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Abstract

Deep neural networks have achieved impressive success

in large-scale visual object recognition tasks with a prede-

fined set of classes. However, recognizing objects of novel

classes unseen during training still remains challenging.

The problem of detecting such novel classes has been ad-

dressed in the literature, but most prior works have focused

on providing simple binary or regressive decisions, e.g., the

output would be “known,” “novel,” or corresponding con-

fidence intervals. In this paper, we study more informative

novelty detection schemes based on a hierarchical classifi-

cation framework. For an object of a novel class, we aim

for finding its closest super class in the hierarchical taxon-

omy of known classes. To this end, we propose two different

approaches termed top-down and flatten methods, and their

combination as well. The essential ingredients of our meth-

ods are confidence-calibrated classifiers, data relabeling,

and the leave-one-out strategy for modeling novel classes

under the hierarchical taxonomy. Furthermore, our method

can generate a hierarchical embedding that leads to im-

proved generalized zero-shot learning performance in com-

bination with other commonly-used semantic embeddings.

1. Introduction

Object recognition in large-scale image datasets has

achieved impressive performance with deep convolutional

neural networks (CNNs) [11, 12, 29, 31]. The standard

CNN architectures are learned to recognize a predefined set

of classes seen during training. However, in practice, a new

type of objects could emerge (e.g., a new kind of consumer

product). Hence, it is desirable to extend the CNN archi-

tectures for detecting the novelty of an object (i.e., deciding

if the object does not match any previously trained object

classes). There have been recent efforts toward developing

efficient novelty detection methods [2, 13, 17, 20, 25], but

most of the existing methods measure only the model uncer-

tainty, i.e., confidence score, which is often too ambiguous

for practical use. For example, suppose one trains a classi-

fier on an animal image dataset as in Figure 1. A standard

novelty detection method can be applied to a cat-like im-

age to evaluate its novelty, but such a method would not tell

animal

dog

Pomeranian Welsh corgi

cat

Persian cat Siamese cat

Test image:

True label: Siamese cat Angola cat Dachshund Pika

Prior works: Siamese cat novel novel novel

Ours: Siamese cat novel cat novel dog novel animal

Figure 1: An illustration of our proposed hierarchical nov-

elty detection task. In contrast to prior novelty detection

works, we aim to find the most specific class label of a novel

data on the taxonomy built with known classes.

whether the novel object is a new species of cat unseen in

the training set or a new animal species.

To address this issue, we design a new classification

framework for more informative novelty detection by uti-

lizing a hierarchical taxonomy, where the taxonomy can

be extracted from the natural language information, e.g.,

WordNet hierarchy [22]. Our approach is also motivated by

a strong empirical correlation between hierarchical seman-

tic relationships and the visual appearance of objects [5].

Under our scheme, a taxonomy is built with the hypernym-

hyponym relationships between known classes such that ob-

jects from novel classes are expected to be classified into the

most relevant label, i.e., the closest class in the taxonomy.

For example, as illustrated in Figure 1, our goal is to dis-

tinguish “new cat,” “new dog,” and “new animal,” which

cannot be achieved in the standard novelty detection tasks.

We call this problem hierarchical novelty detection task.

In contrast to standard object recognition tasks with a

closed set of classes, our proposed framework can be useful

for extending the domain of classes to an open set with tax-

onomy information (i.e., dealing with any objects unseen in

training). In practical application scenarios, our framework

can be potentially useful for automatically or interactively

organizing a customized taxonomy (e.g., company’s prod-
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uct catalog, wildlife monitoring, personal photo library) by

suggesting closest categories for an image from novel cat-

egories (e.g., new consumer products, unregistered animal

species, untagged scenes or places).

We propose two different approaches for hierarchical

novelty detection: top-down and flatten methods. In the top-

down method, each super class has a confidence-calibrated

classifier which detects a novel class if the posterior cate-

gorical distribution is close to a uniform distribution. Such a

classifier was recently studied for a standard novelty detec-

tion task [19], and we extend it for detecting novel classes

under our hierarchical novelty detection framework. On the

other hand, the flatten method computes a softmax proba-

bility distribution of all disjoint classes. Then, it predicts

the most likely fine-grained label, either a known class or a

novel class. Although the flatten method simplifies the full

hierarchical structure, it outperforms the top-down method

for datasets of a large hierarchical depth.

