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Abstract

We propose a network for Congested Scene Recognition

called CSRNet to provide a data-driven and deep learning

method that can understand highly congested scenes and

perform accurate count estimation as well as present high-

quality density maps. The proposed CSRNet is composed

of two major components: a convolutional neural network

(CNN) as the front-end for 2D feature extraction and a di-

lated CNN for the back-end, which uses dilated kernels to

deliver larger reception fields and to replace pooling opera-

tions. CSRNet is an easy-trained model because of its pure

convolutional structure. We demonstrate CSRNet on four

datasets (ShanghaiTech dataset, the UCF CC 50 dataset,

the WorldEXPO’10 dataset, and the UCSD dataset) and

we deliver the state-of-the-art performance. In the Shang-

haiTech Part B dataset, CSRNet achieves 47.3% lower

Mean Absolute Error (MAE) than the previous state-of-the-

art method. We extend the targeted applications for count-

ing other objects, such as the vehicle in TRANCOS dataset.

Results show that CSRNet significantly improves the output

quality with 15.4% lower MAE than the previous state-of-

the-art approach.

1. Introduction

Growing number of network models have been devel-

oped [1, 2, 3, 4, 5] to deliver promising solutions for crowd

flows monitoring, assembly controlling, and other security

services. Current methods for congested scenes analysis are

developed from simple crowd counting (which outputs the

number of people in the targeted image) to density map pre-

senting (which displays characteristics of crowd distribu-

tion) [6]. This development follows the demand of real-

life applications since the same number of people could

have completely different crowd distributions (as shown in

Fig. 1), so that just counting the number of crowds is not

enough. The distribution map helps us for getting more ac-

curate and comprehensive information, which could be crit-

ical for making correct decisions in high-risk environments,

such as stampede and riot. However, it is challenging to

generate accurate distribution patterns. One major difficulty

Figure 1. Pictures in first row show three images all containing 95

people in ShanghaiTech Part B dataset [18], while having totally

different spatial distributions. Pictures in second row show their

density maps.

comes from the prediction manner: since the generated den-

sity values follow the pixel-by-pixel prediction, output den-

sity maps must include spatial coherence so that they can

present the smooth transition between nearest pixels. Also,

the diversified scenes, e.g., irregular crowd clusters and dif-

ferent camera perspectives, would make the task difficult,

especially for using traditional methods without deep neu-

ral networks (DNNs). The recent development of congested

scene analysis relays on DNN-based methods because of

the high accuracy they have achieved in semantic segmen-

tation tasks [7, 8, 9, 10, 11] and the significant progress they

have made in visual saliency [12]. The additional bonus of

using DNNs comes from the enthusiastic hardware com-

munity where DNNs are rapidly investigated and imple-

mented on GPUs [13], FPGAs [14, 15, 16], and ASICs [17].

Among them, the low-power, small-size schemes are es-

pecially suitable for deploying congested scene analysis in

surveillance devices.

Previous works for congested scene analysis are mostly

based on multi-scale architectures [4, 5, 18, 19, 20]. They

have achieved high performance in this field but the de-

signs they used also introduce two significant disadvantages

when networks go deeper: large amount of training time

and non-effective branch structure (e.g., multi-column CNN

(MCNN) in [18]). We design an experiment to demon-

strate that the MCNN does not perform better compared to a
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deeper, regular network in Table 1. The main reason of us-

ing MCNN in [18] is the flexible receptive fields provided

by convolutional filters with different sizes across the col-

umn. Intuitively, each column of MCNN is dedicated to a

certain level of congested scene. However, the effectiveness

of using MCNN may not be prominent. We present Fig. 2

to illustrate the features learned by three separated columns

(representing large, medium, and small receptive fields) in

MCNN and evaluate them with ShanghaiTech Part A [18]

dataset. The three curves in this figure share very similar

patterns (estimated error rate) for 50 test cases with different

congest densities meaning that each column in such branch

structure learn nearly identical features. It performs against

the original intention of the MCNN design for learning dif-

ferent features for each column.

