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Abstract

Video-based person re-identification matches video clips

of people across non-overlapping cameras. Most existing

methods tackle this problem by encoding each video frame

in its entirety and computing an aggregate representation

across all frames. In practice, people are often partially

occluded, which can corrupt the extracted features. In-

stead, we propose a new spatiotemporal attention model

that automatically discovers a diverse set of distinctive body

parts. This allows useful information to be extracted from

all frames without succumbing to occlusions and misalign-

ments. The network learns multiple spatial attention models

and employs a diversity regularization term to ensure mul-

tiple models do not discover the same body part. Features

extracted from local image regions are organized by spatial

attention model and are combined using temporal attention.

As a result, the network learns latent representations of the

face, torso and other body parts using the best available

image patches from the entire video sequence. Extensive

evaluations on three datasets show that our framework out-

performs the state-of-the-art approaches by large margins

on multiple metrics.

1. Introduction

Person re-identification matches images of pedestrians in

one camera with images of pedestrians from another, non-

overlapping camera. This task has drawn increasing atten-

tion in recent years due to its importance in applications,

such as surveillance [42], activity analysis [32] and tracking

[47]. It remains a challenging problem because of complex

variations in camera viewpoints, human poses, lighting, oc-

clusions, and background clutter.

In this paper, we investigate the problem of video-based

∗Work done while employed at Disney Research Pittsburgh.
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Figure 1. Spatiotemporal Attention. In challenging video

re-identification scenarios, a person is rarely fully visible in all

frames. However, frames in which only part of the person is vis-

ible often contain useful information. For example, the face is

clearly visible in the frames 1 and 2, the torso in frame 2, and the

handbag in frames 2, 3 and N . Instead of averaging full frame

features across time, we propose a new spatiotemporal approach

which learns to detect a set of K diverse salient image regions

within each frame (superimposed heatmaps). An aggregate rep-

resentation of each body part is then produced by combining the

extracted per-frame regions across time (weights shown as white

text). Our spatiotemporal approach creates a compact encoding of

the video that exploits useful partial information in each frame by

leveraging multiple spatial attention models, and combining their

outputs using multiple temporal attention models.

person re-identification, which is a generalization of the

standard image-based re-identification task. Instead of
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matching image pairs, the algorithm must match pairs of

video sequences (possibly of different durations). A key

challenge in this paradigm is developing a good latent fea-

ture representation of each video sequence.

Existing video-based person re-identification methods

represent each frame as a feature vector and then com-

pute an aggregate representation across time using aver-

age or maximum pooling [52, 28, 46]. Unfortunately, this

approach has several drawbacks when applied to datasets

where occlusions are frequent (Fig. 1). The feature repre-

sentation generated for each image is often corrupted by the

visual appearances of occluders. However, the remaining

visible portions of the person may provide strong cues for

re-identification. Assembling an effective representation of

a person from these various glimpses should be possible.

However, aggregating features across time is not straight-

forward. A person’s pose will change over time, which

means any aggregation method must account for spatial

misalignment (in addition to occlusion) when comparing

features extracted from different frames.

In this paper, we propose a new spatiotemporal atten-

tion scheme that effectively handles the difficulties of video-

based person re-identification. Instead of directly encoding

the whole image (or a predefined decomposition, such as

a grid), we use multiple spatial attention models to localize

discriminative image regions, and pool these extracted local

features across time using temporal attention. Our approach

has several useful properties:

• Spatial attention explicitly solves the alignment prob-

lem between images, and avoids features from being

corrupted by occluded regions.

• Although many discriminative image regions corre-

spond to body parts, accessories like sunglasses, back-

packs and hats; are prevalent and useful for re-

identification. Because these categories are hard to

predefine, we employ an unsupervised learning ap-

proach and let the neural network automatically dis-

cover a set of discriminative object part detectors (spa-

tial attention models).

