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Abstract

Interactive image segmentation is characterized by mul-

timodality. When the user clicks on a door, do they intend to

select the door or the whole house? We present an end-to-

end learning approach to interactive image segmentation

that tackles this ambiguity. Our architecture couples two

convolutional networks. The first is trained to synthesize a

diverse set of plausible segmentations that conform to the

user’s input. The second is trained to select among these.

By selecting a single solution, our approach retains com-

patibility with existing interactive segmentation interfaces.

By synthesizing multiple diverse solutions before selecting

one, the architecture is given the representational power to

explore the multimodal solution space. We show that the

proposed approach outperforms existing methods for inter-

active image segmentation, including prior work that ap-

plied convolutional networks to this problem, while being

much faster.

1. Introduction

Interactive image segmentation is an essential building

block of advanced image editing applications. Research

on interactive segmentation dates back decades, with early

work focusing on boundary tracing techniques [18, 32].

Modern approaches aim to classify image regions as fore-

ground or background, treating user input as ground-truth

labels. The classification view rose to prominence with the

graph cut formulation of Boykov and Jolly [4]. Subsequent

work introduced iterative fitting of foreground and back-

ground distributions [37], alternative distance metrics for

label propagation [12, 2, 9, 13, 35], and more powerful ran-

dom field models for pixel-level labeling [22, 8].

From a machine learning perspective, interactive image

segmentation can be viewed as a few-shot active learning

problem. From this standpoint, the system uses a classi-

fier with some form of prior knowledge of objects and their

appearance in images. The classifier is then given ground-

truth labels (‘foreground’, ‘background’) for a very small

number of pixels in a new image. This information must

be used to classify all the other pixels in the image. This

perspective highlights two interrelated challenges: (1) how

to acquire, represent, and apply prior knowledge about ob-

ject appearance, and (2) how to minimize the amount of

ground-truth data (in the form of foreground/background

clicks) that the user must provide at test time.

Until recently, prior knowledge about object appearance

was encoded primarily in hand-crafted features and distance

metrics [4, 37, 12, 2, 9, 13, 35, 5, 24, 8]. At present, con-

volutional networks are the starting point for representing

prior knowledge about object appearance [26, 25, 30]. In-

deed, recent work has shown that convolutional networks

can be applied to interactive segmentation and do yield sig-

nificant gains over prior approaches [41]. Our work builds

on these findings and goes further by introducing different

architectures and loss functions. Our driving motivation is

to make progress on the second challenge: minimizing the

number of labeled samples (clicks) that the user must pro-

vide to achieve a desired level of accuracy.

We focus on a structural issue that becomes apparent

when the number of samples provided by the user is small.

The elusive “holy grail” of interactive image segmentation

is one-shot selection: the user simply points to an object or a

collection of objects by clicking a single pixel, and the sys-

tem segments the desired region. Considering this scenario

clarifies that the problem is ill-posed and characterized by

multimodality. When the user clicks on a person’s jacket,

is the intention to select the jacket, the whole person, or the

group that this person is part of? This multimodality is at

the center of our work.

In this paper, we present an architecture that tackles the

multimodality problem head-on. The first ingredient is a

single fully-convolutional network that is trained to synthe-

size a diverse set of solutions. This network takes a rep-

resentation of the image and the user’s input and produces

a set of possible segmentations. The training loss encour-

ages diversity in the synthesized solutions, with the goal

that each plausible segmentation is represented by at least

one of the proposals. This gives the network the represen-

tational power it needs to deal with the multimodality of

the solution space. However, this is not sufficient because

the system must still produce a single segmentation in or-

der to be compatible with existing image editing interfaces.
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This is addressed by our second ingredient: a network that

is trained to select one of the synthesized segmentations.

Together, the two networks explore the multimodal solu-

tion space and then select the most promising mode. Cru-

cially, at test time this is performed in a single forward pass

through the compound architecture. This can be done in a

fraction of a second on standard hardware, supporting the

use of the presented approach in interactive image editing

systems.