In this paper, we design a deeper network called CSR-

Net for counting crowd and generating high-quality den-

sity maps. Unlike the latest works such as [4, 5] which

use the deep CNN for ancillary, we focus on designing a

CNN-based density map generator. Our model uses pure

convolutional layers as the backbone to support input im-

ages with flexible resolutions. To limit the network com-

plexity, we use the small size of convolution filters (like

3 × 3) in all layers. We deploy the first 10 layers from

VGG-16 [21] as the front-end and dilated convolution lay-

ers as the back-end to enlarge receptive fields and extract

deeper features without losing resolutions (since pooling

layers are not used). By taking advantage of such innovative

structure, we outperform the state-of-the-art crowd count-

ing solutions (a MCNN based solution called CP-CNN [5])

with 7%, 47.3%, 10.0%, and 2.9% lower Mean Abso-

lute Error (MAE) in ShanghaiTech [18] Part A, Part B,

UCF CC 50 [22], and WorldExpo’10 [3] datasets respec-

tively. Also, we achieve high performance on the UCSD

dataset [23] with 1.16 MAE. After extending this work to

vehicle counting on TRANCOS dataset [20], we achieve

15.4% lower MAE than the current best approach, called

FCN-HA [24].

The rest of the paper is structured as follows. Sec. 2

presents the previous works for crowd counting and den-

sity map generation. Sec. 3 introduces the architecture and

configuration of our model while Sec. 4 presents the exper-

imental results on several datasets. In Sec. 5, we conclude

the paper.

2. Related work

Following the idea proposed by Loy et al. [25], the po-

tential solutions for crowd scenes analysis can be classified

into three categories: detection-based methods, regression-

based methods, and density estimation-based methods. By

combining the deep learning, the CNN-based solutions

show even stronger ability in this task and outperform the

traditional methods.

Figure 2. The estimated error of 50 samples from the testing set

in ShanghaiTech Part A [18] generated by the three pre-trained

columns of MCNN. Small, Medium, Large respectively stand for

the columns with small, medium or large kernels in the MCNN.

Method Parameters MAE MSE

Col. 1 of MCNN 57.75k 141.2 206.8

Col. 2 of MCNN 45.99k 160.5 239.0

Col. 3 of MCNN 25.14k 153.7 230.2

MCNN Total 127.68k 110.2 185.9

A deeper CNN 83.84k 93.0 142.2

Table 1. To demonstrate that MCNN [18] may not be the best

choice, we design a deeper, single-column network with fewer

parameters compared to MCNN. The architecture of the pro-

posed small network is: CR(32, 3) − M − CR(64, 3) − M −

CR(64, 3)−M−CR(32, 3)−CR(32, 3)−CR(1, 1). CR(m,n)
represents the convolutional layer with m filters whose size is n×n

followed by the ReLu layer. M is the max-pooling layer. Results

show that the single-column version achieves higher performance

on ShanghaiTech Part A dataset [18] with the lowest MAE and

Mean Squared Error (MSE)

2.1. Detection­based approaches

Most of the early researches focus on detection-based

approaches using a moving-window-like detector to detect

people and count their number [26]. These methods re-

quire well-trained classifiers to extract low-level features

from the whole human body (like Haar wavelets [27] and

HOG (histogram oriented gradients) [28]). However, they

perform poorly on highly congested scenes since most of

the targeted objects are obscured. To tackle this problem,

researchers detect particular body parts instead of the whole

body to complete crowd scenes analysis [29].

2.2. Regression­based approaches

Since detection-based approaches can not be adapted

to highly congested scenes, researchers try to deploy

regression-based approaches to learn the relations among

extracted features from cropped image patches, and then

calculate the number of particular objects. More features,
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such as foreground and texture features, have been used for

generating low-level information [30]. Following similar

approaches, Idrees et al. [22] propose a model to extract

features by employing Fourier analysis and SIFT (Scale-

invariant feature transform) [31] interest-point based count-

ing.