• We employ a novel diversity regularization term based

on the Hellinger distance to ensure multiple spatial at-

tention models do not discover the same body part.

• We use temporal attention models to compute an ag-

gregate representation of the features extracted by each

spatial attention model. These aggregate representa-

tions are then concatenated into a final feature vector

that represents all of the information available from the

entire video.

We demonstrate the effectiveness of our approach on

three challenging video re-identification datasets. Our tech-

nique out performs the state-of-the-art methods under mul-

tiple evaluation metrics.

2. Related Work

Person re-identification was first proposed for multi-

camera tracking [42, 38]. Gheissari et al. [11] designed

a spatial-temporal segmentation method to extract visual

cues and employed color and salient edges for foreground

detection. This work defined the image-based person re-

identification as a specific computer vision task.

Image-based person re-identification mainly focuses

on two categories: extracting discriminative features [13, 9,

33, 19, 43] and learning robust metrics [37, 50, 18, 36, 2].

In recent years, researchers have proposed numerous deep

learning based methods [1, 24, 8, 20, 44] to jointly handle

both aspects. Ahmed et al. [1] input a pair of cropped pedes-

trian images to a specifically designed CNN with a binary

verification loss function for person re-identification. In [8],

Ding et al. minimize feature distances between the same

person and maximize the distances among different people

by employing a triplet loss function when training deep neu-

ral networks. Xiao et al. [44] jointly train the pedestrian de-

tection and person re-identification in a single CNN model.

They propose an Online Instance Matching loss function

which learns features more efficiently in large scale verifi-

cation problems.

Video-based person re-identification. Video-based

person re-identification [35, 52, 46, 41, 53, 34] is an exten-

sion of image-based approaches. Instead of pairs of images,

the learning algorithm is given pairs of video sequences. In

[46], You et al. present a top-push distance learning model

accompanied by the minimization of intra-class variations

to optimize the matching accuracy at the top rank for person

re-identification. McLaughlin et al. [35] introduce an RNN

model to encode temporal information. They utilize tem-

poral pooling to select the maximum activation over each

feature dimension and compute the feature similarity of two

videos. Wang et al. [41] select reliable space-time features

from noisy/incomplete image sequences while simultane-

ously learning a video ranking function. Ma et al. [34]

encode multiple granularities of spatiotemporal dynamics

to generate latent representations for each person. A Time

Shift Dynamic Time Warping model is derived to select and

match data between inaccurate and incomplete sequences.

Attention models for person re-identification. Atten-

tion models [45, 22, 21] have grown in popularity since

[45]. Zhou et al. [52] combine spatial and temporal infor-

mation by building an end-to-end deep neural network. An

attention model assigns importance scores to input frames

according to the hidden states of an RNN. The final fea-

ture is a temporal average pooling of the RNN’s outputs.

However, if trained in this way, corresponding weights at

different time steps of the attention model tend to have the
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same values. Liu et al. [30] proposed a multi-directional

attention module to exploit the global and local contents

for image-based person re-identification. However, jointly

training multiple attentions might cause the mode collapse.

The network has to be carefully trained to avoid attention

models focusing on similar regions with high redundancy.

In this paper, we combine spatial and temporal attentions

into spatiotemporal attention models to address the chal-

lenges in video-based person re-identification. For spatial

attention, we use a penalization term to regularize multiple

redundant attentions. We employ temporal attention to as-

sign weights to different salient regions on a per-frame basis

to take full advantage of discriminative image regions. Our

method demonstrates better empirical performance, and de-

composes into an intuitive network architecture.

3. Method

We propose a new deep learning architecture (Fig. 2) to

better handle video re-identification by automatically orga-

nizing the data into sets of consistent salient subregions.

