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Abstract

In this paper, we propose a novel deep learning archi-

tecture for multi-label zero-shot learning (ML-ZSL), which

is able to predict multiple unseen class labels for each in-

put instance. Inspired by the way humans utilize seman-

tic knowledge between objects of interests, we propose a

framework that incorporates knowledge graphs for describ-

ing the relationships between multiple labels. Our model

learns an information propagation mechanism from the se-

mantic label space, which can be applied to model the inter-

dependencies between seen and unseen class labels. With

such investigation of structured knowledge graphs for vi-

sual reasoning, we show that our model can be applied for

solving multi-label classification and ML-ZSL tasks. Com-

pared to state-of-the-art approaches, comparable or im-

proved performances can be achieved by our method.

1. Introduction

Real-world machine learning applications such as image

annotation, music categorization, or medical diagnosis re-

quire assigning more than one class label to each input in-

stance. Take image annotation for example, the learning

models have to predict multiple labels like sky, sea, or ship

for a single input image. Different from traditional multi-

class methods which only predict one class label for each in-

stance, learning multi-label classification models typically

require additional efforts. More specifically, we not only

need to relate the images with their multiple labels, it is

often desirable to exploit label correlation due to the co-

occurrences of the labels of interest.

In general, binary relevance [44] is the simplest solu-

tion to multi-label classification problems, which coverts

the original task to multiple disjoint binary classification

problems. However, it lacks the ability to model label

co-occurrences, and thus might not be preferable. Ap-

proaches such as [38, 7] take cross-label correlation by as-
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Figure 1. Illustration of structured knowledge graph for modeling

the dependency between labels in the semantic space. We learn

and utilize such graphs for relating the belief for each label, so

that prediction of multiple seen or unseen labels can be achieved.

The ground truth labels are noted in blue.

suming label priors, while label-embedding based methods

[3, 43, 6, 5, 4] project both input images and their labels

onto a latent space to exploit label correlation. Methods that

utilize deep neural networks have also been proposed. BP-

MLL [50] first proposed a loss function for modeling the de-

pendency across labels, while other recent works proposed

different loss functions [18, 34] or architectures [46, 45, 49]

to further improve performance.

Extending from multi-label classification, multi-label

zero-shot learning (ML-ZSL) is a branch of zero-shot learn-

ing (ZSL), which require the prediction of unseen labels

which are not defined during training. Traditional multi-

label approaches such as binary relevance or label-prior

based methods obviously cannot be directly applied to ML-

ZSL, since such methods lack the ability to generalize to

unseen class labels. In contrast, approaches that utilize

label representations in the semantic space such as label-

embedding methods can be more easily adapted to ML-

ZSL, given label representations of the unseen classes.

Generally, label representations are obtained from human-

annotated attribute vectors that describe the labels of inter-

est either in a specific domain, or via distributed word em-

beddings learned from linguistic resources.

Nevertheless, although recent ML-ZSL methods such as
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[31, 16, 51, 17, 39] have been proposed, existing approaches

typically do not take advantages of structured knowledge

and reasoning. Humans recognize objects not only by ap-

pearance, but also by using knowledge of the world learned

through experience. Inspired by the above observation, we

focus on leveraging existing structural knowledge for ML-

ZSL, with the goal of deriving proper dependencies be-

tween different label concepts for both seen and unseen

ones. Figure 1 illustrates how knowledge graphs can help

in this problem, where we can model the co-occurring

and non-co-occurring concepts and extend this knowledge

to unseen classes with an external structured knowledge

graph. There has been work on multi-label problems utiliz-

ing structured knowledge. [10] introduced a graph represen-

tation that enforces certain relations between label concepts.

[21] employed recurrent neural networks (RNN) [20, 41] to

model positive and negative correlations between different

concept layers. More recently, [30] extended neural net-

works for graphs [40, 27] to efficiently learn a model that

reasons about different types of relationships between class

labels by propagating information in a knowledge graph.

However, to the best of our knowledge, none of exist-

ing work advances structured knowledge reasoning for ML-

ZSL. In this paper, we propose a novel ML-ZSL approach to

observe and incorporate associated structured knowledge.

Labels are represented with semantic vectors and an infor-

mation propagation mechanism is learned from the label re-

lations observed in the semantic space. The propagation

of such label relation information is then used to modify

the initial beliefs for each class label. Once the propaga-

tion process is complete, multi-label classification (or ML-

ZSL) can be performed accordingly. Our model incorpo-

rates structured knowledge graphs observed from WordNet

[33] into an end-to-end learning framework, while learning

the label representations and information to be propagated

in the semantic space. With this framework, we are able to

achieve ZSL by assigning the unseen label embedding vec-

tor into our learning model. We will show the effectiveness

of our model in advancing the structured knowledge for rea-

soning, which would benefit the task of ML-ZSL.

