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Abstract

Facial age estimation from a face image is an important

yet very challenging task in computer vision, since humans

with different races and/or genders, exhibit quite different

patterns in their facial aging processes. To deal with the

influence of race and gender, previous methods perform age

estimation within each population separately. In practice,

however, it is often very difficult to collect and label suf-

ficient data for each population. Therefore, it would be

helpful to exploit an existing large labeled dataset of one

(source) population to improve the age estimation perfor-

mance on another (target) population with only a small la-

beled dataset available. In this work, we propose a Deep

Cross-Population (DCP) age estimation model to achieve

this goal. In particular, our DCP model develops a two-

stage training strategy. First, a novel cost-sensitive multi-

task loss function is designed to learn transferable aging

features by training on the source population. Second, a

novel order-preserving pair-wise loss function is designed

to align the aging features of the two populations. By doing

so, our DCP model can transfer the knowledge encoded in

the source population to the target population. Extensive

experiments on the two of the largest benchmark datasets

show that our DCP model outperforms several strong base-

line methods and many state-of-the-art methods.

1. Introduction

Facial age estimation, i.e., automatically predicting the

age from a face image, is a very important yet difficult

problem in computer vision. It has many applications

such as human-computer interaction [8], age-based face re-

trieval [22], intelligent surveillance [34], and precision ad-

∗These authors are the corresponding authors and contribute equally to

this study.
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Figure 1. The cross-population age estimation problem. The

source and target populations may differ in race and/or gender,

and they may have very different aging patterns.

vertising [30], etc. Despite decades of studies [20, 21, 7, 37,

9, 12, 10, 26, 2, 23, 15, 28, 1, 24, 36, 3], it still remains a

very challenging problem due to many varied factors from

face pose, expression, race, gender, image illumination, and

noise, to name a few [5].

Roughly speaking, the factors that make age estimation

difficult can be divided into two groups. The first group

of factors comes from the extrinsic appearance variations

of the face images, e.g., face pose, expression, and image

illumination [14]. The other group is determined by intrin-

sic human genes associated with race and gender [12]. A

large portion of previous work focusses on the first group

of factors, while the other group of intrinsic factors receives

relatively little attention.

Since different populations, e.g., African and Caucasian,

females and males, exhibit quite different aging patterns, it

is very challenging to design an age estimator which can

generalize to faces from different populations. Some pre-

vious works suggest performing age estimation within each

population separately [11, 10, 14]. However, training a sep-

arate model for each population also has its own limitations

since it is difficult and expensive to collect and label suffi-

cient training data for each population. Based on the above

considerations, instead of resorting to labeling more data, it

is better to exploit the existing large sized training data of

one (source) population to improve the age estimation per-
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formance on another (target) population for which only a

small sized set of training data is available.

As discussed above, we are interested in this cross-

population age estimation problem (Figure 1). The set-

ting of this new problem is that a large set of training data

is available for the source population but only a small set

of training data is available for the target population. The

training data of the source population is used to improve the

age estimation performance on the target population with-

out collecting more data for it. In this work, we propose

a Deep Cross-Population (DCP) age estimation model to

achieve this goal. Instead of manually designing aging fea-

tures, the DCP age estimation model is based on a Convolu-

tional Neural Network (CNN) which automatically extracts

aging features from the input face images. The features are

more discriminative and robust to facial appearance varia-

tions than the commonly used handcrafted aging features.

To obtain high performance on the target population, the

DCP model uses a two-stage training strategy:

• In the first stage, age estimation is formulated as a

ranking problem because it can take account of the

correlations between the age labels. We also design

a novel cost-sensitive multi-task loss function for this

ranking problem and obtain a model Nets by training it

on the source population. We then create a model Nett

for the target population by copying all the parame-

ters from Nets. Since CNN can capture useful low-

level features independent of the training data [39, 31],

the main purpose of this stage is to extract useful and

transferable low-level aging features from the large

sized source population and then transfer them to the

target population.

• In the second stage, Nets and Nett are fine-tuned. To

this end, pair-wise labels (i.e., same age or not) are

generated from the source population and the target

population. A novel order-preserving pair-wise loss

function is designed to bridge the large gaps between

aging patterns by aligning the high-level aging features

of two populations. After this second-stage training,

the DCP model effectively transfers the knowledge en-

coded in the source population to the target popula-

tion, and thus improve the age estimation performance

on the target population even though it has only small

sized training data.

