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Abstract

Many computer vision applications require robust estima-

tion of the underlying geometry, in terms of camera motion

and 3D structure of the scene. These robust methods often

rely on running minimal solvers in a RANSAC framework.

In this paper we show how we can make polynomial solvers

based on the action matrix method faster, by careful selec-

tion of the monomial bases. These monomial bases have

traditionally been based on a Gröbner basis for the poly-

nomial ideal. Here we describe how we can enumerate all

such bases in an efficient way. We also show that going be-

yond Gröbner bases leads to more efficient solvers in many

cases. We present a novel basis sampling scheme that we

evaluate on a number of problems.

1. Introduction

In this paper, we describe a method for automatically

building very fast minimal solvers. This is a core problem

in many computer vision applications, e.g. 3D reconstruc-

tion [42, 43], visual odometry [36, 2] and visual localiza-

tion [38, 48].

During the last years we have seen a large increase in

the variety of available technical platforms, such as mo-

bile devices, UAVs and drones. These are often equipped

with widely different capabilities, in terms of sensors, cam-

eras and computing power. In many applications, e.g.

autonomous navigation, augmented reality or robotics, a

core computer vision task is to make robust estimates of

the surrounding geometry and motion of the device, based

on image data [51, 11, 48, 49, 39] or other sensor data

[24, 41, 3, 23]. Given that these tasks often need to be

performed fast, based on unreliable data containing mis-

matches, and on devices with limited processing power, effi-

cient implementations of robust estimation schemes such as

RANSAC is paramount. At the core of these algorithms we

have so-called minimal solvers that, based on a small data

sample, estimate a model that can be evaluated on a larger

data set to find a consistent inlier set. Since this has to be

performed many times [14], we need these minimal solvers

to be fast. The image formation process naturally leads to

geometric problems that can be formulated in terms of mul-

tivariate polynomial equation systems. In many devices we

have additional sensor measurements, e.g. gyroscope and

accelerometer data, and these measurements should be in-

corporated in the estimation process [1, 18, 48]. We can

also have different types of camera models and calibration

knowledge [51, 10, 50, 34, 31, 49, 17, 39]. All the aspects

described above, naturally lead to the need for tools for con-

structing fast solvers of polynomial equations. In addition,

the variety of platforms leads to the need for these methods

to be, to a large extent, automatic.

Many state-of-the-art polynomial solvers are based on

Gröbner bases and the action-matrix method, and there are

now powerful tools available for the automatic generation of

such solvers [26, 29, 30]. In this paper we target a specific

part of this pipeline, namely the choice of monomial basis

in the quotient ring. We will show how careful selection

of the monomial bases can give significant speed-up in the

resulting solvers. Previously, little attention has been paid

to the choice of basis to gain speed in polynomial solvers,

and usually a Gröbner basis is used to select the monomial

basis. We will in the paper describe how we can test all

possible Gröbner bases. We will further show that going

beyond Gröbner bases leads to faster solvers in a number of

cases.

Specifically, our contributions in this paper are:

• Minimizing elimination template size by enumerating

all possible Gröbner bases.
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• A heuristic method of sampling monomial bases that

goes beyond Gröbner bases.

• State-of-the-art performance on a number of geometric

estimation and calibration problems in terms of speed.

1.1. Background and Related Work

We use nomenclature and basic concepts from Cox et al.

[12]. Let X = (x1, x2, . . . , xn) denote our indeterminates

and let C[X] denote the set of all polynomials in X with

coefficients in C. We are interested in solving systems of

polynomial equations,















f1(x1, . . . , xn) = 0,
...

fm(x1, . . . , xn) = 0.

(1)

The ideal I = 〈f1, . . . , fm〉 is the set of polynomial com-

binations of our generators f1, . . . , fm. Each polynomial

f ∈ I then vanishes on the solutions to our equation sys-

tem (1). Using the ideal I we can define the quotient ring

C[X]/I which is the set of equivalence classes over C[X]
defined by the relation,

a ∼ b ⇐⇒ a = b mod I ⇐⇒ a− b ∈ I. (2)

If there are finitely many solutions to (1), then the quotient

ring C[X]/I is a finite-dimensional vector space over C.