Given an input video sequence, we first use a restricted ran-

dom sampling strategy to select a subset of video frames

(Sec. 3.1). Then we send the selected frames to a multi-

region spatial attention module (Sec. 3.2) to generate a di-

verse set of discriminative spatial gated visual features—

each roughly corresponding to a specific salient region of a

person (Sec. 3.3). The overall representation of each salient

region across the duration of the video is generated using

temporal attention (Sec. 3.4). Finally, we concatenate all

temporal gated features and send them to a fully-connected

layer which represents the latent spatiotemporal encoding

of the original input video sequence. An OIM loss func-

tion, proposed by Xiao et al. [44], is built on top of the FC

layer to supervise the training of the whole network in an

end-to-end fashion. However, any traditional loss function

(like softmax) could also be employed.

3.1. Restricted Random Sampling

Previous video-based person re-identification methods

[35, 34, 52] do not model long-range temporal structure

because the input video sequences are relatively short. To

some degree, this paradigm is only slightly more compli-

cated than image-based re-identification since consecutive

video frames are highly correlated, and the visual features

extracted from one frame do not change drastically over the

course of a short sequence. However, when input video se-

quences are long, any re-identification methodology must

be able to cope with significant visual changes over time,

such as different body poses and angles relative to the cam-

era.

Wang et al. [39] proposed a temporal segment network to

generate video snippets for action recognition. Inspired by

them, we propose a restricted random sampling strategy to

generate compact representations of long video sequences

that still provide good representations of the original data.

Our approach enables models to utilize visual information

from the entire video and avoids the redundancy between

sequential frames. Given an input video V, we divide it

into N chunks {Cn}n=1,N of equal duration. From each

chunk Cn, we randomly sample an image In. The video

is then represented by the ordered set of sampled frames

{In}n=1,N .

3.2. Multiple Spatial Attention Models

We employ multiple spatial attention models to automat-

ically discover salient image regions (body parts or acces-

sories) useful for re-identification. Instead of pre-defining

a rigid spatial decomposition of input images (e.g. a grid

structure), our approach automatically identifies multiple

disjoint salient regions in each image that consistently oc-

cur across multiple training videos. Because the network

learns to identify and localize these regions (e.g. automat-

ically discovering a set of object part detectors), our ap-

proach mitigates registration problems that arise from pose

changes, variations in scale, and occlusion. Our approach is

not limited to detecting human body parts. It can focus on

any informative image regions, such as hats, bags and other

accessories often found in re-identification datasets. Fea-

ture representations directly generated from entire images

can easily miss fine-grained visual cues (Fig. 1). Multiple

diverse spatial attention models, on the other hand, can si-

multaneously discover discriminative visual features while

reducing the distraction of background contents and occlu-

sions. Although spatial attention is not a new concept, to

the best of our knowledge, this is first time that a network

has been designed to automatically discover a diverse set

of attentions within image frames that are consistent across

multiple videos.

As shown in Fig. 2, we adopt the ResNet-50 CNN archi-

tecture [14] as our base model for extracting features from

each sampled image. The CNN has a convolutional layer in

front (named conv1), followed by four residual blocks. We

exploit conv1 to res5c as the feature extractor. As a result,

each image In is represented by an 8×4 grid of feature vec-

tors {fn,ℓ}ℓ=1,L, where L = 32 is the number of grid cells,

and each feature is a D = 2048 dimensional vector.

Multiple attention models are then trained to locate dis-

criminative image regions (distinctive object parts) within

the training data. For the kth model, k ∈ (1, . . . ,K), the

amount of spatial attention sn,k,ℓ given to the feature vector

in cell ℓ is based on a response en,k,ℓ generated by pass-

ing the feature vector through two linear transforms and a

ReLU activation in between. Specifically,

en,k,ℓ = (w′

s,k)
T max(Ws,kfn,ℓ + bs,k, 0) + b′s,k, (1)

where w
′

s,k ∈ R
d, Ws,k ∈ R

d×D, bs,k ∈ R
d and b′s,k ∈ R
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Figure 2. Spatiotemporal Attention Network Architecture. The input video is reduced to N frames using restricted random sampling.