To summarize, the main contributions of this work are

listed bellow in three-fold:

• We propose a novel Deep Cross Population (DCP) age

estimation model. To the best of our knowledge, this

DCP model is the first deep model has been designed

to solve the challenging cross-population age estima-

tion problem.

• We propose a novel two-stage transfer learning strat-

egy to train this DCP age estimation model with cost-

sensitive feature learning and order-preserving feature

alignment.

• Our DCP age estimation model exhibits very good

performance and outperforms several strong baseline

methods as well as many state-of-the-art methods on

two of the largest benchmark datasets.

2. Notations and Problem Definition

2.1. Notations

We use boldface lowercase letters like z to denote vec-

tors. The i-th item of z is denoted as z(i). Boldface upper-

case letters like Z are used to denote matrices. The trans-

pose of Z is denoted as ZT, and the k-th column of Z is

denoted as Z(k). The notation ‖·‖F is used to denote the

Frobenius norm of a vector or matrix, and notation tr(·) is

used for the trace of a matrix.

2.2. Problem Definition

In the setting of cross-population age estimation, sup-

pose that there are Ns source population training face im-

ages X s = {Xs
i , y

s
i }

Ns

i=1, y
s
i ∈ {1, 2, . . . ,K}, where Xs

i

denotes the i-th face image, ysi denotes its age label, and

K is the total number of different ages. Suppose also

that there are N t target population training face images

X t = {Xt
i, y

t
i}

Nt

i=1, y
t
i ∈ {1, 2, . . . ,K}. The number of

training images from the source population is usually larger

than that from the target population, i.e., Ns > N t. Our

aim is to train an age estimation model that performs well

on testing face images from the target population. It is worth

noting that training a good age estimation model usually re-

quires a large amount of training data, whilst only a limited

amount of target population training data is available. To

overcome this problem, we need to design a new age es-

timation model which can transfer the knowledge encoded

in the source population to the target population in order to

obtain satisfactory age estimation performance on the target

population.

3. Deep Cross-Population Age Estimation

Since the face images in the target population training

set exhibit very different visual patterns in the raw image

space to those exhibited by the source population training

set, it is not feasible to use directly all the training sam-

ples to train an age estimation model for the target pop-

ulation. Inspired by the great success of CNN on learn-

ing hierarchical feature representations, our proposed Deep

Cross-Population (DCP) age estimation model deals with

this problem by using a new two-stage learning framework,

which first learns transferable low-level aging features in a
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novel cost-sensitive feature learning stage, and then learns

to align high-level aging features across two populations in

a novel order-preserving feature alignment stage. In the fol-

lowing, these two stages are explained in detail.

3.1. Cost­Sensitive Feature Learning Stage

At this stage, a deep model Nets is trained on the source

population training data X s. The main purpose of this stage

is to extract useful and transferable low-level aging features

from the large sized source population training data X s. In

order to obtain Nets, it is necessary to choose the appro-

priate problem formulation for age estimation, design the

network architecture, and design the loss function.

3.1.1 Problem Formulation

Age estimation can be naturally formulated as a multi-class

classification problem. In this formulation, different ages

are assumed to be independent of one another. However,

age labels have very strong interrelationships since they

form a well-ordered set [24, 36]. On the other hand, regres-

sion based methods treat the age labels as numerical values

and thus capture the order information for age estimation.

However, regression based methods are apt to over-fit the

training data as manifested in [2, 27].

In this paper, age estimation is formulated as a rank-

ing problem. There are two main reasons for this choice.

First, this ranking formulation is more suitable for charac-

terizing the correlations among different ages [38]. Sec-

ond, ranking based methods are able to learn more trans-

ferable aging features [19] which is desirable for our cross-

population age estimation problem. In this ranking based

formulation, each age label y ∈ {1, 2, . . . ,K} is treated

as a rank. To directly utilize the well-studied classification

algorithms, following the reduction framework proposed

in [25], the ranking problem is transformed to a series of

binary classification problems. In particular, given a train-

ing set X = {Xi, yi}
N
i=1, yi ∈ {1, 2, . . . ,K}. For a given

rank (age) k (1 ≤ k < K), X is divided into two subsets,

X+
k and X−

k , as follows:

{

X+
k = {(Xi, 1)|yi > k}

X−
k = {(Xi, 0)|yi ≤ k}.