Our work builds on a long line of ideas on multiple

choice learning and diversity in probabilistic models [43, 3,

14, 42, 15, 10, 20, 27, 21]. Most of these formulations were

developed in the context of graphical models and are aimed

at producing a diverse set of solutions. The recent work of

Lee et al. [27] applies these ideas to deep networks, but con-

siders an ensemble of networks and modifies the learning

algorithm to selectively channel the gradient flow through

individual networks in the ensemble. In contrast, our ap-

proach trains a single feed-forward stream that generates

diverse solutions and then selects among them. Our formu-

lation is agnostic to the learning algorithm and is compatible

with modern gradient-based solvers without any modifica-

tion. Training a single model rather than an ensemble re-

duces memory and computational requirements at test time,

and producing a single solution in the end means that our

approach can be used in existing image editing interfaces

and is directly comparable to the most relevant prior work.

We evaluate the presented approach on multiple datasets

and compare it to many prior methods for interactive im-

age segmentation. The experiments demonstrate that the

presented approach outperforms the state of the art in all

regimes. Our approach reduces the number of clicks that

are required to reach a certain accuracy, and increases the

accuracy that is reached in a given number of clicks. The

presented approach is also the fastest. In particular, the

state-of-the-art approach of Xu et al. [41], while based on

convolutional networks, also relies heavily on postprocess-

ing using graph cuts. In contrast, our approach does not re-

quire postprocessing and amounts to a single forward pass

through a compound deep network; as demonstrated by the

experiments, this approach is both faster and more accurate.

We show that the trained model generalizes across datasets

and perform a user study that tests the model’s performance

in real interactive segmentation tasks.

2. Overview

Consider a color image X ∈ R
w×h×3. The interactive

image segmentation model allows the user to segment the

desired region in the image by successively placing positive

(‘foreground’) and negative (‘background’) clicks. Every

time a click is placed, the segmentation is updated. Once

the segmentation matches the region intended by the user,

the process concludes.

At every step, the system must segment the image

given a fixed number of positive and negative clicks:

Sp,Sn ⊂ {0, 1}w×h. The output is a mask that assigns a

binary label to each pixel. We relax the output representa-

tion to be continuous: Y ∈ [0, 1]w×h. A hard segmentation

is obtained by thresholding each pixel at 1/2.

Our goal is to train a model that will admit the image

and the clicks as input and will produce the segmentation as

output: Y = F (X), where X is the input representation. A

key difficulty is that the problem is in general ill-defined

and there are often multiple plausible outputs, especially

when the cardinality of Sp and Sn is small. In particular,

this multimodality poses a difficulty for learning the model

F : fitting a function approximator is hard if the underlying

mapping is not a function. Incorporating explicit provisions

for addressing the multimodal nature of the output can thus

increase the accuracy of the model, even if a single seg-

mentation is produced at the end. We therefore introduce

additional structure into our model.

First, a network f synthesizes M segmentations:

f(X) = Y , where Y ∈ R
w×h×M . (The effect of the hy-

perparameter M on performance will be studied in Sec-

tion 5.) That is, Y is a collection of segmentation masks.

Second, a network g selects one of the M solutions syn-

thesized by f . Specifically, g takes a representation of the

input and the synthesized segmentation masks, and pro-

duces a probability distribution over {1, . . . ,M}. Thus

g(Z) ∈ R
M , where Z is the representation provided to g.

Then F (X) = fargmax g(Z)(X). This is illustrated in Fig-

ure 1.

This additional structure allows the model to explicitly

represent and reason about diverse solutions. A key obser-

vation is that this is useful even when a single solution must

be produced in the end. If the network can only represent

one solution, it will be pulled towards multiple modes dur-

ing training, with a result that may “split the difference”.

The intermediate representation Y allows the network f to

produce multiple clean segmentations. The effect of this

intermediate representation is demonstrated in Figures 1

and 2. The “diverse segmentations” shown in Figure 1 are

intermediate solutions generated by the network f for the

representation Y; the network g then selects among these

intermediate solutions. Figure 2 illustrates the effect of f

and Y in the setting of one input click: the network f pro-

duces plausible segments for the network g to select from.

The network g must still choose one of the intermediate so-

lutions in Y , but these intermediate solutions are higher-

quality because f could fully commit to each mode.