2.3. Density estimation­based approaches

When executing the regression-based solution, one crit-

ical feature, called saliency, is overlooked which causes in-

accurate results in local regions. Lempitsky et al. [32] pro-

pose a method to solve this problem by learning a linear

mapping between features in the local region and its object

density maps. It integrates the information of saliency dur-

ing the learning process. Since the ideal linear mapping is

hard to obtain, Pham et al. [33] use random forest regression

to learn a non-linear mapping instead of the linear one.

2.4. CNN­based approaches

Literature also focuses on the CNN-based approaches

to predict the density map because of its success in clas-

sification and recognition [34, 21, 35]. In the work pre-

sented by Walach and Wolf [36], a method is demonstrated

with selective sampling and layered boosting. Instead of

using patch-based training, Shang et al. [37] try an end-to-

end regression method using CNNs which takes the entire

image as input and directly outputs the final crowd count.

Boominathan et al. [19] present the first work purely us-

ing convolutional networks and dual-column architecture

for generating density map. Marsden et al. [38] explore

single-column fully convolutional networks while Sindagi

et al. [39] propose a CNN which uses the high-level prior in-

formation to boost the density prediction performance. An

improved structure is proposed by Zhang et al. [18] who

introduce a multi-column based architecture (MCNN) for

crowd counting. Similar idea is shown in Onoro and Sas-

tre [20] where a scale-aware, multi-column counting model

called Hydra CNN is presented for object density estima-

tion. It is clear that the CNN-based solutions outperform

the previous works mentioned in Sec. 2.1 to 2.3.

2.5. Limitations of the state­of­the­art approaches

Most recently, Sam et al. [4] propose the Switch-CNN

using a density level classifier to choose different regres-

sors for particular input patches. Sindagi et al. [5] present

a Contextual Pyramid CNN, which uses CNN networks to

estimate context at various levels for achieving lower count

error and better quality density maps. These two solutions

achieve the state-of-the-art performance, and both of them

used multi-column based architecture (MCNN) and den-

sity level classifier. However, we observe several disad-

vantages in these approaches: (1) Multi-column CNNs are

hard to train according to the training method described in

work [18]. Such bloated network structure requires more

time to train. (2) Multi-column CNNs introduce redundant

structure as we mentioned in Sec. 1. Different columns

seem to perform similarly without obvious differences. (3)

Both solutions require density level classifier before send-

ing pictures in the MCNN. However, the granularity of den-

sity level is hard to define in real-time congested scene anal-

ysis since the number of objects keeps changing with a large

range. Also, using a fine-grained classifier means more

columns need to be implemented which makes the design

more complicated and causes more redundancy. (4) These

works spend a large portion of parameters for density level

classification to label the input regions instead of allocating

parameters to the final density map generation. Since the

branch structure in MCNN is not efficient, the lack of pa-

rameters for generating density map lowers the final accu-

racy. Taking all above disadvantages into consideration, we

propose a novel approach to concentrate on encoding the

deeper features in congested scenes and generating high-

quality density map.

3. Proposed Solution

The fundamental idea of the proposed design is to de-

ploy a deeper CNN for capturing high-level features with

larger receptive fields and generating high-quality density

maps without brutally expanding network complexity. In

this section, we first introduce the architecture we proposed,

and then we present the corresponding training methods.

3.1. CSRNet architecture

Following the similar idea in [19, 4, 5], we choose VGG-

16 [21] as the front-end of CSRNet because of its strong

transfer learning ability and its flexible architecture for eas-

ily concatenating the back-end for density map generation.

In CrowdNet [19], the authors directly carve the first 13 lay-

ers from VGG-16 and add a 1 × 1 convolutional layer as

output layer. The absence of modifications results in very

weak performance. Other architectures, such as [4], uses

VGG-16 as the density level classifier for labeling input im-

ages before sending them to the most suitable column of

the MCNN, while the CP-CNN [5] incorporates the result

of classification with the features from density map gen-

erator. In these cases, the VGG-16 performs as an ancil-

lary without significantly boosting the final accuracy. In

this paper, we first remove the classification part of VGG-

16 (fully-connected layers) and build the proposed CSRNet

with convolutional layers in VGG-16. The output size of

this front-end network is 1/8 of the original input size. If

we continue to stack more convolutional layers and pooling

layers (basic components in VGG-16), output size would

be further shrunken, and it is hard to generate high-quality

density maps. Inspired by the works [10, 11, 40], we try

to deploy dilated convolutional layers as the back-end for
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extracting deeper information of saliency as well as main-

taining the output resolution.