The main contributions of this work are highlighted as

follows:

• To the best of our knowledge, our model is among the

first to advance structured information and knowledge

graphs for ML-ZSL.

• Our method advances a label propagation mechanism

in the semantic space, enabling the reasoning of the

learned model for predicting unseen labels.

• With comparable performance on standard multi-label

classification tasks, our method performs favorably

against recent models for ML-ZSL.

2. Related Work

Remarkable developments on image classification has

been observed over the past few years due to the availability

of large-scale datasets like ImageNet [11] and the develop-

ment of deep convolutional neural networks [23, 19].

Among image classification tasks, multi-label classifi-

cation aims at predicting multiple labels for an input im-

age, whcih can be achieved by the technique of binary

relevance [44] using neural networks. To further improve

the performance, label co-occurrence and relations between

labels are considered in recent works. Label embedding

methods are among the popular techniques, which trans-

form labels into embedded label vectors, so that the corre-

lation between labels can be exploited [47, 43, 18, 29, 49].

As non-linear embedding approaches, deep neural net-

works have also been utilized for multi-label classification

[50, 34, 18, 46, 45, 49].

Another way to determine the dependency between la-

bels is via exploring explicit semantic relations between the

labels. The Hierarchy and Exclusion (HEX) graph [10] cap-

tures semantic relations: mutual exclusion, overlap and sub-

sumption between any two labels, improving object clas-

sification by exploiting the label relations. The model is

further extended to allow for soft or probabilistic relations

between labels [13]. Later, [21] introduced Structured In-

ference Neural Network (SINN). Inspired by the idea of

Recurrent Neural Network (RNN) [20, 41], positive corre-

lation and negative correlation between labels are derived

for bidirectionally propagating information between con-

cept layers, which further improves the classification perfor-

mance; Focusing on single-label activity recognition, [12]

view both activity of input image and actions of each per-

son in that image as a graph, and utilize RNN to update

the observed graph for activity prediction. On the other

hand, Graph Neural Networks [40], [27] present architec-

tures of Graph Gated Neural Networks (GGNN), which ap-

ply Gated Recurrent Units (GRU) [8] and allow propagation

on the graphs. As a modification of GGNN, Graph Search

Neural Network (GSNN) [30] is successfully applied for

multi-label image classification to exploit explicit semantic

relations in the form of structured knowledge graphs.

Different from multi-label classification, zero-shot learn-

ing (ZSL) is a challenging task, which needs to recognize

test inputs as unseen categories. ZSL also attracts extensive

attention from the vision community [36, 1, 42, 15, 22, 35,

16, 25, 2, 26], which is typically addressed by relating se-

mantic information like attributes [24, 14] and word vectors

[32, 37] to the presence of visual content.

Extended from ZSL, multi-label zero-shot learning (ML-

ZSL) further requires one to assign multiple unseen labels

for each instance. To solve ML-ZSL tasks, COSTA[31]

assumes co-occurrence statistics and estimates classifiers

for seen labels by weighted combinations of seen classes.
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Figure 2. Illustration of structured graph propagation for multi-label classification. Given an input x, we calculate the initial belief state

h
(0)
v for each label node. The resulting information is propagated via the observed graph for updating the associated belief states. After

propagating T times, the final belief states can be obtained for predicting the final multi-label outputs.

[16] achieves ML-ZSL by exhaustively listing all possi-

ble combinations of labels and treating it as a zero-shot

classification problem. Recently, [51] considers the sepa-

rability of relevant and irrelevant tags, proposing a model

that learns principal directions for images in the embed-

ding space. Multiple Instance Visual-Semantic Embedding

(MIVSE) [39] is another joint embedding method, which

uses a region-proposal method to discover meaningful sub-

regions in images and then maps the subregions to their cor-

responding labels in the semantic embedding space. [17]

leverages co-occurrence statistics of seen and unseen labels

and learns a graphical model that jointly models the label

matrix and the co-occurrence matrix.

3. Our Proposed Approach

3.1. Notations and Overview

We first define the notations used in this paper. Let

D = {(xi,yi)}Ni=1 denote the set of training instances,

where xi ∈ R
dfeat are dfeat-dimensional features and

yi ∈ {0, 1}|S| are the corresponding labels in the label set

S . Note that N denotes the number of training instances,

while |S| is the number of seen labels. Given D and S , the

task of multi-label classification is to learn a model such

that the label ŷ ∈ {0, 1}|S| of a test instance x̂ ∈ R
dfeat

can be predicted accurately.