For an ideal I there exist special sets of generators called

Gröbner bases which have the nice property that the re-

mainder after division is unique. For a Gröbner basis

{g1, . . . , gm} we can define the standard monomials, which

is the set of monomials not divisible by the leading term

of any gk. This set of monomials is a linear basis for the

quotient ring C[X]/I .

1.2. Solving Systems of Polynomial Equations

To solve systems of polynomial equations, the most

common approach in Computer Vision is the action ma-

trix method [13, 47, 44, 28]. The goal of the action ma-

trix method is to transform the, in general very difficult,

problem of finding the solutions to an equivalent eigen-

value/eigenvector problem which we can solve numerically:

α







b1
...

bK






−



 M











b1
...

bK






= 0 mod I, (3)

where α, bk ∈ C[X]. Here α is the so-called action vari-

able. To briefly motivate this, consider the quotient ring

C[X]/I of an ideal I generated by polynomials with a fi-

nite number of solutions K. Let b1, . . . , bK ∈ C[X] be

monomials forming a basis of C[X]/I . Then, the remain-

der of the product α bi after division by I can be written as

a linear combination of the basis b1, . . . , bK ∈ C[X] [13].

In matrix form we then get (3). The existence of the matrix

M ∈ C
K×K can be guaranteed by choosing b1, . . . , bK as

a basis for the quotient ring C[X]/I .

In practice, to recover the action matrix M for a par-

ticular instance a so-called elimination template is typi-

cally used. The elimination template is an expanded set

of equations (constructed by multiplying the original equa-

tions with different monomials) in which we can linearly

express the polynomials in the eigenvalue problem. This

reduces the problem of finding the action matrix to solving

a linear system.

It is generally difficult to find the smallest elimination

template for a given problem. In [26] an iterative method

was presented for constructing these elimination templates

directly from the problem equations. This work was re-

cently extended by Larsson et al. in [29], where a non-

iterative method was proposed.

When creating polynomial solvers in Computer Vision,

the basis for the quotient space {b1, . . . , bK} is typically

chosen as the standard monomials from the Gröbner basis

w.r.t. the monomial ordering GRevLex (this is e.g. done in

[26, 29]). However, this is an arbitrary choice and the meth-

ods work for any basis. In this paper we focus on the prob-

lem of selecting this basis with the aim of reducing the size

of the elimination template. We show that for some prob-

lems there are better choices that yield significantly faster

solvers.

Given a monomial basis it is still a difficult problem

to find the smallest elimination template. In this work we

use the automatic generator from [29] to construct the tem-

plates, but this method is not guaranteed to find the optimal

template. The results in this paper are w.r.t. this particular

template construction method. However, any other method

for constructing the template (such as the one from [26])

could be substituted.

Our approach can be used to optimize other character-

istics of the solvers as well, such as accuracy or stabil-

ity. However, for practical purposes these are typically sec-

ondary to runtime as long as they are sufficiently good. For

example if you are estimating the focal length it usually

does not matter whether the errors are 10−6 or 10−16.

In [9], Byröd et al. presented different methods for

choosing the basis during runtime. However in their setting

the size of the template was fixed, and the online basis selec-

tion was done solely to improve the numerics of the solver.

In [21] the authors further improved stability by carefully

selecting the so-called permissible monomials (i.e. the set

from which the basis is chosen from in [9]).

2. Exhaustive Search over Gröbner Bases

For an ideal I , the (reduced) Gröbner basis depends on

the monomial ordering chosen in the polynomial ring C[X].
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Figure 1. The Gröbner fan of the ideal I = 〈x+ y2 − 1, x y − 1〉
consists of three two-dimensional cones. For each cone, there is

exactly one reduced Gröbner basis of I . All monomial orderings

generated by all weight vectors from one cone give the same re-

duced Gröbner basis of I . Hence, there are exactly three different

reduced Gröbner bases for I over all possible different monomial

orderings.

Different orderings can yield different Gröbner bases, and

thus different sets of standard monomials. For polynomial

solvers in Computer Vision, the most popular ordering is

GRevLex [12], since it has been empirically observed to

typically give small elimination templates [45, 44, 26, 29].