(1)

Next, X+
k and X−

k are used to train a binary classifier fk.

Since 1 ≤ k < K, K − 1 binary classifiers {fk}
K−1
k=1 are

obtained in total. For a given testing face image X̃, its age

ỹ is predicted by aggregating the K − 1 decision results as

follows,

ỹ = 1 +

K−1
∑

k=1

fk(X̃), (2)

where fk(X̃) ∈ {0, 1} is the classification result of the k-th

binary classifier fk for X̃.

Conv1ૠ × ૠ × �૟
stride 4

ReLU

Pool1 � × �
stride 2

Conv2 

5×5×256 

stride 1 

ReLU

Pool2 � × �
stride 2

Conv3 

3×3×384 

stride 1 

ReLU

Pool3 � × �
stride 2

FC1

512

ReLU

Dropout

FC2

512

ReLU

Dropout

Classifier �1

Classifier ��−1
Figure 2. The network architecture for age estimation under the

ranking based formulation.

3.1.2 Network Architecture

The architecture of this ranking based age estimation net-

work is shown in Figure 2. There are three convolutional

layers, three max pooling layers, and two fully-connected

layers. Our choice of this network architecture is motivated

by the previous work [23], which employed a similar archi-

tecture to perform age group classification and obtained sat-

isfactory performance. It is worth noting that other modern

CNN architectures such as ZFNet [40], VGGNet [32] and

GoogLeNet [35] can also be used for age estimation, but a

comparison of different network architectures is not the fo-

cus of this work. The network branches into K− 1 outputs,

where the k-th output corresponds to the binary classifier

fk. Since each binary classification problem can be treated

as one task, we name the network in Figure 2 as Multi-Task

Network (MTNet).

3.1.3 Loss Function

Given the original training set X = {Xi, yi}
N
i=1, yi ∈

{1, 2, . . . ,K}, the age label yi of Xi corresponds to a vector

yi ∈ R
K−1 under the ranking based formulation according

to Eqn. (1). More specifically, yi is defined as follows:

y
(k)
i =

{

1, k < yi
0, k ≥ yi

, k ∈ {1, . . . ,K − 1}. (3)

As a result, the training set now becomes X = {Xi,yi}
N
i=1.

It’s worth noting that age estimation is inherently a cost-

sensitive problem. For example, when a person’s age is yi,

misclassifying yi as yi + 10 is a more serious mistake than

misclassifying yi as yi +1. To take this cost sensitivity into

consideration, given a training face image Xi and its age

yi, we use costk(yi) to denote the cost of misclassifying it

in the k-th binary classification problem. More specifically,

costk(yi) is designed as follows:

costk(yi) =

{

k − yi + 1, yi ≤ k

yi − k, yi > k
, k ∈ {1, . . . ,K−1}.

(4)

We use Θ to collectively denote the parameters of the

three convolutional layers. Suppose that there is a total

of M convolutional filters in MTNet, then Θ = {θj}
M
j=1,

where θj is the vectorization of the j-th filter. Two matrices
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WFC1 and WFC2 are used to denote the parameters of two

fully-connected layers respectively. The matrix W is used

to denote the parameters of the K − 1 outputs and each

column of W corresponds to the parameters of one output.

The vector xi denotes the output of the FC2 layer in MTNet

for the given input face image Xi. The sigmoid function is

denoted as σ(x), i.e., σ(x) = 1/(1 + exp(−x)).
The term costk(yi) in Eqn. (4) is used as an importance

weight to rescale the training data Xi for the k-th output of

the MTNet. As a result, the loss function is:

argmin
Ω

N
∑

i=1

K−1
∑

k=1

{

− costk(yi)
(

y
(k)
i log σ(W(k) Txi)

+ (1− y
(k)
i ) log

(

1− σ(W(k) Txi)
)

)}

+

M
∑

j=1

θ
T
jθj

+

K−1
∑

k=1

W(k) TW(k) + tr(WFC1W
T
FC1) + tr(WFC2W

T
FC2),

(5)

where Ω = {Θ,WFC1,WFC2,W}. The terms in the curly

brackets correspond to the cost-sensitive multi-task loss,

while the remaining terms represent the weight decay [18]

of the MTNet’s parameters. Weight decay is commonly

used in deep learning to reduce overfitting. Even though

the loss function in Eqn. (5) is a highly nonlinear function

defined over the training data and the parameters of the MT-

Net, it can be efficiently solved in practice by the stochastic

gradient descent algorithm [17].