For ML-ZSL, we have the unseen label set as U , and

the goal is to predict the labels in both S and U for a test

instance x̂. The predicted label is as ỹ ∈ {0, 1}|S|+|U|,

where the first |S| dimensions are the predictions for the

seen label set S , and the bottom |U| dimensions are for the

unseen ones.

Since the images are without the annotation of labels U
during training, ML-ZSL needs to extract the semantic in-

formation from the observed label space. In our proposed

model, we use distributed word embeddings to represent a

class label with a semantic vector. The word embedding is

denoted as W = {wv}
|S|+|U|
v=1 , where wv ∈ R

demb is the

word vector representation for label v in S ∪ U , and demb is

the dimension of the word embedding space. In our work,

we utilize GloVe [37] as W with demb = 300.

Our approach is illustrated in Figure 2. We take every la-

bel as a node with states in our structured knowledge graph.

The initial belief states of these nodes h
(0)
v are first obtained

through the input function FI , and the resulting information

is propagated via the structured knowledge graph for updat-

ing the belief states. The propagation mechanism from each

label node u to a connecting node v is governed by propa-

gation weights avu, which are produced from the relation

function Fk
R. We note that, this relation function takes the

label representations wu and wv as inputs, where k denotes

the type of relation between nodes u and v as defined in the

knowledge graph. The above propagation and interaction

process would terminate after T steps, followed by passing

through a output function FO to produce the final classifi-

cation probabilities. In the following subsections, we will

give details of how this model is used for ML-ZSL.

3.2. Structured Knowledge Graph Propagation in
Neural Networks

Inspired by Graph Gated Neural Networks [27, 30], we

consider a graph with |S| nodes, and the propagation model

is learned with a gated recurrent update mechanism which

is similar to recurrent neural networks. For the task of ML-

ZSL, each node v in the graph corresponds to a class label,

and there is a belief state vector h
(t)
v ∈ R

dhid at every time

step t. Following [30], we set dhid to 5. For ML-ZSL,
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we cannot simply apply an existing detector as in GSNN to

obtain the initial belief states. Instead, we utilize an input

function FI(x,wv) that takes the input feature x and the la-

bel representation wv for each node v as inputs to calculate

the initial belief state h
(0)
v . The function FI is implemented

by a neural network.

Next, using the structure of the knowledge graph

which encodes the propagation weight matrix A ∈
R

|S|dhid×|S|dhid , we retrieve the belief states of adjacent

nodes and combine the information from adjacent nodes to

get an update vector u
(t)
v for each node. The belief states

are then updated by a gating mechanism by Gated Recur-

rent Unit (GRU) with u
(t)
v as the input.

For each class label node v ∈ S , the propagation recur-

rence is as follows:

h(0)
v = FI(x,wv), (1)

u(t)
v = tanh

(

A⊤
v

[

h
(t−1)
1

⊤ . . .h
(t−1)
|S|

⊤
]⊤)

, (2)

h(t)
v = GRUCell

(

u(t)
v ,h(t−1)

v

)

, (3)

where Av ∈ R
|S|dhid×dhid is a submatrix of A that repre-

sents the propagation weight matrix for node v (as detailed

in the next subsection). GRUCell is the GRU update mech-

anism, which is defined as:

z(t)v = σ
(

Wzu(t)
v +Uzh(t−1)

v + bz
)

, (4)

r(t)v = σ
(

Wru(t)
v +Urh(t−1)

v + br
)

, (5)

h̃(t)
v = tanh

(

Whu(t)
v +Uh(r(t−1)

v ⊙ h(t−1)
v ) + bh

)

,
(6)

h(t)
v = (1− z(t)v )⊙ h(t−1)

v + z(t)v ⊙ h̃(t)
v , (7)

where W, U, and b are learned parameters.

For each time step t, the confidence for each label node

is obtained by the output function FO:

p(t)v = FO(h
(t)
v ), (8)

which is implemented by a standard fully-connected neu-

ral network. After T time steps for propagation, the final

confidences p
(T )
v would be obtained.

3.3. Learning of the Propagation Matrix

With the gated update mechanism for updating the belief

state of each node in a graph, we now address a critical issue

that how our model reasons and combines information from

adjacent nodes lies in the matrix Av .