It has also been noted in computational algebraic geome-

try and cryptography [40] that graded orderings [12] (i.e.

archimedean [37]) often lead to faster Gröbner basis com-

putations compared to, e.g. lexicographical orderings [12].

However, there exist examples where this is not the case.

Hence, this suggests to investigate the efficiency of Gröbner

basis (and hence action matrix) construction w.r.t. all possi-

ble different monomial orderings.

2.1. Gröbner Fans

While there are (uncountably) infinitely many different

monomial orderings, Mora and Robbiano [33] showed that

for a given ideal I there are only finitely many different

reduced Gröbner bases [16]. To present this theory is be-

yond the scope of this paper, but we will try to describe the

main ideas and relate how this can be used in our problem

setting. The set of all reduced Gröbner bases of an ideal

can be computed [16, 20, 19] using the Gröbner fan of the

ideal [33, 46]. The Gröbner fan of an ideal was defined by

Mora and Robbiano in 1988 [33]. It is a finite fan of poly-

hedral cones indexing the distinct initial monomial ideals

with respect to monomial orderings or, equivalently, index-

ing the reduced Gröbner bases of the ideal. See [33, 46, 16]

for the full account of the theory.

Here we will illustrate it on a simple example computed

using the software package Gfan [19, 20]. Consider the

polynomial system I = 〈x + y2 − 1, x y − 1〉. Figure 1

shows the Gröbner fan of I together with the corresponding

reduced Gröbner bases. It consists of three two-dimensional

cones. For each cone, there is exactly one reduced Gröbner

basis of I , giving in total three different reduced Gröbner

bases. To connect the different reduced Gröbner bases to the

fans in Figure 1, consider the exponent vectors [a, b]⊤ that

correspond to monomials xayb, e.g. [2, 3]⊤ represents x2y3.

Now, for every monomial ordering ≺ on C[x, y] one can

find a (set of) real non-negative (weight) vectors w ∈ R
2

such that if xayb ≺ xcyd, then [a, b] · w ≤ [c, d] · w. In this

way, every ordering is connected to a set of its (compatible)

real weight vectors. Finally, for a fixed I , the union of all

the sets of weight vectors corresponding to all monomial or-

derings producing the same reduced Gröbner basis is a full

(here two) dimensional cone in R
2. There are only finitely

many such cones for a fixed I . In our situation, there are

three two-dimensional cones, see Figure 1.

2.2. Building Minimal Solvers using Gröbner Fans

In [29], the state-of-the-art automatic generator for poly-

nomial solvers has been presented and evaluated on a large

test-bed of polynomial equation systems from geometric

Computer Vision. Even though some of the problem for-

mulations from [29] are no longer state-of-the-art for their

respective problem, they still serve as a good benchmark set

to test our methods. For each of these problems we tried to

compute the Gröbner fan, aborting the computations if they

lasted more than 12 hours. Using the automatic generator

we then construct a polynomial solver for each of the re-

duced Gröbner bases found. Table 1 shows some problems

where we were able to find a smaller elimination template

compared to using the GRevLex basis. Note that the num-

ber of Gröbner bases can increase very quickly and it is not

always tractable to compute the complete Gröbner fan for

larger problems. For the six point relative pose with shared

radial distortion problem we ran the Gröbner fan computa-

tion for a week before aborting the computation.

Figure 2 shows a histogram of the different template

sizes for the solvers constructed from the Gröbner fan for

the P4Pfr formulation from Bujnak et al. [7]. We can see

that many of the found bases give very large templates. To

avoid these uninteresting bases, as well as the long runtimes

for computing the Gröbner fan, we propose to use a guided

random sampling approach in the next section.

3. Beyond Gröbner Bases

In the previous section we computed all reduced Gröbner

bases for a problem and used these to select quotient ring

bases. However, it is not necessary to select a standard

monomial basis that comes from a Gröbner basis for some

monomial ordering, since any spanning and linearly inde-

pendent set will do. In this section we instead consider

bases which do not come as standard monomial bases from

any Gröbner basis, and show that for some problems we can

find even smaller elimination templates.
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Figure 2. Template size (rows) for the Gröbner fan bases for the

P4Pfr formulation from Bujnak et al. [7].

