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Abstract

Heatmap regression has been used for landmark local-

ization for quite a while now. Most of the methods use a

very deep stack of bottleneck modules for heatmap classifi-

cation stage, followed by heatmap regression to extract the

keypoints. In this paper, we present a single dendritic CNN,

termed as Pose Conditioned Dendritic Convolution Neu-

ral Network (PCD-CNN), where a classification network is

followed by a second and modular classification network,

trained in an end to end fashion to obtain accurate land-

mark points. Following a Bayesian formulation, we dis-

entangle the 3D pose of a face image explicitly by condi-

tioning the landmark estimation on pose, making it differ-

ent from multi-tasking approaches. Extensive experimenta-

tion shows that conditioning on pose reduces the localiza-

tion error by making it agnostic to face pose. The proposed

model can be extended to yield variable number of land-

mark points and hence broadening its applicability to other

datasets. Instead of increasing depth or width of the net-

work, we train the CNN efficiently with Mask-Softmax Loss

and hard sample mining to achieve upto 15% reduction in

error compared to state-of-the-art methods for extreme and

medium pose face images from challenging datasets includ-

ing AFLW, AFW, COFW and IBUG.

1. Introduction

Face alignment or facial landmark estimation is the task

of estimating keypoints such as eye-corners, mouth cor-

ners etc. on a face image. As shown in [5], accurate

face alignment improves the performance of a face veri-

fication system, as well as other applications such as 3D

face modelling, face animation etc. Currently, face align-

ment is dominated by regression-based approaches which

yield a fixed number of points. Explicit Shape Regression

(ESR) [13] and Supervised Descent Method (SDM) [48]

have addressed the problem of face alignment for faces in

Figure 1: A bird’s eye view of the proposed method. Dendritic

CNN is explicitly conditioned on 3D pose. A generic CNN is used

for auxiliary tasks such as fine-grained localization or occlusion

detection.

medium pose. To achieve sub-pixel accuracy on such face

images, coarse to fine approaches have also been proposed

in the literature [31, 52, 54]. It is evident that such meth-

ods perform poorly on face images with extreme pose, ex-

pression and lighting mainly because they are dependent on

bounding box and mean face shape intializations. On the

other hand, Convolutional Neural Networks (CNNs) have

achieved breakthroughs in many vision tasks including the

task of keypoints estimation [35]. Lately, researchers have

used heatmap regression extensively for the task of face

alignment and pose estimation using an Encoder-Decoder

architecture in the form of Convolution-Deconvolution Net-

works [14]. Most of the approaches in the literature perform

heatmap classification followed by regression [6, 9–11]. In

this paper, we propose the Pose Conditioned Dendritic Con-

volution Neural Network (PCD-CNN); which models the

dendritic structure of facial landmarks using a single CNN

(see Figure 1).

Shape constraint: Methods such as ESR [13] and SDM

[48] impose the shape constraint by jointly regressing over

all the points. Such a shape constraint cannot be applied

to a profile face as a consequence of extreme pose leading

to a variable number of points. Tree structured part models

(TSPM) [58] by Zhu et al. had two major limitations associ-

ated with it; namely pre-determined models and slower run-
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time. With an intent to solve these, we propose a tree struc-

ture model in a single Dendritic CNN (PCD-CNN), which

is able to capture the shape constraint in a deep learning

framework.

Pose: Works such as Hyperface [36] and TCDCN [53]

have used 3D pose in a multitask framework and demon-

strated that learning pose and keypoints jointly using a deep

network improves the performance of both tasks. However,

in contrast to multi-tasking approaches, we condition the

landmark estimates on the head pose, following a Bayesian

formulation and demonstrate the effectiveness of the pro-

posed approach through extensive experiments. We wish to

point out that our primary goal is not to predict the head

pose, instead, use 3D head pose to condition the landmark

points. This makes our work different from multitask ap-

proaches.

Speed-vs-Accuracy: We observe that systems which

process images at real time, such as [7,25] have higher error

rate as opposed to cascade methods which are accurate but

slow. Researchers have proposed many different network

architectures like Hourglass [35], Binarized CNN (based on

hourglass) [10] in order to achieve accuracy in keypoints

estimation. Although, such methods are fully convolutional

, they suffer from slower run time as a result of cascaded

deep bottleneck modules which perform a large number of

FLOPs during test time. The proposed PCD-CNN works

at the same scale as the input image and thus reduces the

extrapolation errors. PCD-CNN is fully convolutional with

fewer parameters and is capable of processing images al-

most at real time speed (20FPS). Limited generalizability

as a consequence of smaller number of parameters is tack-

led by efficiently training the network using Mask-Softmax

loss and difficult sample mining.

Generalizability: Methods for domain-limited face im-

ages have been developed, mostly following the cascade re-

gression approach. [12, 46, 51] have been shown to work

well for faces under extreme external object occlusion. On

the other hand, [32, 38, 43–45, 54] achieved satisfactory re-

sults on the 300W [39] dataset which contains images in

medium pose with almost no occlusion. [24, 30, 56] have

demonstrated their effectiveness for extreme pose datasets

with a limited number of fiducial points. However, they do

not generalize very well to other datasets. We show that by a

small increase in the number of parameters, PCD-CNN can

be extended to most of the publicly available datasets in-

cluding 300W, COFW, AFLW and AFW yielding variable

number of points depending on the protocol.