3. Segmentation

Input representation. The input to the segmentation net-

work f consists of the image X , clicks Sp and Sn, distance
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Figure 1. Overview of the presented approach to interactive image segmentation. The input image and the user’s input, represented via

distance transforms, are augmented by feature activations from a pretrained visual perception network. This augmented input representation

is given to a network that synthesizes diverse segmentations that conform to the user’s input. A selection network chooses one of the

predicted segmentations as the output.

transforms defined by the clicks, and per-pixel VGG fea-

tures. Our use of distance transforms follows the work of

Xu et al. [41]. The distance transforms Tp and Tn are single-

channel intensity maps, defined as follows:

Tp(p) = min
q∈Sp

‖p− q‖2

Tn(p) = min
q∈Sn

‖p− q‖2. (1)

The distance transforms are truncated at 255 for efficient

representation. In addition, we apply a VGG-19 net-

work [39] pretrained on the ImageNet dataset [38] to the

image X and extract the feature maps from the follow-

ing layers: ‘conv1 2’, ‘conv2 2’, ‘conv3 2’, ‘conv4 2’, and

‘conv5 2’. The feature maps are bilinearly upsampled to the

resolution of X and are appended to the input tensor. They

can be viewed as per-pixel “hypercolumn” features that are

used to augment the input at full resolution [17]. The total

number of channels in the input is 1,477.

Network architecture. We now present the architecture of

the segmentation network f . Since the number of channels

in the input tensor is very high (1,477), our first step is to

reduce the dimensionality of the data. This is accomplished

by a learned affine projection to a lower-dimensional feature

space. Concretely, the first layer in f is an affine projection

layer (1×1 convolution) that maps the feature column of

each pixel to R
64, yielding 64 feature maps at resolution

w×h.

We then use a context aggregation network (CAN) [44,

7]. The network operates at full resolution and applies 3×3

convolutions with progressively higher dilation, each fol-

lowed by a leaky ReLU [31]. Note that the augmented input

representation enables us to use a dedicated dense predic-

tion network that is trained from scratch for the task at hand,

without being constrained by an architecture that could have

been pretrained for image classification. The network ar-

chitecture is summarized in Table 1. The output layer has

M channels, one for each synthesized segmentation mask.

The final nonlinearity is a sigmoid that maps each pixel to

the range [0, 1]. The next section describes the training loss

for synthesizing diverse high-quality segmentations, and the

network g that selects among them.

4. Diversity

Let D = {(Xi, Yi)} be a training set, where Xi is

the augmented input representation and Yi is the intended

segmentation mask for example i. Given the input rep-

resentation Xi, the network f generates M segmentation

masks: f(Xi;θf ) = 〈f1(Xi;θf ), . . . , fM (Xi;θf )〉. Here

θf is the network’s parameter vector. For training f to gen-

erate diverse high-quality segmentations, our starting point

is the hindsight loss [14, 6]:

∑

i

min
m

ℓ(Yi, fm(Xi;θf )), (2)

where ℓ(A,B) is a loss function that measures the

distance between the ground-truth segmentation mask

A ∈ {0, 1}w×h and the predicted mask B ∈ [0, 1]w×h.

There are many possible loss functions for ℓ, including re-

gression (e.g., Lp) and classification (e.g., cross-entropy).

We choose instead to use a task loss. Specifically, since

segmentation accuracy is commonly evaluated using the

Jaccard (IoU) distance, we use a relaxation of this dis-

tance [40, 23, 33, 1]:

ℓ(A,B) = 1−

∑

p min(A(p), B(p))
∑

p max(A(p), B(p))
, (3)

where A(p) and B(p) are the values of the respective

masks at pixel p. In addition, the input clicks are used as
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(a) Input (b) Segmentation 1 (c) Segmentation 2 (d) Segmentation w/o diversity

Figure 2. Illustration of diversity given one positive input click. (a) shows the input image with a positive click (green). (b) and (c) show

two of the intermediate segmentations in Y . (d) shows the segmentation that would have been produced by the same network f without

diversity (M = 1).

soft constraints:

ℓc(Sp,Sn, B) = ‖Sp ⊙ (Sp −B)‖1

+ ‖Sn ⊙ (Sn − (1−B))‖1, (4)

where ⊙ denotes the Hadamard elementwise product. Com-

bining the two losses, we define

Lf (θf ) =
∑

i

min
m

{

ℓ(Yi, fm(Xi;θf ))

+ ℓc(S
i
p,S

i
n, fm(Xi;θf ))

}

. (5)

The loss Lf allows the different output channels to spe-

cialize and assume responsibility for different modes in the

solution space. The remaining problem is to select one of

them.