3.1. Random Sampling for Basis Selection

Once you drop the Gröbner basis constraint you have in-

finitely many choices for monomial bases, so it is no longer

possible to do any exhaustive search. Even if we restrict

ourselves to monomials below some fixed degree, the com-

binatorial explosion of choices often makes it intractable to

try them all.

Instead we propose a random sampling approach. The

sampling is guided by several heuristics based on empirical

observations. We will motivate our choices later on, but

we will start by describing our proposed algorithm. The

heuristics we use for basis selection are:

H1. We try to have as many of the basis monomials and re-

ducible monomials (i.e. αbk) appearing in the original

equations as possible.

H2. We try to minimize the degree in some of the un-

knowns. This usually helps when the variables occur in

an unbalanced way in the equations. E.g. if our prob-

lem is parameterized using a quaternion (for rotation)

and a focal length, we have seen that it is typically

good to try to minimize the degree of the focal length.

H3. We try to select a connected block of monomials.

To generate the initial set of monomials that we sam-

ple from we use the following strategy: We start with the

monomials occurring in the equations. If these do not con-

tain any basis (see Section 3.2) we multiply with all first de-

gree monomials that occur in the equations and add these.

If they still do not contain any basis, we again multiply with

all the second degree monomials and so on (in some special

cases we need to add some extra low-degree monomials to

get an independent set). We denote these monomials by M
and the monomials that occur in the original equations by

E ⊂ M.

Now, to sample a basis we start by randomly choosing

a binary weight vector ω = {0, 1}n. This represents the

direction we want to minimize in H2. For each monomial

m ∈ M we assign a weight wd(m) penalizing the weighted

degree using ω. So, e.g. if ω = (0, 1, 1), the monomial m =
xyz2 would have the weighted degree 0 + 1 + 2 = 3. Next

we select an action variable α. It is chosen uniformly in

the direction which is minimized by ω. So, in the previous

example we would have chosen either y or z. If ω is all

zero we choose uniformly from all variables. Note that this

α is used only for guiding the random sampling. When we

construct the solvers we try every variable as action.

The basis is then sampled iteratively, with one monomial

added at a time. Given a partial basis B ⊂ M we select the

next monomial to add as follows:

1. Find monomials MB ⊂ M that are linearly indepen-

dent from the partial basis B (see Section 3.2)

2. For each monomial m ∈ MB compute a weight

w(m) = I (m ∈ E) + I (αm ∈ E ∪ B) + wd(m) + ǫ
(4)

where ǫ is a small number.

3. Find the neighboring monomials of B in MB.

4. Sample proportionally to w(m) from the neighboring

monomials. (If there are no neighboring monomials in

MB, sample instead from all of MB).

These steps are iterated until we have a complete basis.

3.2. Checking Linear Independence

When we sample basis elements, we need to be able to

quickly determine if a set of monomials are linearly inde-

pendent in the quotient ring C[X]/I (or typically Zp[X]/I
since we do most of our calculations in Zp to speed up com-

putations and avoid round-off errors).

We start by computing any (reduced) Gröbner basis for

the ideal and find the standard monomials {b1, b2, . . . , bK}
for this basis. Then, since these monomials form a basis for

the quotient ring, we write each m ∈ M as

m =
∑

k

ckbk mod I, (5)

by simply dividing with the Gröbner basis. This associates

vector c = (c1, c2, . . . , cK) to each monomial in M. To

check if a set of monomials is linearly independent in the

quotient ring, we can now equivalently check if the corre-

sponding vectors are independent in C
K (or Z

K
p ) by per-

forming the standard Gaussian elimination.

3.3. Building Minimal Solvers with Sampled Bases

We applied our random sampling strategy in an experi-

ment similar to the one in Section 2.2. For each problem,

we randomly sampled 100 bases and constructed the cor-

responding solvers. Some results are shown in Table 1.