In (2), we see that the update vector u
(t)
v is a weighted

combination of the belief states of all other nodes by the

propagation parameters in Av , with each hidden dimension

having its own weights. By constraining Av to have non-

zero weights for the elements that correspond to adjacent

Figure 3. Learning of propagation matrix A in the semantic space

via relation functions F
k

R, with edges defined by the knowledge

graph. Note that we only show the propagation from node i out-

wards, but the matrix A would be symmetric in practice.

nodes and setting weights for non-adjacent nodes to zero, a

node would combine information from only relevant nodes

that are defined in the structured knowledge graph to obtain

the update vector u
(t)
v for updating its own belief state.

In GSNN, the structured knowledge graph is defined

with around 30 relation types. While the elements in A

are learned, the edges of the same relation type are fixed in

GSNN. This might limit its practical uses due to only a few

relation types can be determined beforehand. In ML-ZSL,

it is desirable to exploit finer relation between labels, so the

propagation mechanism with the resulting knowledge graph

would be sufficiently informative.

To address the above concern, we propose a unique

strategy as the propagation weight learning scheme. We

combine the informations of word vector into knowledge

graphs during propagation stages. Our scheme shares the

propagation mechanism for the same relation types while

being preferable for ZSL and other practical applications.

More precisely, instead of assigning the same propagation

weights for edges of the same type/relation, we alterna-

tively assign the same relation function Fk
R that produces

the propagation weights, where k denotes the edge type.

Given an edge in edges E that has edge type k, the propaga-

tion weights avu ∈ R
dhid×dhid are determined by:

avu = Fk
R(wv,wu), (9)

where wv and wu are the word vectors for the class label

nodes v and u. The mechanism for learning propagation

weights is illustrated in Figure 3, in which each element

of the matrix avu is determined by a unique bilinear form

from joint embedding of the two associated labels. This

allows our model to properly describe relationships between

different nodes/relations.

As a final remark, for each edge type k, the function

Fk
R learns a mapping from the semantic word embedding
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Figure 4. Illustration of information propagation in the knowledge graph. Note that information from a belief state interacts with its adjacent

seen/unseen states at each time step based on the relation observed in the knowledge graph. The probabilities represent the outputs of FO

applied to the belief states at each time step for illustration purposes.

space to the propagation weights, so that the dependency

between such relation edges can be modeled accordingly.

More importantly, learning from the semantic space allows

the aforementioned model to generalize to unseen class la-

bels. Thus, the proposed scheme using relation functions

Fk
R to determine the propagation weights avu would be es-

pecially preferable for ML-ZSL.

3.4. From ML to ML­ZSL

During training, the propagation weight matrix A can be

obtained by forward passing through the relation networks

Fk
R, and is then used for information propagation described

in (2) to (7). The loss function of our model is a weighted

sum of the binary cross-entropy (BCE) of each label node,

after the output of network FO is observed at each time step.

To be more precise, the loss L is defined as:

L =
1

N

1

|S|

∑

i,v,t

α(t)
(

(yiv log p
(t)
v + (1− yiv) log(1− p(t)v )

)

,

(10)

where the weights α(t) = 1/(T −t+1) encourage accurate

predictions as t increases. During the inference stage of

multi-label classification, the final confidences p
(T )
v at time

step T are used as the predicted outputs.

For ML-ZSL prediction, we extend A to Ã ∈
R

(|S|+|U|)dhid×(|S|+|U|)dhid , so that it would encode rela-

tions of unseen class labels in the constructed knowledge

graph. We also constrain Ã so that for edges between S and

U we only allow propagation from seen to unseen nodes.

The update vector u
(t)
v is then calculated from the adjacent

nodes for both seen classes S and unseen classes U . Thus,

we have (2) modified as:

u(t)
v = tanh

(

Ã⊤
v

[

h
(t−1)
1

⊤ . . .h
(t−1)
(|S|+|U|)

⊤
]⊤)

, ∀v ∈ S ∪ U .

(11)

The above model is able to calculate the initial belief

states for the unseen class labels with FI , and performs

propagation from seen to unseen labels (and also between

unseen labels with Ã obtained through Fk
R). Finally, the

output confidence for each unseen label is derived by FO.

An illustration of the propagation mechanism for ML-ZSL

is shown in Figure 4, where the model generalizes from its

initial beliefs on seen nodes to the unseen nodes. We note

that, during ML-ZSL, our model is also able to produce pre-

dictions for the seen class labels in addition to the unseen

class labels. Thus, it can be considered for the more chal-

lenging task of generalized ML-ZSL.

4. Experiments

4.1. Building the Knowledge Graph

Before presenting the experimental results, we detail

how we built the structured knowledge graph in our model.