(1) Each image is transformed into feature maps using a CNN. (2) These feature maps are sent to a conventional network followed by

a softmax function to generate multiple spatial attention models and corresponding receptive fields for each input image. A diversity

regularization term encourages learning spatial attention models that do not result in overlapping receptive fields per image. Each spatial

attention model discovers a specific salient image region and generates a spatial gated feature (Fig. 3). (3) Spatial gated features from all

frames are grouped by spatial attention model. (4) Temporal attentions compute an aggregate representation for the set of features generated

by each spatial attention model. Finally, the spatiotemporal gated features for all body parts are concatenated into a single feature which

represents the information contained in the entire video sequence.

are parameters to be learned for the kth spatial attention

model. The first linear transform projects the original fea-

ture to a lower d = 256 dimensional space, and the second

transform produces a scalar value for each feature/cell. The

attention for each feature/cell is then computed as the soft-

max of the responses

sn,k,ℓ =
exp(en,k,ℓ)∑L

j=1
exp(en,k,j)

. (2)

The set sn,k = [sn,k,1, . . . , sn,k,L] of weights defines

the receptive field of the kth spatial attention model (part

detector) for image In. By definition, each receptive field is

a probability mass function since
∑L

ℓ=1
sn,k,ℓ = 1.

For each image In, we generate K spatial gated visual

features {xn,k}k=1,K using attention weighted averaging

xn,k =

L∑

ℓ=1

sn,k,ℓfn,ℓ. (3)

Each gated feature represents a salient part of the input im-

age (Fig. 3). Because xn,k is computed by pooling over the

entire grid ℓ ∈ [1, L], the spatial gated feature contains no

information about the image location from which it was ex-

tracted. As a result, the spatial gated features generated for

a particular attention model across multiple images are all

roughly aligned—e.g. extracted patches of the face all tend

to have the eyes in roughly the same pixel location.

Similar to fine-grained object recognition [26], we pool

information across frames to created an enhanced variant

x̂n,k = E(xn,k) (4)
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Figure 3. Learned Spatial Attention Models. Example images

and corresponding receptive fields for our diverse spatial atten-

tion models when K = 6. Our methodology discovers distinctive

image regions which are useful for re-identification. The attention

models primarily focus on foreground regions and generally corre-

spond to specifc body parts. Our interpretation of each is indicated

at the bottom of each column.

of each spatial gated feature. The enhancement function

E() follows the past work on second-order pooling [5]. See

the supplementary material for further details.

3.3. Diversity Regularization

The outlined approach for learning multiple spatial atten-

tion models can easily produce a degenerate solution. For

a given image, there is no constraint that the receptive field

generated by one attention model needs to be different from

the receptive field of another model. In other words, mul-

tiple attention models could easily learn to detect the same

body part. In practice, we need to ensure each of the N

spatial attention models focuses on different regions of the

given image.

Since each receptive field sn,k has a probabilistic inter-

pretation, one solution is to use the Kullback-Leibler diver-

gence to evaluate the diversity of the receptive fields for a

given image. For notational convenience, we define the ma-

trix Sn ∈ R
K×L as the collection of receptive fields gener-

ated for image In by the K spatial attention models

Sn = [sn,1, . . . , sn,K ]. (5)

Typically, the attention matrix has many values close to

zero after the softmax() function, and these small values

drop sharply when passed though the log() operation in the

Kullback-Leibler divergence. In this case, the empirical ev-

idence suggests the training process is unstable [27].