We can see that using our sampling strategy we can find
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Figure 3. The figure shows the basis monomials for two example

problems, namely 8pt rel. pose F+λ (left) and 3pt image stitch-

ing fλ+R+fλ (right). Both these problems have two variables, and

for both these problems the proposed basis sampling scheme gives

significantly smaller template compared to the Gröbner basis vari-

ants.

smaller elimination templates for some problems. Note that

for some problems the best basis did not come from any

Gröbner basis. We were also able to find smaller solvers for

problems where the Gröbner fan computation took too long

and was aborted.

In Figure 3 we show the best resulting monomial bases

from our sampling scheme, for two cases. The monomi-

als are here represented by their corresponding exponents

as vectors. We also show the standard GRevLex bases, that

give significantly larger templates for these two problems.

In general the GRevLex ordering will lead to a basis that has

a low total degree. We have found that, for some problems,

if it is possible to keep the maximum degree low in one

variable, even if the total degree becomes larger, this is ben-

eficial for the template size. Figure 3 left shows an example

of this. Another important aspect that we have seen, is that

we should choose, if possible, monomials within the orig-

inal equations, as these are available directly. In Figure 3

right, all the monomials occurring in the original equations

are shown as blue dots. In this case the sampled basis better

aligns with the structure of the monomials in the equations

compared to GRevLex.

3.4. Experiment: Heuristic vs. Uniform Sampling

In this section we show a comparison of our heuris-

tic with sampling basis monomials uniformly. We com-

pare three different approaches: (i) our heuristic sampling

from the monomials in M (as defined in Section 3.1), (ii)

uniformly sampling from M, and (iii) uniformly sampling

from all monomials of the same degree as those in M. Fig-

ure 4 shows the distribution of the template sizes (number

of rows) for 1,000 random samples for the P4Pfr formula-

tion from Bujnak et al. [7]. We can see that our sampling

heuristic and the strategy for selecting M both give signifi-

cant improvements.

0 100 200 300 400 500
0

200

400

600

800

1,000

Template size

F
re

q
.

Heuristic (M)

Uniform (M)

Uniform

Figure 4. Template size (rows) for 1,000 randomly sampled bases

for the P4Pfr formulation from Bujnak et al. [7].

4. Panoramic Stitching fλ+R + fλ

We will now show how our method can be used to con-

struct fast solvers for stitching images from cameras with

radial distortion and where the focal length is unknown.

This problem was formulated and solved using Gröbner-

basis techniques in [8]. In [35] a technique for numeri-

cally optimizing the size of the elimination template was

presented, and a new faster solver with a template of size

54×77 was constructed. In [29] a slightly faster solver was

presented, based on a template of size 48 × 66. We will

follow the derivations in [5] and [8] when we construct our

solver for two-view stitching using three point correspon-

dences. We will additionally show that we can use the ex-

act same solver to solve the minimal problem of three-view

stitching using two point correspondences.

4.1. Two View Image Stitching

We assume that we have a camera undergoing some un-

known rotation R, taking two images of a number of un-

known 3D points Xi. We denote the points in the two im-

ages with ui and u
′
i respectively. We will describe how we

handle the radial distortion later, and will assume that we

only need to handle the unknown focal length f just now.

The projection equations can then be formulated as

γiui = KXi, γ′
iu

′
i = KRXi, (6)

where γi and γ′
i are the depths, and K = diag(f, f, 1). We

can remove the dependence of γi, γ
′
i and R by solving for

Xi and taking scalar products, giving the constraints

〈K−1
uj ,K

−1
uk〉

2

|K−1uj |2|K−1uk|2
=

〈Xj ,Xk〉
2

|Xj |2|Xk|2
=

〈K−1
u

′

j ,K
−1

u
′

k〉
2

|K−1u′

j
|2|K−1u′

k
|2 ,

(7)

for two points j and k. Cross-multiplying with denomi-

nators will give polynomials in the unknown f . We will

now add radial distortion to our problem, and model it using

Fitzgibbon’s division model [15] so that for the radially dis-

torted image coordinates xi we have ui ∼ xi +λzi, where

zi =
[

0 0 x2

i + y2i
]T

, and λ is the radial distortion pa-

rameter. Inserting this into (7) gives us our final constraints
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Problem Author Original [29] GFan+ [29] (#GB) Heuristic+[29]