In our work, we consider WordNet [33] as the source for

constructing the knowledge graph, since it is easily accessi-

ble and contains rich semantic relationships between differ-

ent concepts.

We defined 3 types of label relations for the knowledge

graph: super-subordinate, positive correlation, and nega-

tive correlation. Super-subordinate correlations, also called

hyponymy, hypernomy, or ISA relation, is defined and can

be directly extracted from WordNet. For positive and nega-

tive relations between class labels, label similarities are cal-

culated by WUP similarity [48], followed by thresholding

the soft similarities into positive and negative correlations.

As for label pairs with similarities between the positive and

negative thresholds, or pairs without similarities from WUP

similarity, they are viewed as not having any direct relation

between them.

In addition, if a pair of labels exhibit super-subordinate

relation, we directly apply its resulting dependency in our

graph and do not further calculate its positive/negative rela-

tion. In the following experiments, we fix the propagation

steps on the structured knowledge graph to 5 (T = 5).

4.2. Datasets and Settings

To evaluate the performance of our model, we consider

the following datasets for experiments: NUS-WIDE [9] and

Microsoft COCO [28]. For the multi-label classification
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Method

NUS-81 MS-COCO

P R F1 P R F1

WSABIE 30.7 52.0 38.6 59.3 61.3 60.3

WARP 31.4 53.3 39.5 60.2 62.2 61.2

Logistics 41.9 46.2 43.9 70.8 63.3 66.9

Fast0Tag 31.9 54.0 40.1 60.2 62.2 61.2

Ours 43.4 48.2 45.7 74.1 64.5 69.0

Table 1. Multi-label classification results on NUS-WIDE with

81 labels and MS-COCO with 80 labels. Results for WSABIE,

WARP and Fast0Tag are with K = 3.

task we perform experiments on both datasets, while NUS-

WIDE is particularly applied for ML-ZSL evaluation.

NUS-WIDE is a web image dataset including 269,648

images and the associated tags from Flickr. For these im-

ages, it consists of 1000 noisy labels collected from the web

with 81 dedicated ground-truth concepts. We denote these

two sets of labels as NUS-1000 and NUS-81, respectively.

After collecting all existing images and removing images

that do not have any tags, we obtain 90,360 images. We ex-

tract 2048-dimensional ResNet-152 [19] feature representa-

tions from the images and use them as inputs for the follow-

ing tasks. We further split the dataset into 75,000 training

images, 5,000 validation images and 10,360 test images.

Microsoft COCO (MS-COCO) is a large-scale dataset

for object detection, segmentation, and image captioning.

We follow the 2014 challenge for data split (i.e., 82783 and

40504 images for training and testing, respectively) with 80

distinct object tags. After removing images without any la-

bels, we split the training set into 78081 training images and

4000 validation images, and the test set is with 40137 im-

ages. For all the methods considered in our experiments,

we extract and fix 2048-dimensional image features are ex-

tracted from ResNet-152.

4.3. Multi­Label Classification

We fist consider the conventional multi-label classifica-

tion tasks for evaluating our proposed model. For compar-

ison, we consider WSABIE [47], WARP [18], and logis-

tic regression (all with the above CNN features) as baseline

approaches. We also implement Fast0Tag [51] to compare

against models that are designed to handle multi-label clas-

sification problems (and later the ML-ZSL tasks).

For testing, since WSABIE, WARP and Fast0Tag predict

labels according to the ranking scores of the tags, we choose

the top K labels. Following conventional settings, we report

results for K = 3. As for logistics and our model, every

label reports a final confidence for evaluation. Using the

validation set, we select a proper probability threshold for

predicting labels. Finally, the metrics of precision (P), recall

(R) and F1-measure are considered, which are commonly

used in previous work.

Method

ML-ZSL Generalized

P R F1 P R F1

Fast0Tag (K = 3) 21.7 37.7 27.2 - - -

Fast0Tag (K = 10) - - - 19.5 24.9 21.9

Ours w/o Prop. 31.8 25.1 28.1 24.3 23.4 23.9

Ours 29.3 31.9 30.6 22.8 25.9 24.2

Table 2. Results for the ML-ZSL and generalized ML-ZSL tasks

on NUS-1000 with 81 unseen labels and 925 seen labels.

Table 1 lists and compares the results for the NUS-81 and

MS-COCO datasets. We can see that our model produced

comparable performances against baselines. It is worth not-

ing that, since our model is not explicitly designed for solv-

ing multi-label but zero-shot learning, the above results suf-

ficiently support the use of our model for multi-label clas-

sification. In addition, compared to Fast0Tag, which is de-

signed for ML-ZSL and can also be used in the conventional

multi-label setting, our model clearly achieved improved re-

sults on both datasets.