Following the above discussion, the main contributions

of this paper can be listed as:

• We propose the Pose Disentangled Dendritic CNN

for unconstrained 2D face alignment, where the shape

constraint is imposed by the dendritic structure of fa-

cial landmarks. The proposed method uses classifica-

tion followed by classification approach as opposed to

classification followed by regression. The second aux-

iliary network is modular and can be designed for fine

grained localization or any other auxiliary tasks. Fig-

ure 2 shows the overall structure of PCD-CNN.

• The proposed method disentangles the head pose us-

ing a Bayesian framework and experimentally demon-

strates that conditioning on 3D head pose improves the

localization performance. The proposed method pro-

cesses images at real-time speed producing accurate

results.

• With a recursive extension, the proposed method can

be extended to datasets with arbitrarily different num-

ber of points and different auxiliary tasks.

• As a by-product, the network outputs pose estimates

of the face image where we achieve close to state-of-

the-art result on pose estimation on the AFW dataset.

In another experiment, the auxiliary classification net-

work is trained for occlusion detection where we ob-

tain state-of-the-art result for occlusion detection on

COFW dataset.

2. Prior Work

We briefly review prior work in the area of keypoint

localization under the following two categories: Deep

Learning-based and Hand crafted features-based methods.

Parametric part-based models such as Active Appear-

ance Models (AAMs) [16] and Constrained Local Mod-

els [17] are statistical methods which perform keypoint de-

tection by maximizing the confidence of part locations in a

given input image using handcrafted features such as SIFT

and HOG. The tree structure part model (TSPM) proposed

in [58] used deformable part-based model for simultaneous

detection, pose estimation and landmark localization of face

images modeling the face shape in a mixture of trees model.

Later, [3] proposed learning a dictionary of probability re-

sponse maps followed by linear regression in a Constrained

Local Model (CLM) framework. Early cascade regression-

based methods such as [4, 13, 40, 43, 45, 48, 54] also used

hand crafted features such as SIFT to capture appearance

of the face image. The major drawback of regression-based

methods is their inability to learn models for unconstrained

faces in extreme pose.

Deep learning-based methods have achieved break-

throughs in a variety of vision tasks including landmark lo-

calization. One of the earliest works was done in [31, 41]

where a cascade of deep models was learnt for fiducial de-

tection. 3DDFA [57] modeled the depth of the face image

in a Z-buffer, after which a dense 3D face model was fit-

ted to the image via CNNs. Pose Invariant Face Alignment

(PIFA) [24] by Jourabloo et al. predicted the coefficients of

3D to 2D projection matrix via deep cascade regressors. [7]

used 3D spatial transformer networks to capture 3D to 2D
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(a)

(b)

Figure 2: (a) Details of the proposed method. The dotted lines on top of convolution layers denote residual connections. Dendritic

KeypointNet is conditioned on PoseNet. The network inside the grey box represents the proposed PCD-CNN, whereas the second network

inside the blue box is modular and can be replaced for an auxiliary task. A conv-deconv network for finer localization is used alongside

these auxiliary networks. (b) Proposed dendritic structure of facial landmark points for effective information sharing among landmark

points. The nodes of the dendritic structure are the outputs of deconvolutions while the edges between nodes i and j are modeled by

convolution functions fij . For the architecture of deconvolution network refer to Figure 3.

projection. [22, 27, 33] extended [24] by using CNNs to di-

rectly learn the dense 3D coordinates. The proposed method

has a dendritic structure which looks at the global appear-

ance of the image while the local interactions are captured

by pose conditioned convolutions. PCD-CNN does not as-

sume that all the keypoints are visible and the interactions

between keypoints are learned. PCD-CNN is entirely based

on 2D images, which captures the 3D information by con-

ditioning on 3D head pose.

Formulating keypoint estimation as the per-pixel label-

ing task, Hourglass networks [35] and Structured feature

learning [15] were proposed. Hourglass networks use a

stack of 8 very deep hourglass modules and hence, even

though based entirely on convolution can process only 8-

10 frames per second. [15] implemented message passing

between keypoints, however was able to process images at

lower resolution due to large number of parameters. PCD-

CNN models the dendritic structure in branched decon-

volution networks where each network is implemented in

Squeezenet [21] fashion and hence has fewer parameters,

contributing to real-time operation at full image scale.

In the next few sections, we describe Pose Conditioned

Dendritic-CNN in detail where we discuss the different con-

cepts introduced, and then present ablative studies to arrive

at the desired architecture.

3. Pose Conditioned Dendritic CNN

The task of keypoint detection is to estimate the 2D coor-

dinates of, say N landmark points, given a face image. Ob-

serving the effectiveness of deep networks for a variety of

vision tasks, we present a single end-to-end trainable deep

neural network for landmark localization.