To encourage the spatial attention models to focus on dif-

ferent salient regions, we design a penalty term which mea-

sures the overlap between different receptive fields. Sup-

pose sn,i and sn,j are two attention vectors in attention ma-

trix Sn. Employing the probability mass property of atten-

tion vectors, we use the Hellinger distance [4] to measure

the similarity of sn,i and sn,j . The distance is defined as

H(sn,i, sn,j) =
1√
2

√√√√
L∑

ℓ=1

(
√
sn,i,ℓ −

√
sn,j,ℓ)2, (6)

=
1√
2
‖√sn,i −

√
sn,j‖2. (7)

Since
∑L

ℓ=1
sn,k,ℓ = 1:

H2(sn,i, sn,j) = 1−
L∑

ℓ=1

(
√
sn,i,ℓsn,j,ℓ). (8)

To ensure diversity of the receptive fields, we need to maxi-

mize the distance between sn,i and sn,j , which is equivalent

to minimizing 1−H2(sn,i, sn,j). We introduce Rn =
√
Sn

for notation convenience, where each element in Rn is the

square root of the corresponding element in Sn. Thus, the

regularization term to measure the redundancy between re-

ceptive fields per image is

Q = ‖(RnR
T

n − I)‖2F , (9)

where ‖ · ‖F denotes the Frobenius norm of a matrix and

I is a K-dimensional identity matrix. This regularization

term Q will be multiplied by a coefficient, and added to the

original OIM loss.

Diversity regularization was recently employed for text

embedding using recurrent networks [27]. In this case, the

authors employed a variant

Q′ = ‖(SnS
T

n − I)‖2F (10)

of our proposed regularization. Although Q and Q′ have

similar formulations, the regularization effects are very dif-

ferent. Q is based on probability mass distributions with
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the constraint
∑L

ℓ=1
sn,k,ℓ = 1 while Q′ can be formulated

on any matrix. Q′ encourages Sn to be sparse – preferring

only non-zero elements along the diagonal of Sn. Although

Q′ forces the receptive fields not to overlap, it also encour-

ages them to be concentrated to a single cell. Q, on the

other hand, allows large salient regions like “upperbody”

while discouraging receptive fields from overlapping. We

compare the performances of the two regularization terms

Q and Q′ in Section 4.3.

3.4. Temporal Attention

Recall that each frame In is represented by a set

{x̂n,1, . . . , x̂n,K} of K enhanced spatial gated features,

each generated by one of the K spatial attention models. We

now consider how best to combine these features extracted

from individual frames to produce a compact representation

of the entire input video.

All parts of an object are seldom visible in every video

frame—either because of self-occlusion or from an explicit

foreground occluder (Fig. 1). Therefore, pooling features

across time using a per-frame weight tn is not sufficiently

robust, since some frames could contain valuable partial in-

formation about an individual (e.g. face, presence of a bag

or other accessory, etc.).

Instead of applying the same temporal attention weight

tn to all features extracted from frame In, we apply mul-

tiple temporal attention weights {tn,1, . . . , tn,K} to each

frame—one for each spatial component. With this ap-

proach, our temporal attention model is able to assess the

importance of a frame based on the merits of the different

salient regions. Temporal attention models which only op-

erate on whole frame features could easily lose fine-grained

cues in frames with moderate occlusion.

Similarly, basic temporal aggregation techniques (com-

pared to temporal attention models) like average pooling or

max pooling generally weaken or over emphasize the con-

tribution of discriminative features (regardless of whether

the pooling is applied per-frame, or per-region). In our ex-

periments, we compare our proposed per-region-per-frame

temporal attention model to average and maximum pooling

applied on a per-region basis, and indeed find that maxi-

mum performance is achieved with our temporal attention

model.

Similar to spatial attention, we define the temporal atten-

tion tn,k for the spatial component k in frame n to be the

softmax of a linear response function

en,k = (wt,k)
T
x̂n,k + bt,k, (11)

where x̂n,k ∈ R
D is the enhanced feature of the kth spatial

component in the nth frame, and wt,k ∈ R
D and bt,k are

parameters to be learned.

tn,k =
en,k∑N

j=1
ej,k

. (12)

The temporal attentions are then used to gate the en-

hanced spatial features on a per component basis by

weighted averaging

xk =

N∑

n=1

tn,kx̂n,k. (13)