We also note that, although Fast0Tag reported higher

scores on the recalls on NUS-81, it was not able to pro-

duce satisfactory results on the precisions. The discrepancy

between precision and recall can also be observed from the

results in [51]. Similar remarks can be made for both WS-

ABIE and WARP baselines. A possible explanation is that

the number of tags in an image varies across the dataset, and

thus simply choosing the top K prediction in terms of rank-

ing scores for every image would not be sufficiently infor-

mative. In contrast, logistics and our method applied a more

flexible prediction method and were able to achieve more

balanced results on precisions and recalls for both datasets.

4.4. ML­ZSL and Generalized ML­ZSL

We now report our empirical results on multi-label zero-

shot learning (ML-ZSL) using the NUS-WIDE dataset. In

order to perform ML-ZSL, we treat labels in NUS-WIDE

81 as the unseen label set U , while the seen label set S is

derived from NUS-1000 with 75 duplicated ones removed

and thus results in 925 label classes.

We take Fast0Tag [51] with the same S and U as the

state-of-the-art ML-ZSL approach for comparisons. We re-

port the results for ML-ZSL with K = 3 for Fast0Tag.

To further verify the effectiveness of the introduced com-

ponents in our model, we also conduct controlled experi-

ments in which we have a simplified version without updat-

ing the belief vectors via the structured knowledge graph

(i.e., Ours w/o Prop.). In other words, for Ours w/o Prop.,

we set T = 0.

Additionally, we consider the challenging task of gener-

alized ML-ZSL task, for which models are trained on seen

labels but are required to predict both seen and unseen la-

bels during testing. The experiments are performed on the
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Figure 5. Examples of the constructed knowledge subgraphs and the predicted label probabilities using our proposed method, showing that

information propagates across different labels as time step t increases. Note that the blue and red nodes in each subgraph indicate ground

truth positive and negative labels, respectively. And, arrows in green or red reflects the corresponding positive or negative relationship.

NUS-WIDE dataset following the ML-ZSL setting, and we

report the results of predictions for the |S| + |U| = 1006
labels. For Fast0Tag under this setting we report K = 10,

as K = 3 will result in low recall due to a large number of

tags predicted for each image.

Table 2 lists the results for both the ML-ZSL setting and

the generalized ML-ZSL setting. From this table, we see

that our model reported satisfactory performances and per-

formed favorably against Fast0Tag. Also, from the abla-

tion tests, we see that the full version of our model was

preferable when applying propagation with the knowledge

graph. This confirms the effectiveness of this mechanism

introduced in our model.

4.5. Analysis of Propagation Mechanism

To further evaluate the effectiveness of our method, we

visualize the propagation process of our structured knowl-

edge graph in Figure 5, demonstrating how the information

transferred in our constructed graph assists in the predic-

tion process. We show the prediction probabilities p
(t)
v of

several label classes from t = 0 to t = 5 for the two exam-

ples shown in this figure (both are from MS-COCO). These

probabilities are obtained from our multi-label classifica-

tion model. The corresponding knowledge subgraphs are

also shown in the figure. From the results, We observe that

the first few propagation step affected the prediction proba-

bilities the most, especially for the label nodes that had ini-

0 1 2 3 4 5
0.680

0.685

0.690

0.695

t

F1
MS-COCO Performance at t

0 1 2 3 4 5
0.445

0.450

0.455

0.460

t

F1
NUS-81 Performance at t

Figure 6. The scores of F1 measure for multi-label classification at

different time steps t on MS-COCO and NUS-81.

tial confidence that were closer to the probability threshold.

Subsequent propagation steps simply further fine-tuned the

probabilities for more accurate predictions.

We also made this similar observation when analyzing

the performance of our model at different time steps. We

use the probabilities p
(t)
v at time step t instead of time step

T to obtain predictions and measure the performance on
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0.298

0.300
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0.304

t
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Figure 7. The scores of F1 measure for seen and unseen labels (i.e., generalized ML-ZSL) at different time steps t on NUS-1000.

the testing sets. The results for multi-label classification

on MS-COCO and NUS-81 for t = 1 to t = 5 are shown

in Figure 6. In Figures 7, we also observe similar trends

for generalized ML-ZSL using NUS-WIDE 1000. In other

words, both seen and unseen classes gained from such in-

formation propagation across labels, and showed the con-

verged results in a few time steps.