Conditioning on 3D pose: Keypoints are susceptible to

variations in external factors such as emotion, occlusion and

intrinsic face shape. On the other hand, 3D pose is fairly

stable to them and can be estimated directly from 2D im-

age [30]. Reasonably accurate 2D keypoint coordinates can

be also inferred given 3D pose and a generic 3D model

of a human face. However, the converse problem of esti-

mating 3D pose from 2D keypoints is ill posed. Therefore,

we make use of the probabilistic formulation over the vari-

ables including the image I ∈ R
w×h×3 of height h and

width w, 3D head pose denoted by P ∈ R
3, 2D keypoints

C ∈ R
N×2, where N is the number of keypoints. Follow-

ing the natural hierarchy between the two tasks, the joint

and the conditional probabilities can be written as:

p(C,P , I) = p(C|P , I)p(P |I)p(I) (1)

p(C,P |I) =
p(C,P , I)

p(I)

= p(P |I)
︸ ︷︷ ︸

CNN

. p(C|P , I)
︸ ︷︷ ︸

PCD-CNN

(2)

We implement the first factor with an image-based CNN

learned to predict the 3D pose of the face image. The sec-

ond factor is implemented through a ConvNet and multiple

DeconvNets arranged in a dendritic structure. The convo-

lution network maps the image to lower dimension, after

which the outputs of several deconvolution networks are

stacked to form the keypoint-heatmap. The models are tied
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together by element-wise product (as (1) and (2)) to condi-

tion the measurement of 2D coordinates on 3D pose. We

choose element-wise product as the operation to condition

on the head pose as keypoint heatmaps can be interpreted as

probability distribution over the keypoints. The visibility of

each keypoint is learnt implicitly as the invisible points are

labeled as background.

Multi-tasking-vs-Conditioning: In a multi-tasking

method such as [30], several tasks are learnt synergetically

and backpropagation impacts all the tasks. On the other

hand, in the proposed PCD-CNN, the error gradients back-

propagated from keypoint network affect both, keypoint

network and pose network; however, the pose network af-

fects the keypoint network only during the forward pass. In

other words, multi-tasking approaches try to model the joint

distribution p(C,P |I) , whereas the proposed approach ex-

plicitly models the decomposed form p(P |I)p(C|P , I) by

learning the individual factors.

Proposed Pose Conditioned Dendritic CNN : To cap-

ture the structural relationship between different keypoints,

we propose the dendritic structure of facial landmarks as

shown in figure 2b where the nose tip is assumed to be the

root node. Such a structure is feasible even in faces with

extreme pose. Following this, the keypoint network is mod-

eled with a single CNN in a tree structure composed of con-

volution and deconvolution layers. The pairwise relation-

ships between different keypoints are modeled via special-

ized functions, fi,j , which are implemented through con-

volutions and are analogous to the spring weights in the

spring-weight model of Deformable Part Models [18]. A

low confidence of a particular keypoint is reinforced when

the response of fi,j corresponding to the adjacent node is

added. With experimental justifications we show that such

a deformable tree model outperforms the recently published

works [7, 25, 27, 33] which use 3D models and 3D spa-

tial transformer networks to supplement keypoint detection

models. Figure 2 shows the overall architecture of the pro-

posed PCD-CNN and the proposed dendritic structure of the

facial landmarks.

Instead of going deeper or wider [10, 35] with deep net-

works, we base our work on the Squeezenet-11 [21] ar-

chitecture, attributing to its capability to maintain perfor-

mance with fewer parameters. We use two Squeezenet-11

networks; one for pose and other for keypoints, named as

-PoseNet and KeypointNet respectively, as shown in Fig 2a.

Convolutions are performed on the pool8 activation maps

of the PoseNet, the response of which is then multiplied

element-wise to the response maps of pool8 layers of the

KeypointNet. Each convolution layer is followed by ReLU

non-linearity and batch normalization. In table 1a, we show

that keypoint localization error reduces when conditioned

on 3D head pose.

The design of deconvolution network is non-trivial. To

Method Normalised Error

Without pose conditioning 3.45

With pose conditioning 2.85

(a)

Method Normalised Error

Classification+Regression 3.93

Classification+Classification 3.09

(b)

Method Normalised Error

Softmax 4.56

Using Mask-Softmax 2.85

(c)

Table 1: Root mean square error normalized by bounding box

size, calculated on the AFLW validation set following the PIFA

protocol. (a) With and without conditioning on pose. (b) Compar-

ison showing that PCD-CNN when followed by another classifica-

tion stage results in lower localization error compared to classifica-

tion followed by regression. Note that conditioning on pose is not

used in both the cases above for fair comparison. (c) Comparison

indicating the effect of using Mask-softmax over Softmax

maintain the same property as of SqueezeNet, we first up-

sample the feature maps using parametrized strided con-

volutions and then squeeze the output features maps us-

ing 1x1 convolutions. We call this network as Squeezenet-

DeconvNet. Figure 3 shows the detailed architecture of

the Squeezenet-DeconvNet. Since, each keypoint in the

proposed network is modeled by a separate Squeezenet-

DeconvNet, it alleviates the need for large number of de-

convolution parameters (256 and 512 3 × 3 in Hourglass

networks). In fact, in the practical version of PCD-CNN,

there are only 32 and 16 deconvolution filters which results

in the design of networks, which are small enough to fit

in a single GPU. The design of networks with fewer filters

is motivated by real-time processing consideration. With

experiments we show that disentangling the pose by condi-

tioning on it, reinforces the learning of the proposed PCD-

CNN with fewer parameters (Table 1a).