In summary, at this cost-sensitive feature learning stage,

age estimation is formulated as a ranking problem as it cap-

tures the correlations among age labels and learns more

transferable aging features. An MTNet architecture (c.f .

Figure 2) for age estimation is designed under this rank-

ing based formulation. We then discuss the loss function of

this MTNet and derive a cost-sensitive multi-task loss func-

tion (c.f . Eqn. (5)) for it. Based on the above knowledge,

An MTNet Nets is trained on the source population training

data X s. We then create an MTNet Nett for the target pop-

ulation by copying all parameters from Nets. After this first

stage, useful and transferable low-level aging features are

extracted from the large sized source population data and

then directly transferred to the target population. This di-

rect feature transfer from the source to the target population

exploits the ability of deep learning to capture hierarchi-

cal features independently of the training data, particularly

from the lower layers [39, 31].

3.2. Order­Preserving Feature Alignment Stage

At this stage, we fine-tune both the source MTNet Nets

and the target MTNet Nett obtained at stage one to transfer

cross-population pair-wise information and perform incre-

mental learning on the target population. The key idea is

Order-preserving 

feature alignment

Same age

5 years age gap

10 years age gap

Blue：source Population data

Green：target population data

Figure 3. The key idea of the order-preserving feature alignment

stage. There are four face images in this figure. The green one is

from the target population, and the blue ones are from the source

population. We can use these four images to construct three cross-

population pairs. After this order-preserving feature alignment,

the distance of the pair with the same age (the green and blue

squares) becomes smaller, and those distances of the pairs with

different ages become larger. Moreover, the pair with larger age

gap (the green square and the blue star) has larger distance than

that with smaller age gap (the green square and the blue circle).

This figure is best viewed in color.

to align the high-level aging features from source and target

populations to a population-invariant space which can cap-

ture the order characteristics of human ages. More specifi-

cally, in this population-invariant space, distances between

face pairs with the same age are small, and those between

pairs with different ages are large. Moreover, the pairs

with larger age gap have larger distance than those with

smaller age gap. In the following, we introduce our order-

preserving feature alignment to achieve this goal.

Given a face image Xs
i with age label ysi from the

source population training data X s, and another face im-

age Xt
j with age label ytj from the target population train-

ing data X t, a cross-population pair (Xs
i ,X

t
j , y

s
i , y

t
j , lij) is

constructed, where lij is set to 1 if ysi = ytj and −1 other-

wise. The goal of our order-preserving feature alignment is

to minimize the following objective function:

Ns

∑

i=1

Nt

∑

j=1

{1− lij(η − d(x̂s
i , x̂

t
j)) · ω(y

s
i , y

t
j)}. (6)

Here x̂s
i and x̂t

j are the high-level aging features (i.e., the

vectorised feature maps of the Pool3 layer in Figure 2) ex-

tracted by Nets and Nett respectively. d(x̂s
i , x̂

t
j) = ‖x̂s

i −

x̂t
j‖

2
F is the squared Euclidean distance between the high-

level aging features. η is a pre-specified threshold parameter

by cross-validation. ω(ysi , y
t
j) denotes the weighing func-

tion, which is computed as follows:

ω(ysi , y
t
j) =

{

1− exp(−
|ys

i−yt
j |

τ
), if ysi 6= ytj

1, otherwise,
(7)

where τ is a empirical pre-specified parameter by cross-

validation. The rationales of Eqns. (6) and (7) are as follows
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Figure 4. Order-preserving feature alignment stage. At this stage,

both the source MTNet Nets and the target MTNet Nett are fine-

tuned using cross-population face pairs, the relations of which are

useful in bridging the population gap by transferring knowledge

encoded in the source population to the target population which

has only a small amount of training data. After this stage, the

MTNet Nett is ready to be deployed on the target population.