Combining (3), (4) and (13) summarizes how we apply

attention on a spatial then temporal basis to extract and align

portions of each raw feature fn,ℓ and then aggregate across

time to produce a latent representation of each distinctive

object region/part

xk =
N∑

n=1

tn,kE

(
L∑

ℓ=1

sn,k,ℓfn,ℓ

)
. (14)

Finally, the entire input video is represented by a feature

vector x ∈ R
K×D generated by concatenating the tempo-

rally gated features of each spatial component

x = [x1, . . . ,xK ]. (15)

3.5. Re­Identification Loss

In this paper, we adopt the Online Instance Matching loss

function (OIM) [44] to train the whole network. Typically,

re-identification uses a multi-class softmax layer as the ob-

jective loss. Often, the number of mini-batch samples is

much smaller than the number of identities in the training

dataset, and network parameter updates can be biased. In-

stead, the OIM loss function uses a lookup table to store fea-

tures of all identities appearing in the training set. In each

forward iteration, a mini-batch sample is compared against

all the identities when computing classification probabili-

ties. This loss function has shown to be more effective than

softmax when training re-identification networks.

4. Experiments

4.1. Datasets

We evaluate the proposed algorithm on three com-

monly used video-based person re-identification datasets:

PRID2011 [15], iLIDS-VID [40], and MARS [48].

PRID2011 consists of person videos from two camera

views, containing 385 and 749 identities, respectively. Only

the first 200 people appear in both cameras. The length of

each image sequence varies from 5 to 675 frames. iLIDS-

VID consists of 600 image sequences of 300 subjects. For

each person we have two videos with the sequence length

ranging from 23 to 192 frames with an average duration

of 73 frames. The MARS dataset is the largest video-

based person re-identification benchmark with 1,261 identi-

ties and around 20,000 video sequences generated by DPM
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detector [10] and GMMCP tracker [7]. Each identity is cap-

tured by at least 2 cameras and has 13.2 sequences on aver-

age. There are 3,248 distractor sequences in the dataset.

For PRID2011 and iLIDS-VID datasets, we follow the

evaluation protocol from [40]. Datasets are randomly split

into probe/gallery identities. This procedure is repeated 10
times for computing averaged accuracies. For the MARS

dataset, we follow the original splits provided by [48] which

use the predefined 631 identities for training and the remain-

ing identities for testing.

4.2. Implementation details and evaluation metrics

We divide each input video sequence into N = 6 chunks

of equal duration. We first pretrain the ResNet-50 model

on image-based person re-identification datasets, including

CUHK01 [23], CUHK03 [24], 3DPeS [3], VIPeR [12],

DukeMTMC-reID [51] and CUHK-SYSU [44]. and then

fine-tune it on PRID2011, iLIDS-VID and MARS training

sets. Once finished, we fix the CNN model and train the set

of multiple spatial attention models with average temporal

pooling and OIM loss function. Finally, the whole network,

except the CNN model, is trained jointly. The input image is

resized to 256×128. The network is updated using batched

Stochastic Gradient Descent with an initial learning rate set

to 0.1 and then dropped to 0.01. The aggregated feature vec-

tor after the last FC layer is embeded into 128-dimensions

and L2-normalized to represent each video sequence. Dur-

ing the training stage, we utilize the Restricted Random

Sampling to select training samples. For each video, we

extract its L2-normalized feature and sent it to the OIM loss

function to supervise the training process. During testing,

we use the first image from each of N segments as a test-

ing sample and its L2-normalized features are utilized to

compute the similarity of the spatiotemporal gated features

generated for the pair of videos being assessed.

Re-identification performance is reported using the rank-

1 accuracy. On the MARS dataset we also evaluate the

mean average precision (mAP) [48]. Since mAP takes re-

call into consideration, it is more suitable for the MARS

dataset which has multiple videos per identity.