In order to obtain fine grained localization results, we

concatenate to the input data, a learned function of the pre-

dicted probabilities (represented as purple box in Figure 2a)

and pass them through the second Squeezenet based conv-

deconv network. This function is modeled by a residual

unit with 1 × 1 and 3 × 3 filters, which are learned end-to-

end with the second classification network (while keeping

the weights PCD-CNN frozen). For experimental purposes,

we replace the second conv-deconv by another regression

network designed along the lines of GoogleNet [42]. Ta-

ble 1b shows a comparison between two stage classifica-

tion approach versus classifcation followed by regression
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Figure 3: Detailed description of a single Squeezenet-DeconvNet

network. Note the fewer number of deconvolution filters. Each

deconvolution network is identical to the one shown above.

approaches [1].

One of the goals of this work is to generalize the facial

landmark detection to other datasets in order to broaden its

applicability. A trivial extension would be to increase the

number of deconvolution branches, which however is in-

feasible due to limited GPU memory. However, PCD-CNN

can be extended to yield more landmark points arranged in

different configurations. In figure 4 we show the proposed

tree structures for COFW and 300W datasets with 29 and

68 landmark points respectively. Keeping the basic Den-

dritic Structure of Parts intact, first the number of output

response maps in the last deconvolution layer are increased

and then network slicing is performed to produce the de-

sired number of keypoints. For instance, the output of the

deconvolution network for eye-center is sliced to produce

four outputs as required by the 300W dataset. Depending

on the dataset, the second network can be replaced to per-

form auxiliary tasks resulting in a modular architecture; for

instance in the case of COFW dataset we replace the sec-

ond conv-deconv network with another Squeezenet network

to detect occlusion. We direct the readers to the supple-

mentary material for more details on network surgery and a

magnified view of figures 2b and 4.

Figure 4: The proposed extension of the dendritic structure from

Figure 2 generalizing to other datasets (COFW and 300W) each

with different number of points.

Each branch of PCD-CNN is designed according to the

proposed Squeezenet-Deconv networks shown in Figure 3.

Due to fewer parameters in the Squeezent-Deconv, we hy-

pothesize limited generalization capacity of the deconvolu-

tion network. By means of experiments, we show that ef-

fective training methods such as Mask-Softmax and Hard

sample mining improves the performance of PCD-CNN by

a large margin as a result of better generalization capacity.

Mask-Softmax Loss: To train the network, the localiza-

tion of fiducial keypoints is formulated as a classification

problem. The label for an input image of size h × w × 3
is a label tensor of same size as the image with N + 1
channels, where N is the number of keypoints. The first

N channels represent the location of each keypoint whereas

the last channel represents the background. Each pixel is

assigned a class label with invisible points being labeled as

background. The objective is to minimize the following loss

function:

L0(p, g) =

h∑

i=1

w∑

j=1

m(i, j)

N+1∑

k=1

gk(i, j)log

(
epk(i,j)

∑

l e
pl(i,j)

)

(3)

where k ∈ {1, 2 . . . N} is the class index and gk(i, j) repre-

sents the ground truth at location (i, j). pl(i, j) is the score

obtained for location (i, j) after forward pass through the

network. Since the number of negative examples is orders

of magnitudes larger than the positives, we design a strate-

gic mask m(i, j) which selects all the positive pixel sam-

ples, and keeps only 50% of the 4-neighborhood pixels and

0.025% of the negative background samples by random se-

lection. During backward pass, the gradients are weighed

accordingly. We experimentally show the effect of using

Mask-Softmax Loss by training two separate PCD-CNN;

with and without the Mask-Softmax Loss; trained under

identical training policies(Table 1c) .

Hard Sample Mining: [28] by Kabkab et al. showed that

effective sampling of data improves the classification per-

formance of the network. Following [28], we use an offline

hard sample mining procedure to train the proposed PCD-

CNN. The histogram of error on the training data is plotted

after the network is trained for 10 epochs by random sam-

pling (refer supplementary material). We denote the mode

of the distribution as C, and categorize all the training sam-

ples producing errors larger than C as hard samples. Next

we retrain the proposed PCD-CNN with hard and easy sam-

ples, sampled at the respective proportion. This effectively

results in retraining the network by reusing the hard sam-

ples. Table 2a shows that such hard sample mining im-

proves the performance of PCD-CNN (with fewer param-

eters) by a large margin.

In the next set of experiments, we train PCD-CNN by in-

creasing the number of deconvolution filters to 128 and 64

in each deconvolution network. We follow the same strat-

egy of Mask-Softmax and hard sample mining to train this

network. Unsurprisingly, we see an improvement in perfor-

mance for the task of keypoint localization (Table 2b), al-

though, increasing the number of deconvolution filters leads
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Method Normalised Error

Without Hard Mining 2.85

With Hard Mining 2.49

(a)

Method Normalised Error

Less Filters+Hard Mining 2.49

More Filters+Hard Mining 2.40

(b)

Table 2: Root mean square error normalized by bounding box

calculated on the AFLW validation set following PIFA protocol.

(a) depicts the effect of offline hard sample mining. (b) shows

the effect of offline hard-mining and quadrupling the number of

deconvolution filters.

to slower run time of 11FPS as opposed to 20FPS.

4. Experiments

We select four different datasets with different charac-

teristics to train and evaluate the proposed two stage PCD-

CNN.