Furthermore, we combine two methods for utilizing their

complementary benefits: top-down methods naturally lever-

age the hierarchical structure information, but the classifi-

cation performance might be degraded due to the error ag-

gregation. On the contrary, flatten methods have a single

classification rule that avoids the error aggregation, but the

classifier’s flat structure does not utilize the full information

of hierarchical taxonomy. We empirically show that com-

bining the top-down and flatten models further improves hi-

erarchical novelty detection performance.

Our method can also be useful for generalized zero-shot

learning (GZSL) [4, 33] tasks. GZSL is a classification task

with classes both seen and unseen during training, given that

semantic side-information for all test classes is provided.

We show that our method can generate a hierarchical em-

bedding that leads to improved GZSL performance in com-

bination with other commonly-used semantic embeddings.

2. Related work

Novelty detection. For robust prediction, it is desirable to

detect a test sample if it looks unusual or significantly dif-

fers from the representative training data. Novelty detection

is a task recognizing such abnormality of data (see [14, 25]

for a survey). Recent novelty detection approaches leverage

the output of deep neural network classification models. A

confidence score about novelty can be measured by taking

the maximum predicted probability [13], ensembling such

outputs from multiple models [17], or synthesizing a score

based on the predicted categorical distribution [2]. There

have also been recent efforts toward confidence-calibrated

novelty detection, i.e., calibrating how much the model is

certain with its novelty detection, by postprocessing [21] or

learning with joint objective [19].

Object recognition with taxonomy. Incorporating the hi-

erarchical taxonomy for object classification has been in-

vestigated in the literature, either to improve classification

performance [6, 34], or to extend the classification tasks to

obtain more informative results [8, 36]. Specifically for the

latter purpose, Deng et al. [8] gave some reward to super

class labels in a taxonomy and maximized the expected re-

ward. Zhao et al. [36] proposed an open set scene parsing

framework, where the hierarchy of labels is used to estimate

the similarity between the predicted label and the ground

truth. In contemporary work, Simeone et al. [28] proposed

a hierarchical classification and novelty detection task for

the music genre classification, but their settings are differ-

ent from ours: in their task, novel classes do not belong to

any node in the taxonomy. Thus, their method cannot detect

classes which are novel but similar to existing classes. To

the best of our knowledge, our work is the first to propose

a unified framework for hierarchical novelty detection and

visual object recognition.

Generalized zero-shot learning (GZSL). We remark that

GZSL [4, 33] can be thought as addressing a similar task

as ours. While the standard ZSL tasks test classes unseen

during training only, GZSL tasks test both seen and unseen

classes such that the novelty is automatically detected if the

predicted label is not a seen class. However, the primary

focus of ZSL and GZSL tasks is on transfer learning for a

new domain, and they assume that semantic information of

all test classes is given, e.g., attributes [1, 18, 27] or text

description [3, 9, 10, 23, 26, 30] of the objects. Therefore,

GZSL cannot recognize a novel class if prior knowledge

about the specific novel class is not provided, i.e., it is lim-

ited to classifying objects with prior knowledge, regardless

of their novelty. Compared to GZSL, the advantages of the

proposed hierarchical novelty detection are that 1) it does

not require any prior knowledge on novel classes but only

utilizes the taxonomy of known classes, 2) a reliable super

class label can be more useful and human-friendly than an

error-prone prediction over excessively subdivided classes,

and 3) high-quality taxonomies are available off-the-shelf

and they are better interpretable than latent semantic em-

beddings. In Section 5, we also show that our models for

hierarchical novelty detection can also generate a hierarchi-

cal embedding such that combination with other semantic

embeddings improves the GZSL performance.

3. Approach

In this section, we define terminologies to describe hier-

archical taxonomy and then propose models for hierarchical

classification combined with novelty detection.

3.1. Taxonomy

A taxonomy represents a hierarchical relationship

among classes, where each node in the taxonomy corre-

sponds to a class or a set of indistinguishable classes.1

1 For example, if a class has only one known child class, these two

classes are indistinguishable as they are trained with exactly the same data.
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Top-down
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Figure 2: Illustration of two proposed approaches. In the

top-down method, classification starts from the root class,

and propagates to one of its children until the prediction

arrives at a known leaf class (blue) or stops if the prediction

is not confident, which means that the prediction is a novel

class whose closest super class is the predicted class. In the

flatten method, we add a virtual novel class (red) under each

super class as a representative of all novel classes, and then

flatten the structure for classification.