(c.f . Figure 3).

• If a cross-population face image pair Xs
i and Xt

j have

the same age, by the definition of Eqn. 6, the distance

between them is expected to be as small as possible.

Otherwise, the distance between them is expected to

be as large as possible. As a result, the margin be-

tween pairs with the same age and pairs with different

ages is maximized and discriminative aging feature is

obtained in the aligned feature space.

• The larger the difference between ysi and ytj , the larger

the weight ω(ysi , y
t
j) is assigned according to Eqn. (7).

Then, by Eqn. (6), pairs with large age gaps are ex-

pected to have larger distances than pairs with smaller

age gaps. As a result, the order characteristics of hu-

man ages are preserved in the aligned feature space.

Figure 4 shows the training details at this order-

preserving feature alignment stage. During training, we use

a mini-batch of cross-population pairs. For simplicity, only

one cross-population pair (Xs
i ,X

t
j , y

s
i , y

t
j , lij) is shown in

Figure 4. We feed Xs
i and Xt

j to Nets and Nett respectively.

The objective function of the order-preserving feature align-

ment in Eqn. (6) is used to align the aging features to a

population-invariant space which captures the order charac-

teristics of human ages. This alignment is useful in bridg-

ing the large population gap, so Nett benefits from the large

size source population data. Concurrently, the cost-sensitive

multi-task loss function in Eqn. (5) is also used to fine-tune

Nett by using the target population training data (Xt
j , y

t
j).

In summary, in the cross-population age estimation set-

ting, the aim is to optimize the MTNet Nett for the target

population. This is achieved during model training by learn-

ing a source MTNet Nets with a cost-sensitive multi-task

loss function on the large sized source population for trans-

ferring low-level aging features (Section 3.1), followed by

an order-preserving feature alignment stage for transferring

cross-population pairing knowledge and adapting the Nett

to data from the target population (Section 3.2). Now, Nett

can be used for age estimation for faces from the target pop-

ulation.

4. Experiments

In this section, the experimental settings are described

in detail. Then, we conduct extensive experiments to vali-

date the effectiveness of the proposed DCP age estimation

model, with comparisons with the state-of-the-art and with

a set of ablative studies.

4.1. Experimental Settings

4.1.1 Datasets

There are many datasets for age estimation in the litera-

ture [21, 6, 4]. However, most of these datasets are rela-

tively small. In order to obtain statistically meaningful re-

sults, we conduct experiments on two of the largest age es-

timation benchmark datasets, i.e., the Morph II [29] and the

WebFace [33] datasets in this work.

Morph II dataset: The Morph II dataset contains about

55, 000 face images of more than 13, 000 subjects with ages

ranging from 16 to 77 years old. Morph II is a multi-ethnic

dataset. It has about 77% Black faces and 19% White faces,

while the remaining 4% are other races, e.g., Hispanic, In-

dian, Asian. We followed the first cross-population age es-

timation study [13], and assembled a database of 21, 060
face images. More specifically, there are 7, 960 White

Male (WM), 7, 960 Black Male (BM), 2, 570 White Female

(WF), and 2, 570 Black Female (BF) face images in this

assembled database. We treat WM/BM as the source pop-

ulation and WF/BF as the target population, which agrees

with our cross-population age estimation setting in that the

source population has more training data than the target

population. The data of the target population (WF/BF) is

randomly divided into two subsets with an equal size. One

subset together with all of the source population data is used

for training, while the other subset is used for testing.

WebFace dataset: The WebFace dataset contains

59, 930 face images with ages ranging from 1 to 80 years

old. This dataset is also a multi-ethnic dataset, and most of

the images are White or Yellow faces. In contrast with the

Morph II dataset which contains mug-shot face images, this

dataset is compiled from face images captured in the wild.

The images contain large pose and expression variations,

which make this dataset much more challenging. In or-

der to conduct cross-population age estimation experiments,

we assembled a database of 34, 000 face images. Specifi-

cally, there are 14, 000 White Male (WM), 14, 000 White
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Female (WF), 3, 000 Yellow Male (YM), and 3, 000 Yel-

low Female (YF) face images in this assembled database.