AFLW [29]and AFW [58] are two difficult datatsets

which comprises of images in extreme pose, expression and

occlusion. AFLW consists of 24, 386 in-the-wild faces (ob-

tained from Flickr) with head pose ranging from 0◦ to 120◦

for yaw and upto 90◦ for pitch and roll. AFLW provides

at most 21 points for each face. It excludes coordinates for

invisible landmarks and in our method such invisible points

are labelled as background. For AFLW we follow the PIFA

protocol; i.e. the test set is divided into three groups corre-

sponding to three pose groups with equal number of images

in each group.

AFW which is a popular benchmark for the evaluation

of face alignment algorithms, consisting of 468 in-the-wild

faces (also obtained from Flickr) with yaw up to 90◦. The

images are diverse in terms of pose, expression and illumi-

nation and was considered the most difficult publicly avail-

able dataset, until AFLW. The number of visible points

varies depending on the pose and occlusion with a maxi-

mum of 6 points per face image. We use AFW only for

evaluation purposes.

A medium pose dataset from the popular 300W face

alignment competition [39]. The dataset consists of re-

annotated five existing datasets with 68 landmarks: iBug,

LFPW, AFW, HELEN and XM2VTS. We follow the work

[54] to use 3, 148 images for training and 689 images for

testing. The testing dataset is split into three parts: com-

mon subset (554 images), challenging subset (135 images)

and the full set (689 images).

Another dataset showing extreme cases of external and

internal object occlusion; COFW [47]. COFW is the most

challenging dataset that is designed to depict faces in real-

world conditions with partial occlusions [12]. The face im-

ages show large variations in shape and occlusions due to

differences in pose, expression, hairstyle, use of accessories

or interactions with other objects. All 1,007 images were

annotated using the same 29 landmarks as in the LFPW

dataset, with their individual visibilities. The training set

includes 845 LFPW faces + 500 COFW faces, that is 1,345

images in total. The remaining 507 COFW faces are used

for testing.

Evaluation Metric: Following most previous works, we

obtain the error for each test sample via averaging normal-

ized errors for all annotated landmarks. We illustrate our

results with mean error over all samples, or via Cumula-

tive Error Distribution (CED) curve. For AFLW and AFW,

the obtained error is normalized by the ground truth bound-

ing box size over all visible points whereas for 300W and

COFW, error is normalized by the inter-occular distance.

Wherever applicable NME stands for Normalized Mean Er-

ror.

Training: The PCD-CNN was first trained using the

AFLW training set which was augmented by random crop-

ping, flipping and rotation. The network was trained for

10 epochs where the learning rate starting from 0.01 was

dropped every 3 epochs. Keeping the weights of PCD-CNN

fixed, the auxiliary network for fine grained classifcation

was trained for another 10 epochs using the hard mining

strategy explained in section 3. PoseNet was kept frozen

while training the network for COFW and 300W datasets.

All the experiments including training and testing were per-

formed using the Caffe [23] framework and Nvidia TITAN-

X GPUs and p6000 GPUs. Being a non-iterative and single

shot keypoint prediction method, our method is fast and can

process 20 frames per second on 1 GPU only in batch mode.

(Refer to supplementary material for more training details)

4.1. Results

Table 3a compares the performance of proposed method

over other existing methods on AFLW-PIFA and AFW

dataset. Table 3b compares the performance on AFLW-

PIFA with respect to each pose group. Tables 4a and 4b

compares the mean normalized error on the 300W and

COFW datasets respectively. It is clear from the tables

that while the proposed PCD-CNN performs comparable to

previous state-of-the-art method [10], the two stage PCD-

CNN outperforms the state-of-the-art methods on all three

datasets: AFLW, AFW and COFW by large margins. It is

not surprising that increasing the number of deconvolution

filters improves the performance on all the datasets. Fig-

ures 5a, 5b and 5c show the cumulative error distribution for

landmark localization in AFLW, AFW and COFW test sets.

From the plots, we observe that the proposed PCD-CNN

leads to a significant increase in the percentage of images
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AFLW AFW

Method NME NME

TSPM [58] - 11.09

CDM [2] 12.44 9.13

RCPR [12] 7.85 -

ESR [13] 8.24 -

PIFA [24] 6.8 9.42

3DDFA [57] 5.32 -

LPFA-3D [26] 4.72 7.43

EMRT [55] 4.01 3.55

Hyperface [36] 4.26 -

Rec Enc-Dec [1] >6 -

PIFAS [27] 4.45 6.27

FRTFA [7] 4.23 -

CALE [11] 2.63 -

KEPLER [30] 2.98 3.01

Binary-CNN [10] 2.85 -

PCD-CNN(Fast) Pre Test Aug 2.85 2.80

PCD-CNN(Fast) Post Test Aug 2.81 2.66

PCD-CNN(C+C) Pre Test Aug 2.49 2.52

PCD-CNN(C+C+more filters) 2.40 2.47

PCD-CNN(C+C) Post Test Aug (Best) 2.40 2.36

(a)

Method [0,30] [30,60] [60,90] Mean

HyperFace [36] 3.93 4.14 4.71 4.26

AIO [37] 2.84 2.94 3.09 2.96

Binary-CNN [10] 2.77 2.86 2.90 2.85

PCD-CNN(C+C) 2.33 2.60 2.64 2.49

(b)

Table 3: Comparison with previous methods on (a) AFLW-PIFA

test set and AFW test set. (b) AFLW-PIFA categorized by absolute

yaw angles. In (a) C+C stands for classification+classification.