Rel. pose F+λ 8pt Kuang et al. [25] 12× 24 11× 20 11× 20 (10) 7× 16

Rel. pose E+f 6pt Bujnak et al. [6] 21× 30 21× 30 11× 20 (66) 11× 20

Rel. pose f+E+f 6pt Kukelova et al. [26] 31× 46 31× 50 31× 50 (218) 21× 40

Rel. pose E+λ 6pt Kuang et al. [25] 48× 70 34× 60 34× 60 (846) 14× 40

Stitching fλ+R+fλ 3pt Naroditsky et al. [35] 54× 77 48× 66 48× 66 (26) 18× 36

Abs. Pose P4Pfr Bujnak et al. [7] 136× 152 140× 156 54× 70 (1745) 54× 70

Rel. pose λ+E+λ 6pt Kukelova et al. [26] 238× 290 149× 205 - ? 53× 115

Rel. pose λ1+F+λ2 9pt Kukelova et al. [26] 179× 203 165× 200 84× 117 (6896) 84× 117

Rel. pose E+fλ 7pt Kuang et al. [25] 200× 231 181× 200 69× 90 (3190) 69× 90

Rel. pose E+fλ 7pt (elim. λ) - - 52× 71 37× 56 (332) 24× 43

Rel. pose E+fλ 7pt (elim. fλ) Kukelova et al. [27] 51× 70 51× 70 51× 70 (3416) 51× 70

Abs. pose quivers Kuang et al. [22] 372× 386 216× 258 - ? 81× 119

Rel. pose E angle+4pt Li et al. [32] 270× 290 266× 329 - ? 183× 249

Abs. pose refractive P5P Haner et al. [17] 280× 399 240× 324 157× 246 (8659) 240× 324

Table 1. Size of the elimination templates for some minimal problems. For the relative pose problems unknown radial distortion is denoted

with λ and unknown focal length with f , and the position describes which camera it refers to. The table shows the original template size

from the author, the template size found using the method from [29] (GRevLex basis), the template size from doing an exhaustive search

over Gröbner bases (Section 2.2) and the random sampling approach (Section 3.1). Missing entries are when the Gröbner fan computation

took longer than 12 hours.

Author Execution time (ms)

Proposed 0.16

Larsson et al. [29] 0.38

Byröd et al. [8] 0.89

Table 2. Timing of three point stitching with unknown focal length

and radial distortion, using Matlab implementations running on a

standard desktop computer.

in the unknown λ and f . Using only two points will only

give us one equation so we need at least three point cor-

respondences (this actually gives three constraints, so it is

slightly over-determined, but we only use two of the equa-

tions).

We have run both the exhaustive Gröbner basis selec-

tion and our proposed basis sampling scheme, see Table 1.

The Gröbner bases do not give any improvement over the

state-of-the-art solver but our sampling gives a significantly

smaller template of size 18× 36. Table 2 shows a compari-

son of runtimes.

4.2. Three View Image Stitching

The constraints (7) only compare pairs of images, us-

ing two point correspondences. So if we, instead of having

three point correspondences in two views, have two point

correspondences in three views, we get the same type of

constraints, namely

〈K−1
u1,K

−1
u2〉

2

|K−1u1|2|K−1u2|2
=

〈K−1
u

′

1
,K−1

u
′

2
〉2

|K−1u′

1
|2|K−1u′

2
|2 , (8)

and

〈K−1
u

′′

1
,K−1

u
′′

2
〉2

|K−1u′′

1
|2|K−1u′′

2
|2 =

〈K−1
u

′

1
,K−1

u
′

2
〉2

|K−1u′

1
|2|K−1u′

2
|2 , (9)

where double primes are used for image three. We can

hence use the exact same solver to solve this case. In this

case we have a true minimal case, since we only get two

constraints on f and λ.

4.3. Evaluation

We have implemented our solver in MATLAB, where

all image coordinate input and manipulation were done us-

ing mex-compiled C++ routines. In order to have a fair

comparison of our method with [29] and [8], we modified

their code so that the corresponding image coordinate ma-

nipulations also were done using mex-compiled code. The

timing comparison is shown in Table 2, and one can see a

clear speed-up. The solvers were run on a standard desktop

computer. In order to check the numerical stability of our

solver, we generated synthetic data, and evaluated the equa-

tion residuals. The results can be seen in Figure 5. In order

to see how well our method works in practice, we did an au-

tomatic panoramic stitching of two images, with a fish-eye

lens and unknown focal length, shown to the left in Figure 6.