3.1.1 Dilated convolution

One of the critical components of our design is the di-

lated convolutional layer. A 2-D dilated convolution can be

defined as follow:

y(m,n) =

M
∑

i=1

N
∑

j=1

x(m+ r × i, n+ r × j)w(i, j) (1)

y(m,n) is the output of dilated convolution from input

x(m,n) and a filter w(i, j) with the length and the width

of M and N respectively. The parameter r is the dilation

rate. If r = 1, a dilated convolution turns into a normal

convolution.

Dilated convolutional layers have been demonstrated in

segmentation tasks with significant improvement of accu-

racy [10, 11, 40] and it is a good alternative of pooling

layer. Although pooling layers (e.g., max and average pool-

ing) are widely used for maintaining invariance and con-

trolling overfitting, they also dramatically reduce the spatial

resolution meaning the spatial information of feature map

is lost. Deconvolutional layers [41, 42] can alleviate the

loss of information, but the additional complexity and ex-

ecution latency may not be suitable for all cases. Dilated

convolution is a better choice, which uses sparse kernels (as

shown in Fig. 3) to alternate the pooling and convolutional

layer. This character enlarges the receptive field without

increasing the number of parameters or the amount of com-

putation (e.g., adding more convolutional layers can make

larger receptive fields but introduce more operations). In

dilated convolution, a small-size kernel with k × k filter is

enlarged to k + (k − 1)(r − 1) with dilated stride r. Thus

it allows flexible aggregation of the multi-scale contextual

information while keeping the same resolution. Examples

can be found in Fig. 3 where normal convolution gets 3× 3
receptive field and two dilated convolutions deliver 5 × 5
and 7× 7 receptive fields respectively.

For maintaining the resolution of feature map, the di-

lated convolution shows distinct advantages compared to

the scheme of using convolution + pooling + deconvolu-

tion. We pick one example for illustration in Fig. 4. The

input is an image of crowds, and it is processed by two

approaches separately for generating output with the same

size. In the first approach, input is downsampled by a max

pooling layer with factor 2, and then it is passed to a convo-

lutional layer with a 3×3 Sobel kernel. Since the generated

feature map is only 1/2 of the original input, it needs to be

upsampled by the deconvolutional layer (bilinear interpola-

tion). In the other approach, we try dilated convolution and

adapt the same 3× 3 Sobel kernel to a dilated kernel with a

Figure 3. 3 × 3 convolution kernels with different dilation rate as

1, 2, and 3.

Figure 4. Comparison between dilated convolution and max-

pooling, convolution, upsampling. The 3× 3 Sobel kernel is used

in both operations while the dilation rate is 2.

factor = 2 stride. The output is shared the same dimension

as the input (meaning pooling and deconvolutional layers

are not required). Most importantly, the output from dilated

convolution contains more detailed information (referring

to the portions we zoom in).

3.1.2 Network Configuration

We propose four network configurations of CSRNet in

Table 3 which have the same front-end structure but differ-

ent dilation rate in the back-end. Regarding the front-end,

we adapt a VGG-16 network [21] (except fully-connected

layers) and only use 3 × 3 kernels. According to [21], us-

ing more convolutional layers with small kernels is more

efficient than using fewer layers with larger kernels when

targeting the same size of receptive field .

By removing the fully-connected layers, we try to deter-

mine the number of layers we need to use from VGG-16.