For AFLW, numbers for other methods are taken from respective

papers following the PIFA protocol. For AFW, the numbers are

taken from respective published works following the protocol of

[58]. The numbers represent the normalized mean error.

with mean normalized error less than 5%. On AFW, fraction

of images having an error of less than 15◦ for pose estima-

tion is 87.22% compared to 82% in the recent work [20]. On

COFW dataset, the NME reduces to 6.02 (close human per-

formance of 5.6) bringing down the failure rate to 4.53%.

PCD-CNN achieves a higher recall of 44.7% at the preci-

sion of 80% as opposed to RCPR’s [12] 38.2%. (refer to

the supplementary material for more results.)

Improvement in localization by augmentation during

testing : For a fair evaluation, we compare with the previ-

ous state-of-the-art methods with and without augmentation

during testing. In the next set of experiments along with the

test image, we also pass the flipped version of it and the fi-

Method Common Challenge Full

RCPR [12] 6.18 17.26 8.35

SDM [48] 5.57 15.40 7.52

ESR [13] 5.28 17.00 7.58

CFAN [52] 5.50 16.78 7.69

LBF [38] 4.95 11.98 6.32

CFSS [54] 4.73 9.98 5.76

TCDCN [53] 4.80 8.60 5.54

DDN [50] - - 5.59

MDM [43] 4.83 10.14 5.88

TSR [34] 4.36 7.56 4.99

PCD-CNN 3.67 7.62 4.44

(a)

Method NME Failure Rate

RCPR [12] 8.5 20%

OFA [51] 6.46 -

HPM [19] 8.48 6.99%

ERCLM [8] 6.49 6.3%

RPP [49] 7.52 16.2%

Human [12] 5.6 0%

PCD-CNN Pre Test Aug 6.02 4.53%

PCD-CNN Post Test Aug 5.77 3.73%

(b)

Table 4: Comparison of the proposed method with other state-

of-the-art methods on (a) 300W dataset (b) COFW testset. The

NMEs for comparison on 300W dataset are taken from the Table

3 of [34].

nal output is taken as the mean of the two outputs. With

experimentation we observe that data augmentation while

testing also improves the localization performance. While

on AFLW-PIFA the error rate of 2.40 is achieved, the effect

of test set augmentation is more prominent in AFW dataset,

where the error rate of 2.36 is achieved. Similarly, on 300W

(challenging) error rate drops to 7.17 from 7.62 as a result

of test set augmentation. On COFW, error rate and failure

rate of 5.77 and 3.73% respectively are achieved as the best

results.

Figure 6 shows some of the difficult images and the

predicted visible keypoints on the four datasets. We also

achieve state of the art results on the performance of auxil-

iary tasks, such as pose estimation on AFW and occlusion

prediction on COFW dataset.

5. Conclusion and Future Work

In this paper, we present a dendritic CNN which pro-

cesses images at full scale looking at the images globally

and capturing local interactions through convolutions. The

proposed PCD-CNN is able to precisely localize landmark
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(a) (b) (c)

Figure 5: Cumulative error distribution curves for landmark localization on AFLW, AFW and COFW dataset respectively. (a) Numbers in

the legend represents mean error normalized by the face size. (b) Numbers in the legend are the fraction of testing faces that have average

normalized error below 5%. (c) The numbers in the legend are the fraction of testing faces that have average normalized error below 10%.

Figure 6: Qualitative results generated from the proposed method. The green dots represent the predicted points. Each row shows some

of the difficult samples from AFLW, AFW, COFW, and 300W respectively with all the visible predicted points.

points on unconstrained faces without using any 3D mor-

phable models. We also demonstrate that disentangling

pose by conditioning on it can influence the localization of

landmark points by reducing the mean pixel error by a large

margin. Due to effective design choices made, the proposed

model is not limited to yield a fixed number of points and

can be extended to other datasets with different protocols.

With the help of ablative studies, impact of effective train-

ing of the convolutional network by using sampling strate-

gies such as Mask-Softmax and hard instance sampling is

shown. Using smaller and fewer convolution filters, the pro-

posed network is able to process images close to real-time

and can be deployed in a real life scenario. The proposed

method can be easily extended to 3D dense face alignment

and other tasks, which we plan to pursue in the future.

6. Acknowledgment

This research is based upon work supported by the Of-

fice of the Director of National Intelligence (ODNI), In-

telligence Advanced Research Projects Activity (IARPA),

via IARPA R&D Contract No. 2014-14071600012. The

views and conclusions contained herein are those of the au-

thors and should not be interpreted as necessarily represent-

ing the official policies or endorsements, either expressed

or implied, of the ODNI, IARPA, or the U.S. Government.

The U.S. Government is authorized to reproduce and dis-

tribute reprints for Governmental purposes notwithstanding

any copyright annotation thereon. We also thank our col-

leagues for all the discussion sessions.

