriou. A comprehensive performance evaluation of

deformable face tracking “in-the-wild”. IJCV, preprints, 2017.

[14] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active

appearance models. IEEE TPAMI, 23(6):681–685, 2001.

[15] D. Crispell and M. Bazik. Pix2face: Direct 3D face model

estimation. In ICCV Workshops, 2017.

[16] P. Dou, S. K. Shah, and I. A. Kakadiaris. End-to-end 3D face

reconstruction with deep neural networks. In CVPR, 2017.

[17] C. N. Duong, K. Luu, K. G. Quach, and T. D. Bui. Deep

appearance models: A deep boltzmann machine approach for

face modeling. arXiv:1607.06871, 2016.

[18] P. Garrido, L. Valgaerts, C. Wu, and C. Theobalt. Reconstruct-

ing detailed dynamic face geometry from monocular video.

ACM ToG, 32(6):158:1–10, 2013.

[19] P. Garrido, M. Zollhöfer, D. Casas, L. Valgaerts, K. Varanasi,

P. Pérez, and C. Theobalt. Reconstruction of personalized 3D

face rigs from monocular video. ACM ToG, 35(3):28:1–15,

2016.

[20] Y. Guo, J. Zhang, J. Cai, B. Jiang, and J. Zheng. 3DFaceNet:

Real-time dense face reconstruction via synthesizing

photo-realistic face images. arXiv:1708.00980, 2017.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[22] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.

Labeled faces in the wild: A database for studying face

recognition in unconstrained environments. Technical Report

07-49, University of Massachusetts, Amherst, 2007.

[23] A. E. Ichim, S. Bouaziz, and M. Pauly. Dynamic 3D avatar

creation from hand-held video input. ACM ToG, 34(4):

45:1–14, 2015.

[24] A. S. Jackson, A. Bulat, V. Argyriou, and G. Tzimiropoulos.

Large pose 3D face reconstruction from a single image via

direct volumetric CNN regression. In ICCV, 2017.

[25] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional ar-

chitecture for fast feature embedding. In Proceedings of the In-

ternational Conference on Multimedia, pages 675–678, 2014.

[26] L. Jiang, J. Zhang, B. Deng, H. Li, and L. Liu. 3D face

reconstruction with geometry details from a single image.

arXiv:1702.05619, 2017.

[27] X. Jin and X. Tan. Face alignment in-the-wild: A survey.

Computer Vision and Image Understanding, 162:1–22, 2017.

[28] I. Kemelmacher-Shlizerman and S. M. Seitz. Face reconstruc-

tion in the wild. In ICCV, pages 1746–1753, 2011.

[29] M. Klaudiny, S. McDonagh, D. Bradley, T. Beeler, and

K. Mitchell. Real-time multi-view facial capture with

synthetic training. Computer Graphics Forum (Proceedings

of Eurographics), 36(2):325–336, 2017.

[30] O. Klehm, F. Rousselle, M. Papas, D. Bradley, C. Hery,

B. Bickel, W. Jarosz, and T. Beeler. Recent advances in

facial appearance capture. Computer Graphics Forum, 34(2):

709–733, 2015.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

NIPS, 2012.

[32] T. D. Kulkarni, W. Whitney, P. Kohli, and J. B. Tenenbaum.

Deep convolutional inverse graphics network. In NIPS, pages

2539–2547, 2015.

[33] S. Laine, T. Karras, T. Aila, A. Herva, S. Saito, R. Yu, H. Li, and

J. Lehtinen. Production-level facial performance capture using

deep convolutional neural networks. In Proceedings of the Sym-

posium on Computer Animation (SCA), pages 10:1–10, 2017.

[34] C. Li, K. Zhou, and S. Lin. Intrinsic face image decomposition

with human face priors. In ECCV, pages 218–233, 2014.

[35] C. Li, K. Zhou, and S. Lin. Simulating makeup through

physics-based manipulation of intrinsic image layers. In

CVPR, pages 4621–4629, 2015.

[36] H. Li, J. Yu, Y. Ye, and C. Bregler. Realtime facial animation

with on-the-fly correctives. ACM ToG, 32(4):42:1–10, 2013.

[37] T. Li, T. Bolkart, M. J. Black, H. Li, and J. Romero. Learning

a model of facial shape and expression from 4D scans. ACM

ToG, 36(6):194:1–17, 2017.

[38] X. Li, Y. Dong, P. Peers, and X. Tong. Modeling surface ap-

pearance from a single photograph using self-augmented con-

volutional neural networks. ACM ToG, 36(4):45:1–11, 2017.

[39] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face

attributes in the wild. In ICCV, pages 3730–3738, 2015.

4633



[40] J. Lu, K. Sunkavalli, N. Carr, S. Hadap, and D. Forsyth. A vi-

sual representation for editing face images. arXiv:1612.00522,

2016.

[41] C. Müller. Spherical harmonics. Number 17 in Lecture Notes

in Mathematics. Springer, 1966.