Similarly, we treat WM/WF as the source population and

YM/YF as the target population. The data of the target pop-

ulation (YM/YF) is also randomly divided into two subsets

with an equal size. One is used for training, while the other

for testing.

4.1.2 Evaluation Metric

To evaluate the performance of different age estimation al-

gorithms, we use the popular Mean Absolute Error (MAE)

as the evaluation metric. The MAE is calculated based on

the average absolute error between the estimated age and

the ground truth age, which is defined as follows,

MAE =
1

N

N
∑

i=1

|ỹi − yi| , (8)

where N is the number of testing face images, yi is the

ground-truth age of the i-th face image, and ỹi is the pre-

dicted age for it. Smaller MAE values mean better age esti-

mation performance.

4.1.3 Parameter Settings

The face images in both datasets are preprocessed following

standard processing pipeline, i.e., the faces in the images are

detected, aligned, and then cropped to 256× 256 pixels. In

all the following experiments, we use the Caffe [16] tool-

box, which is a flexible deep learning framework to develop

new models, and makes our work easy to reproduce. We

train all the networks using stochastic gradient descent with

momentum (0.9) and weight decay (5×10−4). The dropout

ratio is set to 0.5. The data augmentation strategy is similar

to [17], i.e., randomly cropping of 227×227 pixels from the

256×256 input face image, then randomly flipping it before

feeding it to the network. The initial learning rate is 10−3

which is divided by 10 when the training curve reaches a

plateau. We found that all networks converge well under

these settings, so we use the same hyper-parameters for dif-

ferent models to make fair comparisons.

4.1.4 Compared Methods

We compare the DCP age estimation model with two state-

of-the-art models and five deep baseline models. Since the

cross-population age estimation is a relatively new prob-

lem, to the best of our knowledge, there are only two pre-

vious works which focus specifically on this problem: 1)

Cross-population Discriminant Analysis (CpDA) [13], and

2) Joint Metric Learning (JML) [1].

Since the DCP model is the first deep learning based

model for cross-population age estimation. In order to show

Table 1. Comparison with the state-of-the-art cross-population age

estimation methods on the Morph II dataset.

Source Target CpDA [13] JML [1] DCP

BM
BF 7.73 5.56 3.75

WF 8.73 5.57 3.18

WM
BF 7.67 6.40 3.90

WF 6.70 5.00 3.13

its effectiveness, we design five deep baseline models for

comparisons: 1) No Adaptation (NA). We train an MT-

Net using the source population data and directly deploy

it for the target population testing data. This direct transfer

scheme shows some success due to the generalization abil-

ity of deep models; 2) Direct Training (DT). We train an

MTNet on the target population training data directly and

then test it on the target population testing data; 3) United

Populations (UP). We train an MTNet on the union of the

source and target population training data. Compared with

DT, more data are used for model training so that the perfor-

mance may be improved; 4) Fine-tune based Transfer (FT).

We first train an MTNet on the source population data, then

fine-tune the fully-connected layers of it on the target popu-

lation training data. This transfer learning strategy is widely

used in the deep learning literature; and 5) Deep Joint Met-

ric Learning (DJML). The aforementioned four deep base-

line models are not specific to the cross-population age esti-

mation problem. To get a stronger deep baseline mode, we

reimplement the JML model [1] by incorporating the metric

learning into the MTNet.

4.2. Comparison with the State­of­the­Art Models

We compare our DCP age estimation model with the

state-of-the-art methods, i.e., CpDA and JML. For fair com-

parison, we conduct experiments on the Morph II dataset,

since all of these three models are based on the same train-

ing and testing split protocol on this dataset. The results

are shown in Table 1. Compared with CpDA and JML, the

DCP age estimation model reduces the errors in each cross-

population case significantly. For example, in the first cross-

population case, the Black Male (BM) is used as the source

population and the Black Female (BF) is used as the target

population. The CpDA has a MAE of 7.73 years and the

JML has a MAE of 5.56 years. Our DCP model reduces the

MAE to 3.75 years which are 51.49% and 32.55% relative

improvements respectively. Compared with the state-of-

the-art methods which use handcrafted aging features and

optimize each component independently, our DCP age esti-

mation model can simultaneously learn aging features and

an age estimator in an end-to-end framework and thus ob-

tains superior performance.