437



References

[1] A recurrent autoencoder-decoder for sequential face align-

ment. http://arxiv.org/abs/1608.05477. Ac-

cessed: 2016-08-16. 5, 7

[2] Pose-free Facial Landmark Fitting via Optimized Part Mix-

tures and Cascaded Deformable Shape Model, 2013. 7

[3] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic. Robust

discriminative response map fitting with constrained local

models. In CVPR, CVPR ’13, pages 3444–3451, Washing-

ton, DC, USA, 2013. IEEE Computer Society. 2

[4] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic. Incre-

mental face alignment in the wild. In CVPR 2014, 2014. 2

[5] A. Bansal, C. Castillo, R. Ranjan, and R. Chellappa. The do’s

and don’ts for cnn-based face verification. arXiv preprint

arXiv:1705.07426, 2017. 1

[6] V. Belagiannis and A. Zisserman. Recurrent human pose

estimation. In 2017 12th IEEE International Conference on

Automatic Face Gesture Recognition (FG 2017), pages 468–

475, May 2017. 1

[7] C. Bhagavatula, C. Zhu, K. Luu, and M. Savvides. Faster

than real-time facial alignment: A 3d spatial transformer net-

work approach in unconstrained poses. In The IEEE Inter-

national Conference on Computer Vision (ICCV), Oct 2017.

2, 4, 7

[8] V. N. Boddeti, M. Roh, J. Shin, T. Oguri, and T. Kanade.

Face alignment robust to pose, expressions and occlusions.

CoRR, abs/1707.05938, 2017. 7

[9] A. Bulat and G. Tzimiropoulos. Human Pose Estimation

via Convolutional Part Heatmap Regression, pages 717–732.

Springer International Publishing, Cham, 2016. 1

[10] A. Bulat and G. Tzimiropoulos. Binarized convolutional

landmark localizers for human pose estimation and face

alignment with limited resources. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2017. 1, 2, 4,

6, 7

[11] A. Bulat and Y. Tzimiropoulos. Convolutional aggregation

of local evidence for large pose face alignment. In E. R. H.

Richard C. Wilson and W. A. P. Smith, editors, Proceedings

of the British Machine Vision Conference (BMVC), pages

86.1–86.12. BMVA Press, September 2016. 1, 7

[12] X. P. Burgos-Artizzu, P. Perona, and P. Dollar. Robust face

landmark estimation under occlusion. ICCV, 0:1513–1520,

2013. 2, 6, 7

[13] X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by ex-

plicit shape regression. IJCV, 107(2):177–190, 2014. 1, 2,

7

[14] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Semantic image segmentation with deep convolu-

tional nets and fully connected crfs. CoRR, abs/1412.7062,

2014. 1

[15] X. Chu, W. Ouyang, H. Li, and X. Wang. Structured feature

learning for pose estimation. In CVPR, 2016. 3

[16] T. Cootes, G. Edwards, and C. Taylor. Active appearance

models. IEEE T-PAMI, 23(6):681–685, Jun 2001. 2

[17] D. Cristinacce and T. Cootes. Automatic feature local-

isation with constrained local models. Pattern Recogn.,

41(10):3054–3067, Oct. 2008. 2

[18] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. IEEE Trans. Pattern Anal. Mach. Intell.,

32(9):1627–1645, Sept. 2010. 4

[19] G. Ghiasi and C. C. Fowlkes. Occlusion coherence: Lo-

calizing occluded faces with a hierarchical deformable part

model. In 2014 IEEE Conference on Computer Vision and

Pattern Recognition, pages 1899–1906, June 2014. 7

[20] G.-S. Hsu, K.-H. Chang, and S.-C. Huang. Regressive tree

structured model for facial landmark localization. In The

IEEE International Conference on Computer Vision (ICCV),

December 2015. 7

[21] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accu-

racy with 50x fewer parameters and <0.5mb model size.

arXiv:1602.07360, 2016. 3, 4

[22] A. S. Jackson, A. Bulat, V. Argyriou, and G. Tzimiropoulos.

Large pose 3d face reconstruction from a single image via

direct volumetric cnn regression. International Conference

on Computer Vision, 2017. 3

[23] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014. 6

[24] A. Jourabloo and X. Liu. Pose-invariant 3d face alignment.

In ICCV, Santiago, Chile, December 2015. 2, 3, 7

[25] A. Jourabloo and X. Liu. Large-pose face alignment via cnn-

based dense 3d model fitting. In Proc. IEEE Computer Vision

and Pattern Recogntion, Las Vegas, NV, June 2016. 2, 4

[26] A. Jourabloo and X. Liu. Large-pose face alignment via cnn-

based dense 3d model fitting. In CVPR, Las Vegas, USA,

June 2016. 7

[27] A. Jourabloo, X. Liu, M. Ye, and L. Ren. Pose-invariant

face alignment with a single cnn. In In Proceeding of In-

ternational Conference on Computer Vision, Venice, Italy,

October 2017. 3, 4, 7

[28] M. Kabkab, A. Alavi, and R. Chellappa. Dcnns on a diet:

Sampling strategies for reducing the training set size. CoRR,

abs/1606.04232, 2016. 5

[29] M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof. An-

notated facial landmarks in the wild: A large-scale, real-

world database for facial landmark localization. In First

IEEE International Workshop on Benchmarking Facial Im-

age Analysis Technologies, 2011. 6

[30] A. Kumar, A. Alavi, and R. Chellappa. Kepler: Keypoint

and pose estimation of unconstrained faces by learning effi-

cient h-cnn regressors. In 2017 12th IEEE International Con-

ference on Automatic Face Gesture Recognition (FG 2017),

pages 258–265, May 2017. 2, 3, 4, 7

[31] A. Kumar, R. Ranjan, V. M. Patel, and R. Chellappa.