We define three types of classes as follows: 1) known leaf

classes are nodes with no child, which are known and seen

during training, 2) super classes are ancestors of the leaf

classes, which are also known, and 3) novel classes are un-

seen during training, so they do not explicitly appear in the

taxonomy.2 We note that all known leaf and novel classes

have no child and are disjoint, i.e., they are neither ancestor

nor descendant of each other. In the example in Figure 1,

four species of cats and dogs are leaf classes, “cat,” “dog,”

and “animal” are super classes, and any other classes un-

seen during training, e.g., “Angola cat,” “Dachshund,” and

“Pika” are novel classes.

In the proposed hierarchical novelty detection frame-

work, we first build a taxonomy with known leaf classes

and their super classes, and at test time, we aim at predict-

ing in the most fine-grained way using the taxonomy. In

other words, if an image is predicted as novel, then we try

to assign one of the super classes, implying that the input is

in a novel class whose closest known class in the taxonomy

is that super class.

To represent the hierarchical relationship, let T be the

taxonomy of known classes, and for a class y, P(y) be the

set of parents, C(y) be the set of children, A(y) be the set

of ancestors including itself, and N (y) be the set of novel

classes whose closest known class is y. And let L(T ) be

the set of all descendant leaves under a taxonomy T .

As no prior knowledge of N (y) is provided during train-

ing and testing, all classes in N (y) are indistinguishable

in our hierarchical novelty detection framework. Thus, we

treat N (y) as a single class in our analysis.

2 We note that “novel” in our task is similar but different from “un-

seen” commonly referred in ZSL works; while class-specific semantic in-

formation for unseen classes must be provided in ZSL, such information

for novel classes is not required in our task.

3.2. Top­down method

A natural way to perform classification using a hierarchi-

cal taxonomy is following top-down classification decisions

starting from the root class, as shown in the top of Figure 2.

Let (x, y) ∼ Pr(x, y|s) be a pair of an image and its la-

bel sampled from data distribution at a super class s, where

y ∈ C(s)∪N (s). Then, the classification rule is defined as

ŷ =







argmax
y′

Pr(y′|x, s; θs) if confident,

N (s) otherwise,

where θs and Pr( · |x, s; θs) are the model parameters of

C(s) ∪ N (s) and the posterior categorical distribution for

an image x, respectively. The top-down classification stops

at s if the prediction is a known leaf class or the classifier

is not confident with the prediction (i.e., the predicted class

is in N (s)). We measure the prediction confidence using

the KL divergence with respect to the uniform distribution:

intuitively, a confidence-calibrated classifier generates near-

uniform posterior probability vector if the classifier is not

confident about its prediction. Hence, we interpret that the

prediction is confident at a super class s if

DKL(U(·|s) ‖ Pr(·|x, s; θs)) ≥ λs,

where λs is a threshold, DKL denotes the KL divergence,

and U(·|s) is the uniform distribution when the classifica-

tion is made under a super class s. To train such confidence-

calibrated classifiers, we leverage classes disjoint from the

class s. Let O(s) be such a set of all known classes except

for s and its descendents. Then, the objective function of

our top-down classification model at a super class s is

min
θ

EPr(x,y|s) [− logPr(y|x, s; θs)]

+ EPr(x,y|O(s)) [DKL (U(·|s) ‖ Pr(·|x, s; θs))] , (1)

where Pr(x, y|O(s)) denotes the data distribution of O(s).

However, under the above top-down scheme, the classi-

fication error might aggregate as the hierarchy goes deeper.

For example, if one of the classifier has poor performance,

then the overall classification performance of all descen-

dent classes should be low. In addition, the taxonomy is

not necessarily a tree but a directed-acyclic graph (DAG),

i.e., a class could belong to multiple parents, which could

lead to incorrect classification.3 In the next section, we pro-

pose flatten approaches, which overcome the error aggrega-

tion issue. Nevertheless, the top-down method can be used

for extracting good visual features for boosting the perfor-

mance of the flatten method, as we show in Section 4.

3 For example, if there are multiple paths to a class in a taxonomy, then

the class may belong to (i.e., be a descendant of) multiple children at some

super class s, which may lead to low KL divergence from the uniform

distribution and the image could be incorrectly classified as N (s).
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3.3. Flatten method

We now propose to enumerate all probability of known

leaf and novel classes in a single probability vector, i.e., we

flatten the hierarchy, as described on the bottom of Figure 2.