Selection network. The selection network g takes as input

the image X , the clicks Sp and Sn, the distance transforms

Tp and Tn, and the output tensor of the segmentation net-

work, f(Xi;θf ). (At training time, we randomly shuffle

the M masks in f(Xi;θf ) before they are handed to g, so

that the network is forced to analyze the content.) The goal

is to select one of the M segmentation masks for presenta-

tion to the user. To this end, the selection network is trained

with the cross-entropy loss:

Lg(θg) =
∑

i

(

−gφi
(Zi;θg) + log

M
∑

m=1

exp
(

gm(Zi;θg)
)

)

, (6)

where Zi is the input to the selection network, φi is the

index of the mask that minimizes the Jaccard distance to Yi,

and θg are the parameters.

Since g is essentially a classification network, we could

use an image classification structure [39]. This did not yield

good results in our experiments. After testing different ar-

chitectures we discovered, surprisingly, that a dense predic-

tion structure followed by average pooling performs much

better. Specifically, for g we use a similar full-resolution

structure to f , as summarized in Table 1. The differences

are that layer 1 (dimensionality reduction) is not needed and

the output is not a w×h×M tensor but an M -vector. This

vector is produced by adding a global average pooling layer

that pools over each full-resolution w×h activation map

in the final tensor. Remarkably, this full-resolution predic-

tion followed by global average pooling [28, 46, 45] signif-

icantly outperforms the baselines in our experiments.

Ranked diversity loss. We have also experimented with

a simple alternative approach that allows selecting a single

solution without using a selection network. This approach

will serve as one of the baselines in our experiments. For

this simple approach, we add a term to the loss Lf that im-

poses an ordering on the synthesized solutions and encour-

ages the network f itself to rank them. Specifically, we

modify the loss function (5) as follows:

LRDL
f (θf ) =

∑

i

min
m

{

ℓ(Yi, fm(Xi;θf ))

+ ℓc(S
i
p,S

i
n, fm(Xi;θf ))

}

+
∑

i

M
∑

m=1

λmℓ(Yi, fm(Xi;θf )), (7)

where {λm} is a decreasing sequence, such as
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Layer 1 2 3 4 5 6 7 8 9 10 11

Convolution 1×1 3×3 3×3 3×3 3×3 3×3 3×3 3×3 3×3 3×3 1×1

Dilation 1 1 2 4 8 16 32 64 128 1 1

Receptive field 1×1 3×3 7×7 15×15 31×31 63×63 127×127 255×255 511×511 513×513 513×513

Width 64 64 64 64 64 64 64 64 64 64 M

Table 1. The architecture of the segmentation network f .

λm = 10−2 · 2M−m. The additional term breaks the

symmetry between the solutions and imposes an ordering

on them.

5. Evaluation

5.1. Experimental setup

Datasets. For training, we use the Semantic Boundaries

Dataset (SBD) [16]. This dataset provides high-quality

boundaries and is not restricted to a particular domain. SBD

uses images from the Pascal VOC challenge [11], but pro-

vides many more object masks; it is essentially an aug-

mented version of Pascal VOC with the same images but

more comprehensive annotations. Specifically, SBD pro-

vides binary object segmentation masks for all the objects

in the training and validation sets of the Pascal VOC 2011

challenge. The dataset includes 8,498 training images and

2,820 test images. We use the training set for training, and

test on the test set.

To evaluate cross-dataset generalization, we also evalu-

ate the trained model on a number of other datasets:

• GrabCut [37]. This dataset contains 49 images and

corresponding segmentation masks that delineate a

salient foreground object.

• DAVIS [34]. This dataset was created to evaluate video

segmentation algorithms, but individual frames from

the video sequences can also be used to evaluate image

segmentation. We chose this dataset due to its diversity

and the high quality of the ground-truth segmentation

masks. The dataset contains 50 HD video sequences

with pixel-accurate segmentation masks. We sample

10% of the annotated frames at random, yielding 345

images that are used in the evaluation.

• Microsoft COCO [29]. We sample 800 object in-

stances from the validation set. Specifically, we sam-

ple 10 images from each of the 80 categories, and

choose a ground-truth object instance at random for

each sampled image.

Note that we do not train on GrabCut, DAVIS, or COCO.

Our model is trained only once, on the SBD training set.

Testing this model on GrabCut, DAVIS, and COCO verifies

that the model generalizes across datasets.