Face alignment by local deep descriptor regression. CoRR,

abs/1601.07950, 2016. 1, 2

[32] D. Lee, H. Park, and C. D. Yoo. Face alignment using

cascade gaussian process regression trees. In CVPR, pages

4204–4212, June 2015. 2

[33] Y. Liu, A. Jourabloo, W. Ren, and X. Liu. Dense face align-

ment. In In Proceeding of International Conference on Com-

puter Vision Workshops, Venice, Italy, October 2017. 3, 4

438

http://arxiv.org/abs/1608.05477


[34] J. Lv, X. Shao, J. Xing, C. Cheng, and X. Zhou. A deep re-

gression architecture with two-stage re-initialization for high

performance facial landmark detection. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

July 2017. 7

[35] A. Newell, K. Yang, and J. Deng. Stacked Hourglass Net-

works for Human Pose Estimation, pages 483–499. Springer

International Publishing, Cham, 2016. 1, 2, 3, 4

[36] R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A deep

multi-task learning framework for face detection, landmark

localization, pose estimation, and gender recognition. CoRR,

abs/1603.01249, 2016. 2, 7

[37] R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chel-

lappa. An all-in-one convolutional neural network for face

analysis. In 2017 12th IEEE International Conference on

Automatic Face Gesture Recognition (FG 2017), pages 17–

24, May 2017. 7

[38] S. Ren, X. Cao, Y. Wei, and J. Sun. Face alignment at 3000

FPS via regressing local binary features. In CVPR, pages

1685–1692, 2014. 2, 7

[39] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic.

300 faces in-the-wild challenge: The first facial landmark lo-

calization challenge. In 2013 IEEE International Conference

on Computer Vision Workshops, pages 397–403, Dec 2013.

2, 6

[40] Y. Sun, X. Wang, and X. Tang. Deep convolutional network

cascade for facial point detection. In CVPR, pages 3476–

3483, June 2013. 2

[41] Y. Sun, X. Wang, and X. Tang. Deep convolutional net-

work cascade for facial point detection. In CVPR, CVPR

’13, pages 3476–3483, Washington, DC, USA, 2013. IEEE

Computer Society. 2

[42] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. CoRR, abs/1409.4842,

2014. 4

[43] G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, and

S. Zafeiriou. Mnemonic descent method: A recurrent pro-

cess applied for end-to-end face alignment. In CVPR, Las

Vegas, USA, June 2016. 2, 7

[44] G. Tzimiropoulos. Project-out cascaded regression with an

application to face alignment. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2015. 2

[45] G. Tzimiropoulos and M. Pantic. Gauss-newton deformable

part models for face alignment in-the-wild. In CVPR, pages

1851–1858, June 2014. 2

[46] Y. Wu, C. Gou, and Q. Ji. Simultaneous facial landmark

detection, pose and deformation estimation under facial oc-

clusion. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), July 2017. 2

[47] Y. Wu and Q. Ji. Robust facial landmark detection under

significant head poses and occlusion. In ICCV, pages 3658–

3666, Dec 2015. 6

[48] Xuehan-Xiong and F. De la Torre. Supervised descent

method and its application to face alignment. In CVPR, 2013.

1, 2, 7

[49] H. Yang, X. He, X. Jia, and I. Patras. Robust face align-

ment under occlusion via regional predictive power estima-

tion. IEEE Transactions on Image Processing, 24(8):2393–

2403, Aug 2015. 7

[50] X. Yu, F. Zhou, and M. Chandraker. Deep deforma-

tion network for object landmark localization. CoRR,

abs/1605.01014, 2016. 7

[51] J. Zhang, M. Kan, S. Shan, and X. Chen. Occlusion-free

face alignment: Deep regression networks coupled with de-

corrupt autoencoders. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016. 2, 7

[52] J. Zhang, S. Shan, M. Kan, and X. Chen. Coarse-to-fine

auto-encoder networks (cfan) for real-time face alignment.

In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors,

ECCV, volume 8690 of Lecture Notes in Computer Science,

pages 1–16. Springer International Publishing, 2014. 1, 7

[53] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark

detection by deep multi-task learning. In ECCV, pages 94–

108, 2014. 2, 7

[54] S. Zhu, C. Li, C. Change Loy, and X. Tang. Face alignment

by coarse-to-fine shape searching. June 2015. 1, 2, 6, 7

[55] S. Zhu, C. Li, C. C. Loy, and X. Tang. Towards arbitrary-

view face alignment by recommendation trees. CoRR,

abs/1511.06627, 2015. 7

[56] S. Zhu, C. Li, C.-C. Loy, and X. Tang. Unconstrained face

alignment via cascaded compositional learning. In CVPR,

June 2016. 2

[57] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li. Face alignment

across large poses: A 3d solution. CoRR, abs/1511.07212,

2015. 2, 7

[58] X. Zhu and D. Ramanan. Face detection, pose estimation,

and landmark localization in the wild. In CVPR, pages 2879–

2886, June 2012. 1, 2, 6, 7

439