The key idea is that a probability of super class s can be rep-

resented as Pr(s|x) =
∑

y′∈C(s) Pr(y′|x) + Pr(N (s)|x),

and
∑

l′∈L(T ) Pr(l′|x) +
∑

s′∈T \L(T ) Pr(N (s′)|x) = 1,

where l′ and s′ are summed over all known leaf classes and

super classes, respectively. Note that N (s) is considered as

a single novel class under the super class s, as discussed in

Section 3.1. Thus, as described in Figure 2, one can vir-

tually add an extra child for each super class to denote all

novel classes under it. Let (x, y) ∼ Pr(x, y) be a pair of

an image and its most fine-grained label sampled from data

distribution. Then, the classification rule is

ŷ = argmax
y′

Pr(y′|x; θ),

where y′ is either a known leaf or novel class. Here, a prob-

lem is that we have no training data from novel classes. To

address this, we propose two approaches to model the score

(i.e., posterior probability) of novel classes.

Data relabeling. A naive strategy is to relabel some train-

ing samples to its ancestors in hierarchy. Then, the images

relabeled to a super class are considered as novel class im-

ages under the super class. This can be viewed as a su-

pervised learning with both fine-grained and coarse-grained

classes where they are considered to be disjoint, and one

can optimize an objective function of a simple cross entropy

function over all known leaf classes and novel classes:

min
θ

EPr(x,y) [− logPr(y|x; θT )] . (2)

In our experiments, an image is randomly relabeled recur-

sively in a bottom-up manner with a probability of r, where

0 < r < 1 is termed a relabeling rate. An example of rela-

beling is illustrated in Figure 3 (b).

Leave-one-out strategy. A more sophisticated way to

model novel classes is to temporarily remove a portion of

taxonomy during training: specifically, for a training label

y, we recursively remove one of its ancestor a ∈ A(y)
from the taxonomy T in a hierarchical manner. To repre-

sent a deficient taxonomy, we define T \a as a taxonomy

where a and its descendants are removed from the origi-

nal taxonomy T . At each stage of removal, a training la-

bel y becomes a novel class of the parent of a in T \a, i.e.,

N (P(a)). Figure 3 (a, c–d) illustrates this idea with an ex-

ample: in Figure 3 (a), when y is “Persian cat,” the set of

its ancestor is A(y) ={ “Persian cat,” “cat,” “animal” }.

In Figure 3 (c), images under a =“Persian cat” belong to

N (P(a)) =“novel cat” in T \a. Similarly, in Figure 3 (d),

images under a =“cat” belong to N (P(a)) =“novel ani-

mal” in T \a. As we leave a class out to learn a novel class,

animal

cat dog

Persian cat Siamese cat Pomeranian Welsh corgi

(a)

animal(b)

cat dog

Persian cat Siamese cat Pomeranian Welsh corgi

animal

cat dog

novel cat Siamese cat Pomeranian Welsh corgi

(c)

animal

novel animal dog

Pomeranian Welsh corgi

(d)

Figure 3: Illustration of strategies to train novel class scores

in flatten methods. (a) shows the training images in the tax-

onomy. (b) shows relabeling strategy. Some training im-

ages are relabeled to super classes in a bottom-up manner.

(c–d) shows leave-one-out (LOO) strategy. To learn a novel

class score under a super class, one of its child is temporar-

ily removed such that its descendant known leaf classes are

treated as novel during training.

we call this leave-one-out (LOO) method. With some nota-

tion abuse for simplicity, the objective function of the LOO

model is then

min
θ

EPr(x,y)

[

− logPr(y|x; θL(T ))

+
∑

a∈A(y)

− logPr(N (P(a))|x; θT \a)

]

, (3)
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where the first term is the standard cross entropy loss with

the known leaf classes, and the second term is the sum-

mation of losses with N (P(a)) and the leaves under T \a.

We provide further implementation details in Supplemen-

tary material.

As we mentioned earlier, the flatten methods can be com-

bined with the top-down one in sequence: the top-down

method first extracts multiple softmax probability vectors

from visual features, and then the concatenation of all prob-

abilities can be used as an input of the LOO model. We

name the combined method TD+LOO for conciseness.