The most critical part relays on the tradeoff between ac-

curacy and the resource overhead (including training time,

memory consumption, and the number of parameters). Ex-

periment shows a best tradeoff can be achieved when keep-

ing the first ten layers of VGG-16 [21] with only three pool-

ing layers instead of five to suppress the detrimental effects

on output accuracy caused by the pooling operation. Since

the output (density maps) of CSRNet is smaller (1/8 of in-

put size), we choose bilinear interpolation with the factor

of 8 for scaling and make sure the output shares the same
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Dataset Generating method

ShanghaiTech Part A [18]
Geometry-adaptive kernels

UCF CC 50 [22]

ShanghaiTech Part B [18] Fixed kernel: σ = 15

TRANCOS [44] Fixed kernel: σ = 10

The WorldExpo’10 [3]
Fixed kernel: σ = 3

The UCSD [23]

Table 2. The ground truth generating methods for different datasets

resolution as the input image. With the same size, CSR-

Net generated results are comparable with the ground truth

results using the PSNR (Peak Signal-to-Noise Ratio) and

SSIM (Structural Similarity in Image [43]).

3.2. Training method

In this section, we provide specific details of CSRNet

training. By taking advantage of the regular CNN network

(without branch structures), CSRNet is easy to implement

and fast to deploy.

3.2.1 Ground truth generation

Following the method of generating density maps in

[18], we use the geometry-adaptive kernels to tackle the

highly congested scenes. By blurring each head annotation

using a Gaussian kernel (which is normalized to 1), we gen-

erate the ground truth considering the spatial distribution of

all images from each dataset. The geometry-adaptive kernel

is defined as:

F (x) =

N
∑

i=1

δ(x− xi)×Gσi
(x), with σi = βdi (2)

For each targeted object xi in the ground truth δ, we use

di to indicate the average distance of k nearest neighbors.

To generate the density map, we convolve δ(x − xi) with

a Gaussian kernel with parameter σi (standard deviation),

where x is the position of pixel in the image. In experiment,

we follow the configuration in [18] where β = 0.3 and

k = 3. For input with sparse crowd, we adapt the Gaussian

kernel to the average head size to blur all the annotations.

The setups for different datasets are shown in Table 2.

3.2.2 Data augmentation

We crop 9 patches from each image at different loca-

tions with 1/4 size of the original image. The first four

patches contain four quarters of the image without overlap-

ping while the other five patches are randomly cropped from

the input image. After that, we mirror the patches so that we

double the training set.

Configurations of CSRNet

A B C D

input(unfixed-resolution color image)

front-end

(fine-tuned from VGG-16)

conv3-64-1

conv3-64-1

max-pooling

conv3-128-1

conv3-128-1

max-pooling

conv3-256-1

conv3-256-1

conv3-256-1

max-pooling

conv3-512-1

conv3-512-1

conv3-512-1

back-end (four different configurations)

conv3-512-1

conv3-512-1

conv3-512-1

conv3-256-1

conv3-128-1

conv3-64-1

conv3-512-2

conv3-512-2

conv3-512-2

conv3-256-2

conv3-128-2

conv3-64-2

conv3-512-2

conv3-512-2

conv3-512-2

conv3-256-4

conv3-128-4

conv3-64-4

conv3-512-4

conv3-512-4

conv3-512-4

conv3-256-4

conv3-128-4

conv3-64-4

conv1-1-1

Table 3. Configuration of CSRNet. All convolutional layers use

padding to maintain the previous size. The convolutional layers’

parameters are denoted as “conv-(kernel size)-(number of filters)-

(dilation rate)”, max-pooling layers are conducted over a 2 × 2
pixel window with stride 2.

3.2.3 Training details

We use a straightforward way to train the CSRNet as

an end-to-end structure. The first 10 convolutional layers

are fine-tuned from a well-trained VGG-16 [21]. For the

other layers, the initial values come from a Gaussian ini-

tialization with 0.01 standard deviation. Stochastic gradient

descent (SGD) is applied with fixed learning rate at 1e-6

during training. Also, we choose the Euclidean distance to

measure the difference between the ground truth and the es-

timated density map we generated which is similar to other

works [19, 18, 4]. The loss function is given as follow:

L(Θ) =
1

2N

N
∑

i=1

‖ Z(Xi; Θ)− ZGT
i ‖

2

2
(3)

where N is the size of training batch and Z(Xi; Θ) is

the output generated by CSRNet with parameters shown as

Θ. Xi represents the input image while ZGT
i is the ground

truth result of the input image Xi.
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4. Experiments