4.3. Comparison with the Deep Baseline Models

The DCP age estimation model is compared with the five

deep baseline models. The cross-population age estima-
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Table 2. Comparison with the five deep baseline cross-population

age estimation models on the Morph II dataset.

Source Target NA DT UP FT DJML DCP

BM
BF 5.93 4.15 3.99 3.93 3.81 3.75

WF 6.79 3.69 3.51 3.48 3.30 3.18

WM
BF 6.71 4.15 4.10 4.05 4.00 3.90

WF 5.57 3.69 3.34 3.32 3.20 3.13

Table 3. Comparison with the five deep baseline cross-population

age estimation models on the WebFace dataset.

Source Target NA DT UP FT DJML DCP

WM
YM 6.78 5.45 5.24 4.75 4.73 4.61

YF 10.06 5.69 5.32 4.91 4.80 4.65

WF
YM 9.24 5.45 5.15 4.82 4.72 4.60

YF 7.41 5.69 4.55 4.49 4.40 4.33

tion results of these models on the Morph II and WebFace

datasets are show in Tables 2 and 3 respectively.

The No Adaptation (NA) model has the largest MAE in

each cross-population case. This is because different pop-

ulations have different aging patterns, so the model trained

on the source population can not perform well on the tar-

get population without any adaptations. From the results

of NA, we can also see that the MAE when both race and

gender are crossed is larger than the MAE when only race

or only gender are crossed. For example, on the Morph II

dataset, the cross-population case BM→BF has a MAE of

5.93 years, while BM→WF has a MAE of 6.79 years. This

is because the aging patterns differences of the populations

with different race and gender are larger than that of popu-

lations with either different race or different gender.

The Direct Training (DT) model performs better than NA

because DT directly uses the target population dataset for

model training. From the results of DT, we can see that the

MAE of BF is larger than the MAE of WF on the Morph II

dataset. The main reason behind this is that it is easier to

detect the facial appearance changes of White people than

those of Black people. We can also see that the MAE of

YF is larger than the MAE of YM on the WebFace dataset.

This is because males and females have different face aging

patterns. Many female faces appear younger than the male

faces because of makeup and accessories. This fact makes

it more difficult to estimate the age of females [5, 36].

When the additional source population training data

were utilised, the United Populations (UP) model has a bet-

ter age estimation performance than the DT model. This

supports the hypothesis that the source population data en-

codes useful knowledge which is beneficial for age estima-

tion on the target population. From the results of UP, we

can also observe that in most cross-population cases, the

more similar the source population and the target popula-

tion, the better the performance of the cross-population age

estimation. For example, on the WebFace dataset, the cross-

population case WF→YF has a MAE of 4.55 years which

Table 4. The age estimation results of the MTNet and MTNet (w/o

cost-sensitive) on the Morph II dataset.

Source MTNet MTNet (w/o cost-sensitive)

BM 3.37 3.39

WM 2.80 2.84

Table 5. The age estimation results of the MTNet and MTNet (w/o

cost-sensitive) on the WebFace dataset.

Source MTNet MTNet (w/o cost-sensitive)

WM 6.64 6.85

WF 6.90 7.17

is better than the case WF→YM with a MAE of 5.15 years.

The reason is that it is easier to transfer the knowledge en-

coded in the source population to the target population when

they are similar.

We can see that the Fine-tune based Transfer (FT) model

performs better than UP on both datasets and in each cross-

population case. This demonstrates that FT is a better trans-

fer strategy than UP for the cross-population problem. The

reason is that UP trains on the union of the source and tar-

get population data directly. It makes the network difficult

to learn since faces with the same age label may have differ-

ent aging patterns if they come from different populations.

The DJML and our DCP model are specifically designed

for the cross-population age estimation problem. We ob-

serve that they perform better than the previous four deep

baseline models. This is because both DJML and our

DCP model use the cross-population pair-wise information

to align the aging features which is critical for the cross-

population age estimation problem. We also see that our

DCP age estimation model obtains the best performance on

both datasets and in each cross-population case. This is

because the DJML does not take the order characteristics

of human ages into account, while the DCP model aligns

the aging features of the source and target populations to a

population-invariant space which captures the order charac-

teristics of human ages. All of these experimental results

and analyses demonstrate that the DCP model is effective

for the cross-population age estimation problem.