4. Evaluation: Hierarchical novelty detection

We present the hierarchical novelty detection perfor-

mance of our proposed methods combined with CNNs on

ImageNet [7], Animals with Attributes 2 (AwA2) [18, 33],

and Caltech-UCSD Birds (CUB) [32], where they represent

visual object datasets with deep, coarse-grained, and fine-

grained taxonomy, respectively. Experimental results on

CIFAR-100 [16] can be found in Supplementary material,

where the overall trends of results are similar to others.

4.1. Evaluation setups

Compared algorithms. As a baseline, we modify the dual

accuracy reward trade-off search (DARTS) algorithm [8] for

our purpose. Note that DARTS gives some rewards to la-

bels in hierarchy, where fine-grained prediction gets higher

reward. Under this algorithm, for a novel class, its closest

super class in the taxonomy would give the maximum re-

ward. At test time, the modified DARTS generates expected

rewards for all known leaf and novel classes, so prediction

can be done in the same way as the flatten methods.

As our proposed methods, Relabel, LOO, and TD+LOO

are compared. For a fair comparison in terms of the model

capacity, deep Relabel and LOO models are also experi-

mented, where a deep model is a stack of fully connected

layers followed by rectified linear units (ReLU). We do not

report the performance of the pure top-down method since

1) one can combine it with LOO methods for better perfor-

mance as mentioned in Section 3.2, and 2) fair comparisons

between the pure top-down method and others are not easy:

intuitively, the confidence threshold λs in Section 3.2 can

be tuned. For example, the novel class score bias in the

flatten method would improve the novel class detection ac-

curacy, but large λs does not guarantee the best novel class

performance in the top-down method because hierarchical

classification results would tend to stop at the root class.

Datasets. ImageNet [7] consists of of 22k object classes

where the taxonomy of the classes is built with the

hypernym-hyponym relationships in WordNet [22]. We

take 1k mutually exclusive classes in ILSVRC 2012 as

known leaf classes, which are a subset of the ImageNet.4

4 Except “teddy bear,” all classes in ILSVRC 2012 are in ImageNet.

Based on the hypernym-hyponym relationships in WordNet,

we initially obtained 860 super classes of 1k known leaf

classes, and then merged indistinguishable super classes.

Specifically, if a super class has only one child or shares

exactly the same descendant leaf classes, it is merged with

classes connected to the class. After merging, the resul-

tant taxonomy is a DAG and has 396 super classes where

all super classes have at least two children and have differ-

ent set of descendant leaf classes. On the other hand, the

rest of 21k classes can be used as novel classes for testing.

Among them, we discarded super classes, classes under 1k

known leaf classes, and classes with less than 50 images for

reliable performance measure. After filtering classes, we

obtain about 16k novel classes. ILSVRC 2012 has about

1.3M training images and another 50k images in 1k known

leaf classes. We put the 50k images aside from training

and used for test, and we sampled another 50k images from

1.3M training images for validation. For novel classes, we

sampled 50 images from each class. In summary, we have

about 1.2M training images, 50k validation images, and 50k

test images from known leaf classes, and 800k test images

from novel classes.

AwA2 [18, 33] consists of 40 known leaf classes and 10

novel classes with 37k images, and CUB [32] consists of

150 known leaf classes and 50 novel classes with 12k im-

ages. Similar to ImageNet, the taxonomy of each dataset

is built based on the hypernym-hyponym relationships in

WordNet. The resultant taxonomy is a tree and has 21 and

43 super classes for AwA2 and CUB, respectively.

Training. We take ResNet-101 [12] as a visual feature ex-

tractor (i.e., the penultimate layer of the CNN before the

classification layer) for all compared methods. The CNNs

are pretrained with ILSVRC 2012 1k classes, where they

do not contain any novel classes of datasets experimented.

Then, the final classification layer of the CNNs is replaced

with our proposed models. Note that CNNs and our pro-

posed models can be trained in an end-to-end manner, but

we take and freeze the pretrained parameters in all layers

except for the final layer for the sake of faster training.

For ImageNet, we use mini-batch SGD with 5k center-

cropped data per batch. As a regularization, L2 norm weight

decay with parameter 10−2 is applied. The initial learning

rate is 10−2 and it decays at most two times when loss im-

provement is less than 2 % compared to the last epoch.