5. Conclusion

In this paper, we proposed a unique deep learning

framework to approach multi-label learning and multi-label

zero-shot learning (ML-ZSL). By incorporating structured

knowledge graphs into the learning process, our model

leverages different relations defined in the constructed

knowledge graph, which allow the exploitation of label

dependencies between labels for ML-ZSL. This is similar

to how humans utilize learned concept dependencies when

recognizing seen and unseen objects of interest. In our

experiments, we showed that our proposed model was able

to produce satisfactory performance on the standard task of

multi-label classification, and performed favorably against

baseline and state-of-the-art approaches on the challenging

problem of ML-ZSL.

Acknowledgments This work was supported in part by the

Ministry of Science and Technology of Taiwan under grant

MOST 107-2634-F-002-010.

References

[1] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-

embedding for attribute-based classification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 819–826, 2013.

[2] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Eval-

uation of output embeddings for fine-grained image classifi-

cation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2927–2936, 2015.

[3] K. Balasubramanian and G. Lebanon. The landmark selec-

tion method for multiple output prediction. In ICML. icml.cc

/ Omnipress, 2012.

[4] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthe-

sized classifiers for zero-shot learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5327–5336, 2016.

[5] S. Changpinyo, W.-L. Chao, and F. Sha. Predicting visual

exemplars of unseen classes for zero-shot learning. In Com-

puter Vision (ICCV), 2017 IEEE International Conference

on, pages 3496–3505. IEEE, 2017.

[6] Y.-N. Chen and H.-T. Lin. Feature-aware label space dimen-

sion reduction for multi-label classification. In F. Pereira,

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, edi-

tors, Advances in Neural Information Processing Systems 25,

pages 1529–1537. Curran Associates, Inc., 2012.

[7] W. Cheng, E. Hllermeier, and K. J. Dembczynski. Bayes

optimal multilabel classification via probabilistic classifier

chains. In J. Frnkranz and T. Joachims, editors, Proceedings

of the 27th International Conference on Machine Learning

(ICML-10), pages 279–286. Omnipress, 2010.

[8] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio.

On the properties of neural machine translation: Encoder-

decoder approaches. In Eighth Workshop on Syntax, Seman-

tics and Structure in Statistical Translation (SSST-8), 2014,

2014.

[9] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng.

Nus-wide: a real-world web image database from national

university of singapore. In Proceedings of the ACM inter-

national conference on image and video retrieval, page 48.

ACM, 2009.

[10] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio,

Y. Li, H. Neven, and H. Adam. Large-scale object classifica-

tion using label relation graphs. In European Conference on

Computer Vision, pages 48–64. Springer, 2014.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[12] Z. Deng, A. Vahdat, H. Hu, and G. Mori. Structure infer-

ence machines: Recurrent neural networks for analyzing re-

lations in group activity recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4772–4781, 2016.

[13] N. Ding, J. Deng, K. P. Murphy, and H. Neven. Probabilistic

label relation graphs with ising models. In Proceedings of the

IEEE International Conference on Computer Vision, pages

1161–1169, 2015.

[14] A. Farhadi, I. Endres, D. Hoiem, and D. A. Forsyth. Describ-

ing objects by their attributes. In CVPR, pages 1778–1785.

IEEE Computer Society, 2009.

1583



[15] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,

T. Mikolov, et al. DeViSE: A deep visual-semantic embed-

ding model. In Advances in neural information processing

systems, pages 2121–2129, 2013.

[16] Y. Fu, Y. Yang, T. M. Hospedales, T. Xiang, and S. Gong.

Transductive multi-label zero-shot learning. In BMVC, 2014.

[17] A. Gaure, A. Gupta, V. K. Verma, and P. Rai. A probabilistic

framework for zero-shot multi-label learning. In The Con-

ference on Uncertainty in Artificial Intelligence (UAI), 2017.

[18] Y. Gong, Y. Jia, T. Leung, A. Toshev, and S. Ioffe. Deep con-

volutional ranking for multilabel image annotation. CoRR,

abs/1312.4894, 2013.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016.

[20] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[21] H. Hu, G.-T. Zhou, Z. Deng, Z. Liao, and G. Mori. Learn-

ing structured inference neural networks with label relations.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2960–2968, 2016.

[22] D. Jayaraman and K. Grauman. Zero-shot recognition

with unreliable attributes. In Z. Ghahramani, M. Welling,

C. Cortes, N. Lawrence, and K. Weinberger, editors, Ad-

vances in Neural Information Processing Systems 27, pages

3464–3472. Curran Associates, Inc., 2014.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[24] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning

to detect unseen object classes by between-class attribute

transfer. In Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on, pages 951–958. IEEE,

2009.