We demonstrate our approach in five different public

datasets [18, 3, 22, 23, 44]. Compared to the previous state-

of-the-art methods [4, 5], our model is smaller, more accu-

rate, and easier to train and deploy. In this section, the eval-

uation metrics are introduced, and then an ablation study

of ShanghaiTech Part A dataset is conducted to analyze the

configuration of our model (shown in Table 3). Along with

the ablation study, we evaluate and compare our proposed

method to the previous state-of-the-art methods in all these

five datasets. The implementation of our model is based on

the Caffe framework [13].

4.1. Evaluation metrics

The MAE and the MSE are used for evaluation which

are defined as:

MAE =
1

N

N
∑

i=1

| Ci − CGT
i | (4)

MSE =

√

√

√

√

1

N

N
∑

i=1

| Ci − CGT
i |2 (5)

where N is the number of images in one test sequence

and CGT
i is the ground truth of counting. Ci represents the

estimated count which is defined as follows:

Ci =

L
∑

l=1

W
∑

w=1

zl,w (6)

L and W show the length and width of the density map

respectively while zl,w is the pixel at (l, w) of the generated

density map. Ci means the estimated counting number for

image Xi.

We also use the PSNR and SSIM to evaluate the quality

of the output density map on ShanghaiTech Part A dataset.

To calculate the PSNR and SSIM, we follow the preprocess

given by [5], which includes the density map resizing (same

size with the original input) with interpolation and normal-

ization for both ground truth and predicted density map.

4.2. Ablations on ShanghaiTech Part A

In this subsection, we perform an ablation study to an-

alyze the four configurations of the CSRNet on Shang-

haiTech Part A dataset [18] which is a new large-scale

crowd counting dataset including 482 images for congested

scenes with 241,667 annotated persons. It is challenging

to count from these images because of the extremely con-

gested scenes, the varied perspective, and the unfixed res-

olution. These four configurations are shown in Table 3.

CSRNet A is the network with all the dilation rate of 1.

CSRNet B and D maintain the dilation rate of 2 and 4 in

Architecture MAE MSE

CSRNet A 69.7 116.0

CSRNet B 68.2 115.0

CSRNet C 71.91 120.58

CSRNet D 75.81 120.82

Table 4. Comparison of architectures on ShanghaiTech Part A

dataset

their back-end respectively while CSRNet C combines the

dilated rate of 2 and 4. The number of parameters of these

four models are the same as 16.26M. We intend to compare

the results by using different dilation rates. After training

on Shanghai Part A dataset using the method mentioned

in Sec. 3.2, we perform the evaluation metrics defined in

Sec. 4.1. We try dropout [45] for preventing the potential

overfitting problem but there is no significant improvement.

So we do not include dropout in our model. The detailed

evaluation results are shown in Table 4, where CSRNet B

achieves the lowest error (the highest accuracy). Therefore,

we use CSRNet B as the proposed CSRNet for the follow-

ing experiments.

4.3. Evaluation and comparison

4.3.1 ShanghaiTech dataset

ShanghaiTech crowd counting dataset contains 1198 an-

notated images with a total amount of 330,165 persons [3].

This dataset consists of two parts as Part A containing 482

images with highly congested scenes randomly downloaded

from the Internet while Part B includes 716 images with

relatively sparse crowd scenes taken from streets in Shang-

hai. Our method is evaluated and compared to other six

recent works and results are shown in Table 5. It indicates

that our method achieves the lowest MAE (the highest ac-

curacy) in Part A compared to other methods and we get

7% lower MAE than the state-of-the-art solution called CP-

CNN. CSRNet also delivers 47.3% lower MAE in Part B

compared to the CP-CNN. To evaluate the quality of gen-

erated density map, we compare our method to the MCNN

and the CP-CNN using Part A dataset and we follow the

evaluation metrics in Sec. 3.2. Samples of the test cases can

be found in Fig 5. Results are shown in Table 6 which in-

dicates CSRNet achieves the highest SSIM and PSNR. We

also report the quality result of ShanghaiTech dataset in Ta-

ble 11.