For AwA2 and CUB, the experiments are done in the

same environment with the above except that the models are

trained with the full-batch GD and Adam optimizer [15].

Metrics. We first consider the top-1 accuracy by counting

the number of predicted labels exactly matching the ground

truth. Note that we have two types of classes in test datasets,

i.e., known and novel classes. Performances on two types of

classes are in trade-off relation, i.e., if one tunes model pa-

rameters for favoring novel classes, the accuracy of known
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(a) (b) (c) (d)

Novel class: American foxhound Novel class: serval Novel class: song thrush Novel class: ice-cream sundae

Method ǫ A Word Method ǫ A Word Method ǫ A Word Method ǫ A Word

GT foxhound GT wildcat GT thrush GT frozen dessert

DARTS 2 N beagle DARTS 3 N Egyptian cat DARTS 3 N hummingbird DARTS 4 Y food, nutrient

Relabel 1 Y hound dog Relabel 2 N domestic cat Relabel 2 Y bird Relabel 1 N ice cream

LOO 0 Y foxhound LOO 2 Y feline LOO 1 Y oscine bird LOO 1 Y dessert

TD+LOO 0 Y foxhound TD+LOO 1 Y cat TD+LOO 0 Y thrush TD+LOO 0 Y frozen dessert

American foxhound

beagle

DARTS

hound dog*

Relabel

foxhound*

LOO TD+LOO

servalEgyptian cat

DARTS

feline*

LOO

cat*

TD+LOO

domestic cat*

Relabel

wildcat*

song thrush

hummingbird

DARTS

bird*

Relabel

oscine bird*

LOO

thrush*

TD+LOO

ice-cream sundae ice cream

Relabel

food, nutrient*

DARTS

dessert*

LOO

3

frozen dessert*

TD+LOO

Figure 4: Qualitative results of hierarchical novelty detection on ImageNet. “GT” is the closest known ancestor (super class)

of the novel class, which is the expected prediction, “DARTS” is the baseline method proposed in [8] where we adapt their

method to our task, and the others are our proposed methods. “ǫ” stands for the distance between the prediction and GT, and

“A” indicates whether the prediction is an ancestor of GT. Dashed edges represent multi-hop connection, where the number

indicates the number of edges between classes. If the prediction is on a super class (marked with * and rounded), then the

test image is classified as a novel class whose closest class in the taxonomy is the super class.

classes would be decreased. Specifically, by adding some

positive bias to the novel class scores (e.g., logits in the

softmax), one can decrease known class accuracy while in-

creasing novel class accuracy, or vice versa. Hence, for a

fair comparison, we measure the novel class accuracy with

respect to some fixed known class accuracy, e.g., 50 %. As

a more informative evaluation metric, we also measure the

area under known-novel class accuracy curve (AUC). Vary-

ing the novel class score bias, a curve of known class ac-

curacy versus novel class accuracy can be drawn, which de-

picts the relationship between the known class accuracy and

the novel class accuracy. The AUC is the area under this

curve, which is independent of the novel class score bias.

4.2. Experimental results

We first compare the hierarchical novelty detection re-

sults of the baseline method and our proposed methods

qualitatively with test images on ImageNet in Figure 4.

We remark that our proposed methods can provide infor-

mative prediction results by utilizing the taxonomy of the

dataset. In Figure 4 (a), LOO and TD+LOO find the ground

truth label (the most fine-grained label in taxonomy), while

DARTS classifies it as “beagle,” which is in fact visually

similar to “American foxhound.” In Figure 4 (b), none of

the method finds the ground truth, but the prediction of

Table 1: Hierarchical novelty detection results on Ima-

geNet, AwA2, and CUB. For a fair comparison, 50 % of

known class accuracy is guaranteed by adding a bias to all

novel class scores (logits). The AUC is obtained by vary-

ing the bias. Known-novel class accuracy curve is shown in

Figure 5. Values in bold indicate the best performance.

Method
ImageNet AwA2 CUB

Novel AUC Novel AUC Novel AUC

DARTS [8] 10.89 8.83 36.75 35.14 40.42 30.07

Relabel 15.29 11.51 45.71 40.28 38.23 28.75

LOO 15.72 12.00 50.00 43.63 40.78 31.92

TD+LOO 18.78 13.98 53.57 46.77 43.29 33.16

TD+LOO is the most informative, as it is the closest label

in the hierarchy. In Figure 4 (c–d), only the prediction of

TD+LOO is correct, but the rest of the methods also give a

reasonable amount of information. More qualitative results

can be found in Supplementary material.