4.3. Component Analysis of the Proposed Model

We investigate the effect of each component of our

model by conducting several analytic experiments. In

Tab. 1, we list the results of each component in the proposed

network. Baseline corresponds to ResNet-50 trained with

OIM loss on image-based person re-id datasets and then

jointly fine-tuned on video datasets: PRID2011, iLIDS-

VID, and MARS. SpaAtn consists of the subnetwork of

ResNet-50 (from res2x to res5x) and multiple spatial at-

tention models. All spatial gated features generated by the

same attention model are grouped together and averaged

over all frames. For each video sequence, there will be K

METHOD PRID2011 iLIDS-VID MARS

Baseline 82.7 61.2 73.4 (58.1)

SpaAtn 84.2 64.9 74.5 (59.3)

SpaAtn+Q′ 86.5 64.5 74.0 (58.2)

SpaAtn+Q 86.7 68.6 77.0 (60.9)

SpaAtn+Q+MaxPool 86.9 68.2 76.8 (60.5)

SpaAtn+Q+TemAtn 88.4 69.7 77.1 (61.2)

SpaAtn+Q+TemAtn+Ind 93.2 80.2 82.3 (65.8)

Table 1. Component analysis of the proposed method: rank-1 ac-

curacies are reported. For MARS we provide mAP in brackets.

SpaAtn is the multi-region spatial attention, Q′ and Q are two reg-

ularization terms, MaxPool and TemAtn are max temporal pool-

ing and the proposed temporal attention respectively. Ind repre-

sents fine-tuning the whole network to each dataset independently.

averaged feature vectors. We concatenate the K features

and then send them to the last FC layer and OIM loss func-

tion to train the neural network. Compared with Baseline,

SpaAtn improves the rank-1 accuracy by 1.5%, 3.7%, and

1.1% on PRID2011, iLIDS-VID and MARS, respectively.

This shows that multiple spatial attention models are effec-

tive at finding persistent discriminative image regions which

are useful for boosting re-identification performance.

SpaAtn+Q’ has the same network architecture as

SpaAtn but with the text embedding diversity regular-

ization term Q′ [27]. SpaAtn+Q uses our proposed

diversity regularization term Q based on Hellinger dis-

tance. From the results, we can see that our proposed

Hellinger regularization improves accuracy. We believe

the improvement comes from being able to learn multiple

attention models with sufficiently large (but minimally

overlapping) receptive fields (see Fig.3 for sample receptive

fields generated for the learned attention models using

SpaAtn+Q). SpaAtn+Q and SpaAtn+Q+MaxPool are

strategies for average temporal pooling and maximum

temporal pooling, respectively. SpaAtn+Q+TemAtn

applies multiple temporal attentions to each frame—one

for each diverse spatial attention model. The assigned

temporal attention weights reflect the pertinence of each

spatially attended region (e.g. is the part fully visible and

easy to detect?). We finally fine-tune the whole network,

including the CNN model, to each video dataset indepen-

dently. SpaAtn+Q+TemAtn+Ind is the final result of our

proposed framework.

Different number of spatial attention models: We also

carry out experiments to investigate the effect of varying

the number K of spatial attention models (Tab. 2). When

K = 1, the framework is limited to a single spatial atten-

tion model, which tends to cover the whole body. As K

is increased, the network is able to discover a larger set of

body parts, and since the receptive fields are regularized to

have minimal overlap, the reception fields tend to shrink as
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K PRID2011 iLIDS-VID MARS

1 86.2 64.7 76.0

2 83.4 64.6 75.7

4 86.9 64.6 77.2

6 88.4 69.7 77.1

8 88.0 66.9 76.7

Table 2. The rank-1 accuracy using different number K of diverse

spatial attention models.