4.3.2 UCF CC 50 dataset

UCF CC 50 dataset includes 50 images with different

perspective and resolutions [22]. The number of annotated

persons per image ranges from 94 to 4543 with an average

number of 1280. 5-fold cross-validation is performed fol-

lowing the standard setting in [22]. Result comparisons of
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Figure 5. The first row shows the samples of the testing set in

ShanghaiTech Part A dataset. The second row shows the ground

truth for each sample while the third row presents the generated

density map by CSRNet.

Part A Part B

Method MAE MSE MAE MSE

Zhang et al. [3] 181.8 277.7 32.0 49.8

Marsden et al. [38] 126.5 173.5 23.8 33.1

MCNN [18] 110.2 173.2 26.4 41.3

Cascaded-MTL [39] 101.3 152.4 20.0 31.1

Switching-CNN [4] 90.4 135.0 21.6 33.4

CP-CNN [5] 73.6 106.4 20.1 30.1

CSRNet (ours) 68.2 115.0 10.6 16.0

Table 5. Estimation errors on ShanghaiTech dataset

Method PSNR SSIM

MCNN [18] 21.4 0.52

CP-CNN [5] 21.72 0.72

CSRNet (ours) 23.79 0.76

Table 6. Quality of density map on ShanghaiTech Part A dataset

MAE and MSE are listed in Table 7 while the quality of

generated density map can be found in Table 11.

4.3.3 The WorldExpo’10 dataset

The WorldExpo’10 dataset [3] consists of 3980 anno-

tated frames from 1132 video sequences captured by 108

different surveillance cameras. This dataset is divided into

a training set (3380 frames) and a testing set (600 frames)

from five different scenes. The region of interest (ROI) is

provided for the whole dataset. Each frame and its dot maps

are masked with ROI during preprocessing, and we train our

model following the instructions given in Sec. 3.2. Results

Method MAE MSE

Idrees et al. [22] 419.5 541.6

Zhang et al. [3] 467.0 498.5

MCNN [18] 377.6 509.1

Onoro et al. [20] Hydra-2s 333.7 425.2

Onoro et al. [20] Hydra-3s 465.7 371.8

Walach et al. [36] 364.4 341.4

Marsden et al. [38] 338.6 424.5

Cascaded-MTL [39] 322.8 397.9

Switching-CNN [4] 318.1 439.2

CP-CNN [5] 295.8 320.9

CSRNet (ours) 266.1 397.5

Table 7. Estimation errors on UCF CC 50 dataset

are shown in Table 8. The proposed CSRNet delivers the

best accuracy in 4 out of 5 scenes and it achieves the best

accuracy on average.

Method Sce.1 Sce.2 Sce.3 Sce.4 Sce.5 Avg.

Chen et al. [46] 2.1 55.9 9.6 11.3 3.4 16.5

Zhang et al. [3] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [18] 3.4 20.6 12.9 13.0 8.1 11.6

Shang et al. [37] 7.8 15.4 14.9 11.8 5.8 11.7

Switching-CNN [4] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [5] 2.9 14.7 10.5 10.4 5.8 8.86

CSRNet (ours) 2.9 11.5 8.6 16.6 3.4 8.6

Table 8. Estimated errors on the WorldExpo’10 dataset

4.3.4 The UCSD dataset

The UCSD dataset [23] has 2000 frames captured by

surveillance cameras. These scenes contain sparse crowd

varying from 11 to 46 persons per image. The region of

interest (ROI) is also provided. Because the resolution of

each frame is fixed and small (238 × 158), it is difficult to

generate a high-quality density map after frequent pooling

operations. So we preprocess the frames by using bilinear

interpolation to resize them into 952 × 632. Among the

2000 frames, we use frames 601 through 1400 as training

set and the rest of them as testing set according to [23].