Table 1 shows the hierarchical novelty detection perfor-

mance on ImageNet, AwA2, and CUB. One can note that

the proposed methods significantly outperform the baseline

method in most cases, except the case of Relabel on CUB,

because validation could not find the best relabeling rate

for test. Also, we remark that LOO outperforms Relabel.
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Figure 5: Known-novel class accuracy curves obtained by varying the novel class score bias on ImageNet, AwA2, and CUB.

In most regions, our proposed methods outperform the baseline method.

The main difference of two methods is that Relabel gives a

penalty to the original label if it is relabeled during training,

which turns out to be harmful for the performance. Finally,

TD+LOO exhibits the best performance, which implies that

the multiple softmax probability vectors extracted from the

top-down method is more useful than the vanilla visual fea-

tures extracted from the state-of-the-art CNNs in the hierar-

chical novelty detection tasks. Figure 5 shows the known-

novel class accuracy curves by varying the bias added to

the novel class scores. Our proposed methods have higher

novel class accuracy than the baseline in most regions.

5. Evaluation: Generalized zero-shot learning

We present the GZSL performance of the combination

of the hierarchical embedding obtained by the top-down

method and other semantic embeddings on Animals with

Attributes (AwA1 and AwA2)5 [18, 33] and Caltech-UCSD

Birds (CUB) [32].

5.1. Evaluation setups

Hierarchical embeddings for GZSL. GZSL requires an

output semantic embedding built with side information,

e.g., attributes labeled by human, or word embedding

trained with a large text corpus. In addition to those two

commonly used semantic embeddings, Akata et al. [1] pro-

posed to use hierarchical relationships of all classes, includ-

ing classes unseen during training. Specifically, they mea-

sured the shortest path distance between classes in the tax-

onomy built with both known and novel classes, and take

the vector of distance values as output embedding. We refer

to this embedding as Path.

Motivated by the effectiveness of the features extracted

from the top-down method shown in Section 4.2, we set

the enumeration of the ideal multiple softmax probability

vectors as the semantic embedding: let C(s)[i] be the i-th

5AwA1 is similar to AwA2, but images in AwA1 are no longer avail-

able due to the public copyright license issue. We used precomputed

CNN features for AwA1, which is available at http://datasets.d2.

mpi-inf.mpg.de/xian/xlsa17.zip.

child of a super class s. Then, for a label y and a super

class s, the i-th element of an ideal output probability vector

t(y,s) ∈ [0, 1]|C(s)| is

t(y,s)[i] =











1 if y belongs to C(s)[i]

0 if y belongs to C(s)[j] where i 6= j
1

|C(s)| if y is novel or does not belong to s

where |C(s)| is the number of known child classes under

s. The final visual embedding is the concatenation of them

with respect to the super classes, i.e., the ground truth se-

mantic vector of a class y is ty = [. . . , t(y,s), . . . ], and we

call this embedding TD. See Supplementary material for an

example of the ideal output probability vector ty .

Since classes who share the same closest super class have

exactly the same desired output probability vector, we made

random guess for fine-grained classification in the experi-

ment only with the hierarchical embedding.

Datasets. AwA1 and AwA2 [18, 33] consists of 40

seen classes and 10 unseen classes with 37k images, and

CUB [32] consists of 150 seen classes and 50 unseen classes

with 12k images,6 where the taxonomy can be built in the

same way with Section 4.

Training. We note that the performance of combined mod-

els is reported in [1], but the numbers are outdated, due

to the old CNNs and ZSL models. Thus, instead of mak-

ing direct comparison with theirs, we construct the envi-

ronment following the state-of-the-art setting and compared

the performance gain obtained by ensembling different hier-

archical embedding models to other semantic embeddings.

We take ResNet-101 as a pretrained visual feature extractor,

and we apply deep embedding model proposed in [35] for

training attribute embedding and word embedding models,

where it learns to map semantic embeddings to the visual

feature embedding with two fully connected layers with

ReLU between them. As a combination strategy, we cal-

culate prediction scores of each model and then used their

6 In GZSL, we have semantic information of unseen classes. In this

sense, although unseen classes are not used for training, they are known as

such a class-specific semantic information is required.