We then ran our solver in a standard RANSAC framework,

with tentative correspondences based on SURF features and

descriptors. The results can be seen to the right in Figure 6.

Here the panoramic image was done without any blending

in order to show the correctness of the stitching. The trans-

formation used was based on the best RANSAC solution

from our solver based on only three point correspondences,

without any further bundle adjustment.
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Figure 5. The figure shows histograms of equation residuals for

10,000 examples of the 3 pt stitching problem.

5. Relative Pose E + fλ

As another example we consider the relative pose prob-

lem where the calibration and distortion parameter are

known for only one of the two cameras. The goal is to find

a fundamental matrix F and distortion parameter λ that sat-

isfy the epipolar constraints

[

x̂i, ŷi, 1
]

F
[

xi, yi, 1 + λ(x2

i + y2i )
]T

= 0, (10)

as well as a focal length f , that makes

E = Fdiag(f, f, 1) (11)

an essential matrix. The problem is minimal with seven

point correspondences and has 19 solutions. The first solver

was presented by Kuang et al. [25] and was recently im-

proved by Kukelova et al. [27].

5.1. Formulation of Kuang et al.

Now we give a brief overview of the formulation used in

Kuang et al. [25]. The scale of the fundamental matrix is

fixed by setting f33 = 1, and the epipolar constraints yield

seven equations in the monomials

{λf13, λf23, λ, f11, f12, f13, f21, f22, f23, f31, f32, 1}. (12)

Using the first six equations, Kuang et al. linearly eliminate

the first two columns of the fundamental matrix1

[

f11, f12, f21, f22, f32, f33
]T

= G
[

λf13, λf23, λ, f13, f23, 1
]T

(13)

where G ∈ R
6×6. Finally, the last equation expresses

the monomial λf13 as a quadratic function h(λ, f13, f22),
which gives the additional equation

λf13 − h(λ, f13, f23) = 0. (14)

Parametrizing the inverse focal length w, the essential ma-

trix is given by E = Fdiag(1, 1, w), and it must satisfy the

equations

2EETE − tr(EET )E = 0, det(F ) = 0. (15)

1Note that here we have the focal length and distortion on the right side

of F , while it was on the left in [25].

This gives 11 equations in unknowns w, λ, f13 and f23. Us-

ing these equations, Kuang et al. [25] constructed a polyno-

mial solver with a template of size 200× 231.

Computing the Gröbner fan, we found that there are 3190

different reduced Gröbner bases for this problem. Con-

structing solvers for all of these bases, we found a solver

of size 69 × 90. Applying the random approach in Section

3.1, we did not find any better solver. While this solver is

significantly smaller than the original solver from Kuang et

al. [25] (200 × 231), it is still slightly larger than the state-

of-the-art solver from Kukelova et al. [27] (51× 70).

5.2. Formulation of Kukelova et al.

In [27] the authors present another formulation for this

problem based on computing elimination ideals to elimi-

nate both the radial distortion and focal length. Since the

radial distortion makes the epipolar constraints non-linear

they first employ a lifting technique to remove the non-

linearity. They introduce new variables y1, y2 and y3 and

construct an extended fundamental matrix as in [4],

F̂ =





f11 f12 f13 y1
f21 f22 f23 y2
f31 f32 f33 y3



 , (16)

together with the equations yi = λfi3. Now the epipolar

constraints are linear constraints on F̂ ,

[

x̂i, ŷi, 1
]

F̂
[

xi, yi, 1, x
2

i + y2i
]T

= 0. (17)

Using the (now) linear constraints on F̂ they parametrize it

using four unknowns. Finally using the elimination ideal

trick they eliminate both the focal length and radial distor-

tion parameter to get new polynomial constraints on the el-

ements on F̂ . Using these new equations, they were able to

construct a solver with a template size 51× 70.