[42] V. Nair, J. Susskind, and G. E. Hinton. Analysis-by-synthesis

by learning to invert generative black boxes. In Proceedings

of the International Conference on Artificial Neural Networks

(ICANN), pages 971–981, 2008.

[43] X. Peng, R. S. Feris, X. Wang, and D. N. Metaxas. A recurrent

encoder-decoder network for sequential face alignment. In

ECCV, 2016.

[44] M. Piotraschke and V. Blanz. Automated 3D face reconstruc-

tion from multiple images using quality measures. In CVPR,

pages 3418–3427, 2016.

[45] R. Ramamoorthi and P. Hanrahan. A signal-processing

framework for inverse rendering. In SIGGRAPH, pages

117–128, 2001.

[46] E. Richardson, M. Sela, and R. Kimmel. 3D face reconstruction

by learning from synthetic data. In 3DV, pages 460–469, 2016.

[47] E. Richardson, M. Sela, R. Or-El, and R. Kimmel. Learning

detailed face reconstruction from a single image. In CVPR,

pages 5553–5562, 2017.

[48] J. Roth, Y. T. Tong, and X. Liu. Adaptive 3D face reconstruc-

tion from unconstrained photo collections. IEEE TPAMI, 39

(11):2127–2141, 2017.

[49] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,

and L. Fei-Fei. ImageNet large scale visual recognition

challenge. IJCV, 115(3):211–252, 2015.

[50] J. M. Saragih, S. Lucey, and J. F. Cohn. Deformable model

fitting by regularized landmark mean-shift. IJCV, 91(2):

200–215, 2011.

[51] S. Schönborn, B. Egger, A. Morel-Forster, and T. Vetter.

Markov chain Monte Carlo for automated face image analysis.

IJCV, 123(2):160–183, 2017.

[52] M. Sela, E. Richardson, and R. Kimmel. Unrestricted facial

geometry reconstruction using image-to-image translation.

In ICCV, pages 1585–1594, 2017.

[53] J. Shen, S. Zafeiriou, G. G. Chrysos, J. Kossaifi, G. Tz-

imiropoulos, and M. Pantic. The first facial landmark tracking

in-the-wild challenge: Benchmark and results. In ICCV

Workshops, pages 1003–1011, 2015.

[54] F. Shi, H.-T. Wu, X. Tong, and J. Chai. Automatic acquisition

of high-fidelity facial performances using monocular videos.

ACM ToG, 33(6):222:1–13, 2014.

[55] Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman,

and D. Samaras. Neural face editing with intrinsic image

disentangling. In CVPR, 2017.

[56] A. Steger and R. Timofte. Failure detection for facial

landmark detectors. In Proceedings of ACCV Workshops,

pages 361–376, 2016.

[57] S. Suwajanakorn, I. Kemelmacher-Shlizerman, and S. M.

Seitz. Total moving face reconstruction. In ECCV, pages

796–812, 2014.

[58] A. Tewari, M. Zollhöfer, H. Kim, P. Garrido, F. Bernard,

P. Pérez, and C. Theobalt. MoFA: Model-based deep

convolutional face autoencoder for unsupervised monocular

reconstruction. In ICCV, pages 3735–3744, 2017.

[59] J. Thies, M. Zollhöfer, M. Nießner, L. Valgaerts, M. Stam-

minger, and C. Theobalt. Real-time expression transfer for

facial reenactment. ACM ToG, 34(6):183:1–14, 2015.

[60] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and

M. Nießner. Face2Face: Real-time face capture and reenact-

ment of RGB videos. In CVPR, pages 2387–2395, 2016.

[61] D. Thomas and R. I. Taniguchi. Augmented blendshapes for

real-time simultaneous 3D head modeling and facial motion

capture. In CVPR, pages 3299–3308, 2016.

[62] A. T. Tran, T. Hassner, I. Masi, and G. Medioni. Regressing

robust and discriminative 3D morphable models with a very

deep neural network. In CVPR, pages 1493–1502, 2017.

[63] L. Valgaerts, C. Wu, A. Bruhn, H.-P. Seidel, and C. Theobalt.

Lightweight binocular facial performance capture under

uncontrolled lighting. ACM ToG, 31(6):187:1–11, 2012.

[64] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime

performance-based facial animation. ACM ToG, 30(4):

77:1–10, 2011.

[65] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse global

illumination: recovering reflectance models of real scenes

from photographs. In SIGGRAPH, pages 215–224, 1999.

[66] M. D. Zeiler. ADADELTA: An adaptive learning rate method.

arXiv:1212.5701, 2012.

[67] F. Zhao, J. Feng, J. Zhao, W. Yang, and S. Yan. Robust

LSTM-autoencoders for face de-occlusion in the wild. IEEE

Transactions on Image Processing, 27(2):778–790, 2018.

[68] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li. Face alignment

across large poses: A 3D solution. In CVPR, pages 146–155,

2016.

4634