1040

http://datasets.d2.mpi-inf.mpg.de/xian/xlsa17.zip
http://datasets.d2.mpi-inf.mpg.de/xian/xlsa17.zip


(a) AwA1 (b) AwA2 (c) CUB

Path

TD

U
n

se
en

 c
la

ss
 a

cc
u

ra
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Seen class accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Path

TD

U
n

se
en

 c
la

ss
 a

cc
u

ra
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Seen class accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Path

TD

U
n

se
en

 c
la

ss
 a

cc
u

ra
cy

0

0.1

0.2

0.3

0.4

0.5

Seen class accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 6: Seen-unseen class accuracy curves of the best combined models obtained by varying the unseen class score bias on

AwA1, AwA2, and CUB. “Path” is the hierarchical embedding proposed in [1], and “TD” is the embedding of the multiple

softmax probability vector obtained from the proposed top-down method. In most regions, TD outperforms Path.

Table 2: ZSL and GZSL performance of semantic embed-

ding models and their combinations on AwA1, AwA2, and

CUB. “Att” stands for continuous attributes labeled by hu-

man, “Word” stands for word embedding trained with the

GloVe objective [24], and “Hier” stands for the hierarchical

embedding, where “Path” is proposed in [1], and “TD” is

output of the proposed top-down method. “Unseen” is the

accuracy when only unseen classes are tested, and “AUC”

is the area under the seen-unseen curve where the unseen

class score bias is varied for computation. The curve used

to obtain AUC is shown in Figure 6. Values in bold indicate

the best performance among the combined models.

Embedding AwA1 AwA2 CUB

Att Word Hier Unseen AUC Unseen AUC Unseen AUC

X 65.29 50.02 63.87 51.27 50.05 23.60

X 51.87 39.67 54.77 42.21 27.28 11.47

X X 67.80 52.84 65.76 53.18 49.83 24.13

Path 42.57 30.58 44.34 33.44 24.22 8.38

X Path 67.09 51.45 66.58 53.50 50.25 23.70

X Path 52.89 40.66 55.28 42.86 27.72 11.65

X X Path 68.04 53.21 67.28 54.31 50.87 24.20

TD 33.86 25.56 31.84 24.97 13.09 7.20

X TD 66.13 54.66 66.86 57.49 50.17 30.31

X TD 56.14 46.28 59.67 49.39 29.05 16.73

X X TD 69.23 57.67 68.80 59.24 50.17 30.31

weighted sum for final classification, where the weights are

cross-validated. See [1] for more details about the combi-

nation strategy as well as the semantic embeddings.

Metrics. The ZSL performance is measured by testing un-

seen classes only, and the GZSL performance is measured

by the area under seen-unseen curve (AUC) following the

idea in [4]. We measure the class-wise accuracy rather than

the sample-wise accuracy to avoid the effect of imbalanced

test dataset, as suggested in [33].

5.2. Experimental results

Table 2 shows the performance of the attribute, word,

and path embedding model, the hierarchical embedding

model derived from the proposed top-down method, and

their combinations on AwA1, AwA2, and CUB. In Table 2,

the standalone performance of top-down method is not bet-

ter than the path embedding, as it does not distinguish un-

seen classes sharing the same closest super class. In the

same reason, the improvement on ZSL performance with

the combined models is fairly small. However, in the GZSL

task, the top-down hierarchical embedding shows signifi-

cantly better performance in the combined models, which

means that the top-down embedding is better when distin-

guishing seen classes and unseen classes together. Com-

pared to the best single semantic embedding model (with

attributes), the combination with the top-down embedding

leads to absolute improvement of AUC by 7.65%, 7.97%,

and 6.71% on AwA1, AwA2 and CUB, respectively, which

is significantly better than that of the path embedding.

6. Conclusion

We propose a new hierarchical novelty detection frame-

work, which performs object classification and hierarchical

novelty detection by predicting the closest super class in a

taxonomy. We propose several methods for the hierarchi-

cal novelty detection task and show that our models achieve

significantly better performance over prior work. In addi-

tion, the hierarchical embedding learned with our model

can be combined with other semantic embeddings such as

attributes and words to improve generalized zero-shot learn-

ing performance. As future work, augmenting textual infor-

mation about labels for hierarchical novelty detection would

be an interesting extension of this work.
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