METHOD PRID2011 iLIDS-VID MARS

STA [29] 64.1 44.3 -

DVDL [16] 40.6 25.9 -

TDL [46] 56.7 56.3 -

SI2DL [53] 76.7 48.7 -

mvRMLLC+Alignment [6] 66.8 69.1 -

AMOC+EpicFlow [28] 82.0 65.5 -

RNN [35] 70.0 58.0 -

IDE [49] + XQDA [25] - - 65.3 (47.6)

GEI+Kissme [48] 19.0 10.3 1.2 (0.4)

end AMOC+EpicFlow [28] 83.7 68.7 68.3 (52.9)

Mars [48] 77.3 53.0 68.3 (49.3)

SeeForest [52] 79.4 55.2 70.6 (50.7)

QAN [31] 90.3 68.0 -

PAM-LOMO+KISSME [17] 92.5 79.5 -

Ours 93.2 80.2 82.3 (65.8)

Table 3. Comparisons of our proposed approach to the state-of-the-

art on PRID2011, iLIDS-VID, and MARS datasets. The rank-1

accuracies are reported and for MARS we provide mAP in brack-

ets. The best and second best results are marked by red and blue

colors, respectively.

K gets bigger. Interestingly, there is a general drop in per-

form when K is increased from 1 to 2. This implies treating

a person as a single region instead of two distinct body parts

is better. However, when a sufficiently large K = 6 number

of spatial models is used, the network achieves maximum

performance.

Example learned spatial attention models and corre-

sponding receptive fields are shown in Fig. 3. The receptive

fields generally correspond to specific body parts and have

varying sizes dependent on the discovered concept. In con-

strast, the receptive fields generated by [30] tend to include

background clutter and exhibit substantial overlap between

different attention models. Our receptive fields, on the other

hand, have minimal overlap and focus primarily on the fore-

ground regions.

4.4. Comparison with the State­of­the­art Methods

Table 3 reports the performance of our approach with

other state-of-the-art techniques. On each dataset, our

method attains the highest performance. We achieve max-

imum improvement on MARS dataset, where we improve

the state-of-the-art by 11.7%. The previous best reported

results are from PAM-LOMO+KISSME [17] (which learns

signature representation to cater for high variance in a per-

son’s appearance) and from SeeForest [52] (which com-

bines six spatial RNNs and temporal attention followed by

a temporal RNN to encode the input video). In contrast,

our network architecture is intuitive and straightforward to

train. MARS is the most challenging data (it contains dis-

tractor sequences and has a substantially larger gallery set)

and our methodology achieves a significant increase in mAP

accuracy. This result suggests our spatiotemporal model

is very effective for video-based person re-identification in

challenging scenarios.

5. Summary

A key challenge for successful video-based person re-

identification is developing a latent feature representation of

each video as a basis for making comparisons. In this work,

we propose a new spatiotemporal attention mechanism to

achieve better video representations. Instead of extracting

a single feature vector per frame, we employ a diverse set

of spatial attention models to consistently extract similar lo-

cal patches across multiple images (Fig. 3). This approach

automatically solves two common problems in video re-

identification: aligning corresponding image patches across

frames (because of changes in body pose, orientation rela-

tive to the camera, etc.) and determining whether a particu-

lar part of the body is occluded or not.

To avoid learning redundant spatial attention models, we

employ a diversity regularization term based on Hellinger

distance. This encourages the network to discover a set

of spatial attention models that have minimal overlap be-

tween receptive fields generated for each image. Although

diversity regularization is not a new topic, we are the first to

learn a diverse set of spatial attention models for video se-

quences, and illustrate the importance of Hellinger distance

for this task (our experiments illustrate how a diversity reg-

ularization term used in text embedding is less effective for

images).

Finally, temporal attention is used to aggregate features

across frames on a per-spatial attention model basis—e.g.

all features from the facial region are combined. This al-

lows the network to represent each discovered body part

based on the most pertinent image regions within the video.

We evaluated our proposed approach on three datasets and

performed a series of experiments to analyze the effect of

each component. Our method outperforms the state-of-the-

art approaches by large margins which demonstrates its ef-

fectiveness in video-based person re-identification.
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