[25] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-

based classification for zero-shot visual object categoriza-

tion. IEEE Trans. Pattern Anal. Mach. Intell., 36(3):453–

465, Mar. 2014.

[26] J. Lei Ba, K. Swersky, S. Fidler, and R. salakhutdinov. Pre-

dicting deep zero-shot convolutional neural networks using

textual descriptions. In The IEEE International Conference

on Computer Vision (ICCV), December 2015.

[27] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. Gated

graph sequence neural networks. CoRR, abs/1511.05493,

2015.

[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollr, and C. L. Zitnick. Microsoft coco: Common

objects in context. In European Conference on Computer Vi-

sion (ECCV), Zrich, 2014. Oral.

[29] Z. Lin, G. Ding, M. Hu, and J. Wang. Multi-label classi-

fication via feature-aware implicit label space encoding. In

International Conference on Machine Learning, pages 325–

333, 2014.

[30] K. Marino, R. Salakhutdinov, and A. Gupta. The more

you know: Using knowledge graphs for image classification.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017.

[31] T. Mensink, E. Gavves, and C. G. Snoek. Costa: Co-

occurrence statistics for zero-shot classification. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2014.

[32] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and

J. Dean. Distributed representations of words and phrases

and their compositionality. In C. J. C. Burges, L. Bottou,

M. Welling, Z. Ghahramani, and K. Q. Weinberger, edi-

tors, Advances in Neural Information Processing Systems 26,

pages 3111–3119. Curran Associates, Inc., 2013.

[33] G. A. Miller. Wordnet: A lexical database for english. Com-

mun. ACM, 38(11):39–41, Nov. 1995.

[34] J. Nam, J. Kim, I. Gurevych, and J. Fürnkranz. Large-scale

multi-label text classification - revisiting neural networks.

CoRR, abs/1312.5419, 2013.

[35] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens,

A. Frome, G. Corrado, and J. Dean. Zero-shot learning

by convex combination of semantic embeddings. In Inter-

national Conference on Learning Representations (ICLR),

2014.

[36] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M.

Mitchell. Zero-shot learning with semantic output codes.

In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and

A. Culotta, editors, Advances in Neural Information Process-

ing Systems 22, pages 1410–1418. 2009.

[37] J. Pennington, R. Socher, and C. D. Manning. Glove: Global

vectors for word representation. In Empirical Methods in

Natural Language Processing (EMNLP), pages 1532–1543,

2014.

[38] J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classi-

fier chains for multi-label classification. Machine Learning,

85(3):333, Jun 2011.

[39] Z. Ren, H. Jin, Z. Lin, C. Fang, and A. Yuille. Multiple

instance visual-semantic embedding. In Proceeding of the

British Machine Vision Conference (BMVC), 2017.

[40] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and

G. Monfardini. The graph neural network model. IEEE

Transactions on Neural Networks, 20(1):61–80, 2009.

[41] M. Schuster and K. K. Paliwal. Bidirectional recurrent

neural networks. IEEE Transactions on Signal Processing,

45(11):2673–2681, 1997.

[42] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot

learning through cross-modal transfer. In Advances in neural

information processing systems, pages 935–943, 2013.

[43] F. Tai and H.-T. Lin. Multilabel classification with prin-

cipal label space transformation. Neural Computation,

24(9):2508–2542, 2012. PMID: 22594831.

[44] G. Tsoumakas and I. Katakis. Multi-label classification: An

overview. Int J Data Warehousing and Mining, 2007:1–13,

2007.

[45] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu.

CNN-RNN: a unified framework for multi-label image clas-

sification. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.

[46] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao,

and S. Yan. CNN: single-label to multi-label. CoRR,

abs/1406.5726, 2014.

1584



[47] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up

to large vocabulary image annotation. In IJCAI, volume 11,

pages 2764–2770, 2011.

[48] Z. Wu and M. Palmer. Verbs semantics and lexical selection.

In Proceedings of the 32nd annual meeting on Association

for Computational Linguistics, pages 133–138. Association

for Computational Linguistics, 1994.

[49] C.-K. Yeh, W.-C. Wu, W.-J. Ko, and Y.-C. F. Wang. Learn-

ing deep latent space for multi-label classification. In AAAI,

pages 2838–2844, 2017.

[50] M.-L. Zhang and Z.-H. Zhou. Multilabel neural networks

with applications to functional genomics and text categoriza-

tion. IEEE Transactions on Knowledge and Data Engineer-

ing, 18(10):1338–1351, Oct 2006.

[51] Y. Zhang, B. Gong, and M. Shah. Fast zero-shot image tag-

ging. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2016.

1585