4.4. Ablation Experiments

At last of this section, we conduct some ablative stud-

ies to further verify the effectiveness of each component

of the DCP age estimation model. More specifically, we

show the effects of the cost-sensitive feature learning, the

order-preserving feature alignment, and the target popula-

tion training data size.

Effects of the cost-sensitive feature learning. The ef-

fects of the cost-sensitive learning defined in Equations 4

and 5 are evaluated. We conduct experiments on the source

population data since it is relatively large in size. Specif-

ically, we randomly divide the source population data into
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Table 6. The cross-population age estimation results of DCP and

DCP− on the Morph II dataset in each cross-population case.

Source Target DCP DCP−

BM
BF 3.75 3.87

WF 3.18 3.30

WM
BF 3.90 3.98

WF 3.13 3.23

Table 7. The cross-population age estimation results of DCP and

DCP− on the WebFace dataset in each cross-population case.

Source Target DCP DCP−

WM
YM 4.61 4.72

YF 4.65 4.75

WF
YM 4.60 4.74

YF 4.33 4.43

two subsets with an equal size. One is used for training,

while the other for testing. Tables 4 and 5 show the ex-

perimental results. It can be seen that the MTNet with

cost-sensitive learning obtains better performance on both

datasets. These experimental results demonstrate that incor-

porating the inherent cost sensitivity of age estimation into

model training improves the age estimation performance.

Effects of the order-preserving feature alignment. In

order to show the effectiveness of the order-preserving fea-

ture alignment, we make a comparison with DCP− which

does not take the order characteristics of human ages into

consideration. More specifically, in DCP−, the weighing

function defined in Eqn. 7 always equals to 1. The exper-

imental results of these two models are shown in Tables 6

and 7. The DCP outperforms DCP− on both datasets and

in every cross-population case. This is because DCP− sep-

arates pairs with different ages equally without taking into

consideration the difference in their ages. For example, two

pairs of face images with the ages (20, 50) and (20, 21)
are pushed apart equally which is unsatisfactory since faces

with neighbouring ages are generally more similar in ap-

pearance than faces with widely separated ages. In con-

trast, in the order-preserving feature alignment of our DCP

model, the pair with a larger age gap is expected to have

larger distance than that with smaller age gap. As a re-

sult, the order characteristics of human ages is preserved

and thus better performance is obtained.

Effects of the target population training data size.

The cross-population age estimation performance of the

DCP model is evaluated for a range of target population

training data sizes. The purpose of this experiment is to

answer if a smaller number of face images in the target

population can be sufficient for learning. To this end, we re-

duce the number of target population training face images to

{90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%} of the

full training set. The results are shown in Figure 5. As ex-

pected, the performance of our DCP age estimation model

degrades when target population training data are removed.

102030405060708090100

Target training data percentage (%)

0

1

2

3

4

5

6

M
A

E
 (

y
e
a
rs

) 3.75  3.80  3.90
4.09 4.12

 4.30  4.40
4.61

4.97
 5.30

Figure 5. The cross-population age estimation results w.r.t. the

percentage of the training data in the target population.

But, we also observe that a small amount of the target popu-

lation training data is sufficient to learn our DCP model with

a good performance. For example, about 30% of the target

population training data is enough to obtain a MAE which

is within one year difference from the 100% training data.

This is very useful in practice, because only a small amount

of target training data is required to obtain satisfactory age

estimation performance.

5. Conclusions and Future Work

In this paper, we have proposed a DCP model for the

challenging cross-population age estimation problem. The

model includes two training stages. In the first stage, age

estimation is formulated as a ranking problem and a novel

cost-sensitive multi-task loss function is designed, to learn

transferable low-level aging features on the source popula-

tion. In the second stage, a novel order-preserving feature

alignment procedure is designed to align the high-level ag-

ing features, and simultaneously include the target popula-

tion data in the training process. After this two-stage train-

ing, the DCP model effectively transfers the knowledge en-

coded in the source population to the target population. The

DCP model has been evaluated on the two of the largest age

estimation datasets. The experimental results show that the

DCP model is more accurate than two state-of-the-art meth-

ods and five deep baseline models. In the future work, we

plan to study the cross-population age estimation problem

when there are no labeled data in the target population.
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