Before blurring the annotation as we mentioned in Sec. 3.2,

all the frames and the corresponding dot maps are masked

with ROI. The accuracy of running UCSD dataset is shown

in Table 9 and we outperform most of the previous meth-

ods except MCNN in the MAE category. Results indicate

that our method can perform not only counting tasks for

extremely dense crowds but also tasks for relative sparse

scenes. Also, we provides the quality of generated density

map in Table 11.

4.3.5 TRANCOS dataset

Beyond the crowd counting, we setup an experiment

on the TRANCOS dataset [44] for vehicle counting to

1097



Method MAE MSE

Zhang et al. [3] 1.60 3.31

CCNN [20] CCNN 1.51 -

Switching-CNN [4] 1.62 2.10

FCN-rLSTM [24] 1.54 3.02

CSRNet (ours) 1.16 1.47

MCNN [18] 1.07 1.35

Table 9. Estimation errors on the UCSD dataset

demonstrate the robustness and generalization of our ap-

proach. TRANCOS is a public traffic dataset containing

1244 images of different congested traffic scenes captured

by surveillance cameras with 46796 annotated vehicles.

Also, the region of interest (ROI) is provided for the eval-

uation. The perspectives of images are not fixed and the

images are collected from very different scenarios. The

Grid Average Mean Absolute Error (GAME) [44] is used

for evaluation in this test. The GAME is defined as follow:

GAME(L) =
1

N

N
∑

n=1

(

4
L

∑

l=1

∣

∣

∣
Dl

In
−Dl

I
gt
n

∣

∣

∣
) (7)

where N is the number of images in testing set, and Dl
In

is the estimated result of the input image n within region l.

Dl

I
gt
n

is the corresponding ground truth result. For a specific

level L, the GAME(L) subdivides the image using a grid

of 4L non-overlapping regions which cover the full image,

and the error is computed as the sum of the MAE in each of

these regions. When L = 0, the GAME is equivalent to the

MAE metric.

We compare our approach with the previous state-of-

the-art methods [47, 32, 20, 24]. The method in [20] uses

the MCNN-like network to generate the density map while

the model in [24] deploys a combination of fully convolu-

tional neural networks (FCN) and a long short-term mem-

ory network (LSTM). Results are shown in Table 10 with

three examples shown in Fig. 6. Our model achieves a

significant improvement on four different GAME metrics.

Compared to the result from [20], CSRNet delivers 67.7%

lower GAME(0), 60.1% lower GAME(1), 48.7% lower

GAME(2), and 22.2% lower GAME(3), which is the best

solution. We also present the quality of generated density

map in Table 11.

Method GAME 0 GAME 1 GAME 2 GAME 3

Fiaschi et al. [47] 17.77 20.14 23.65 25.99

Lempitsky et al. [32] 13.76 16.72 20.72 24.36

Hydra-3s [20] 10.99 13.75 16.69 19.32

FCN-HA [24] 4.21 - - -

CSRNet (Ours) 3.56 5.49 8.57 15.04

Table 10. GAME on the TRANCOS dataset

Figure 6. The first row shows samples of the testing set in TRAN-

COS [44] dataset with ROI. The second row shows the ground

truth for each sample. The third row shows the generated density

map by CSRNet.

Dataset PSNR SSIM

ShanghaiTech Part A [18] 23.79 0.76

ShanghaiTech Part B [18] 27.02 0.89

UCF CC 50 [22] 18.76 0.52

The WorldExpo’10 [3] 26.94 0.92

The UCSD [23] 20.02 0.86

TRANCOS [44] 27.10 0.93

Table 11. The quality of density maps generated by CSRNet in 5

datasets

5. Conclusion

In this paper, we proposed a novel architecture called

CSRNet for crowd counting and high-quality density map

generation with an easy-trained end-to-end approach. We

used the dilated convolutional layers to aggregate the multi-

scale contextual information in the congested scenes. By

taking advantage of the dilated convolutional layers, CSR-

Net can expand the receptive field without losing resolution.

We demonstrated our model in four crowd counting datasets

with the state-of-the-art performance. We also extended our

model to vehicle counting task and our model achieved the

best accuracy as well.
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