We computed the Gröbner fan for this parametriza-

tion and found that there are 3416 reduced Gröbner basis.

Among these we found no solver better than the GRevLex

solver built by Kukelova et al. We also performed the ran-

dom sampling approach without finding any improvement.

This matches our intuition that for equation systems where

the unknowns are balanced in the monomials, GRevLex

performs very well.

5.3. Our Approach

Empirically we have seen that our basis selection ap-

proach works best when the monomials appear in some un-

balanced way in the equations. In the parametrization from

Kukelova et al. [27], the only unknowns are the nullspace

parameters from the linear equations.

To get more imbalanced equations, we propose another

formulation which is a combination of the two previous ap-

proaches. In particular, we use the elimination ideal trick
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Figure 6. Stitching of two images with large radial distortion using on our three-point solver in a standard RANSAC framework. The

resulting panorama (right) is based on the best RANSAC three-point solution without any additional non-linear refinement.

to eliminate the focal length, but keep the radial distor-

tion parameter as an unknown. This avoids the extra un-

knowns introduced by the lifting in (16). Using similar lin-

ear eliminations as Kuang et al. [25], the fundamental ma-

trix is expressed in λ, f13 and f23. Then, instead of directly

parametrizing the focal length and adding the essential ma-

trix constraints (15), we add the eliminated constraints for

one-sided focal length from [27] which only depend on the

elements of the fundamental matrix. Together with the con-

straint from (14), we get five equations in only three un-

knowns. Computing the Gröbner fan, we find 332 differ-

ent reduced Gröbner bases. The best solver was of size

37 × 56. Finally using the random sampling approach we

find a solver with an elimination template of size 24× 43.

5.4. Evaluation

We performed a synthetic experiment to evaluate the nu-

merical stability of the new solver. We generated 1,000

random (but feasible) synthetic instances. The calibration

parameters were set to fgt = 10 and λgt = −0.1. For

each solver we recorded the solution with the smallest focal

length error. Figure 7 shows the distribution of the log
10

relative focal length error
|f−fgt|

fgt
for all 1000 instances.

The numerical stability of the new solver is similar to the

solver from Kuang et al. [25]. Note that while the stabil-

ity is worse than the solver from Kukelova et al. [27], it is

still stable enough for practical purposes. The new solver is

however significantly faster with an average runtime of 1.2

ms, compared to 10 ms for the solver from Kukelova et al.

[27] (both solvers are implemented in MATLAB). Note that

this increase in speed is not only due to the smaller elimi-

nation template, but the coefficients in the template are less

complex and cheaper to compute.

6. Conclusions

We have explored how basis selection can be used to

make polynomial solvers based on the action matrix method

faster. The concept of Gröbner fans is an efficient repre-

sentation of the possible reduced Gröbner bases that arise

from (infinitely many) different monomial orderings. This

gives us a tool to enumerate and test all monomial bases

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3 Kuang et al. [25] 200×231

Kukelova et al. [27] 51 ×70

Proposed 24×43

Figure 7. Relative error in focal length for 1,000 random instances.

that arise from different Gröbner bases. We have shown

that this gives in some cases significantly smaller elimina-

tion templates, and hence much faster solvers. We have also

introduced a novel sampling scheme, that optimizes some

heuristic criteria that we have experimentally found to often

give small templates. Our initial motivation for sampling

was that the calculation and testing of all Gröbner fans in

some cases takes very (or even unfeasibly) long time, but

we found that going beyond Gröbner bases can yield even

smaller templates. Our motivation has here been to opti-

mize the template size but the framework could easily be

modified to optimize other criteria such as numerical sta-

bility (as was done in Kuang et al. [21]). We have tested

our method on a large number of minimal problems, and

shown that we get significant speed-ups in many cases. We

have also in more depth explored how our method can be

used in two applications, namely panoramic stitching with

unknown focal length and radial distortion and relative pose

with unknown one-sided focal length and radial distortion.
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panoramic stitching with radial distortion. In British Ma-

chine Vision Conference (BMVC). British Machine Vision

Association (BMVA), 2009. 5, 6, 7

[9] M. Byröd, K. Josephson, and K. Åström. Fast and stable
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