Baselines. We compare the presented approach to a num-

ber of well-known interactive image segmentation models:

graph cuts [4], random walks [12], geodesic matting [2],

Euclidean star convexity [13], and geodesic star convex-

ity [13]. We also compare to the deep object section (DOS)

approach [41], which is our main baseline. The complete

DOS system uses graph cuts to refine the mask produced by

a convolutional network. We therefore also evaluate the per-

formance of the DOS network itself, without the graph cut

post-processing. The DOS network is trained on the same

data as our segmentation network, using the same training

procedure.

Training. To generate the positive and negative clicks for

training, we follow the simulation protocol of Xu et al. [41].

This generates a set of simulated clicks for each instance

in the SBD training set. The network f is trained using

Adam [19], with single-image minibatches and learning rate

10−4. Training proceeds for 100 epochs. The network g is

then trained using the same procedure.

Testing. At test time, clicks are generated on the fly during

the evaluation, to simulate user interaction. Let O be the

ground-truth object mask. The first click is positive and is

sampled from the following probability distribution over O:

P (p;O) =
d(p, ∂O)

∑

q∈O
d(q, ∂O)

, (8)

where d(p, ∂O) is the geodesic distance of the pixel p to the

boundary ∂O of the ground-truth mask. Each subsequent

click is placed on a pixel that is still misclassified. (Recall

that the predicted segmentation is updated after each click.)

Let O′ be the set of misclassified pixels. The next click is

sampled from the distribution P (·;O′) over O′. This pro-

cess continues until the number of clicks reaches 20.

5.2. Results

Table 2 reports the average number of clicks required to

reach 85% and 90% IoU on each dataset. Our approach

outperforms all the baselines on all datasets, including the

three datasets on which it was not trained (GrabCut, DAVIS,

and COCO). For example, the number of clicks to reach

85% IoU required by DOS (with post-processing) is higher

than the number of clicks required by our approach by 59%

on the standard GrabCut dataset. Note that the performance
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DAVIS GrabCut SBD COCO mean
time (ms)

Method 85% 90% 85% 90% 85% 90% 85% 90% 85% 90%

Random walk 16.71 18.31 11.36 13.77 12.22 15.04 13.62 16.74 13.48 15.96 437

Geodesic matting 18.59 19.50 13.32 14.57 15.36 17.60 16.91 18.63 16.04 17.57 919

Graph cut 15.13 17.41 7.98 10.00 13.60 15.96 15.23 17.61 12.98 15.24 1348

Euclidean star convexity 15.41 17.70 7.24 9.20 12.21 14.86 14.04 16.98 12.25 14.68 1314

Geodesic star convexity 15.35 17.52 7.10 9.12 12.69 15.31 14.39 16.89 12.38 14.63 1249

DOS w/o GC 12.52 17.11 8.02 12.59 14.30 16.79 13.99 16.88 12.21 15.84 112

DOS with GC 9.03 12.58 5.08 6.08 9.22 12.80 9.07 13.55 8.10 11.25 549

Our approach 5.95 9.57 3.20 4.79 7.41 10.78 7.86 12.45 6.11 9.39 236

Table 2. Average number of clicks required to reach a certain IoU on each of the four datasets. Lower is better. Our approach outperforms

all prior methods. The last column shows the running time of different methods on VGA-resolution images.
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Figure 3. Jaccard error versus the number of clicks on the DAVIS, GrabCut, SBD, and COCO datasets.

of the DOS network without post-processing is much worse,

requiring 151% more clicks on GrabCut and 100% more

clicks across the four datasets to reach 85% IoU.

Table 2 also reports the running time of different meth-

ods. Running time was measured on a workstation with

an i7-5960X 3.0GHz CPU and a Titan X GPU. Our ap-

proach is 2.3 times faster than DOS, primarily due to the

time-consuming postprocessing employed in that pipeline.

Figure 3 plots the Jaccard error versus the number of

clicks on each dataset. Our approach again outperforms

all the baselines. For example, after a single click on the

DAVIS dataset, the Jaccard error of the segmentation pro-

duced by DOS is higher than the error of our segmentation

by 87%. (Note that older approaches require at least two

clicks – one positive and one negative – to produce a re-

sult.) The error of the DOS segmentation after two clicks is

higher than our error by 81%.

Qualitative results are provided in Figure 4.

Controlled experiments. Table 3 reports the results of a

controlled analysis of each component in the presented ap-

proach. For each condition in this experiment, we take our

full model and remove or replace a single idea to evaluate

its contribution to the total performance. First, we disable
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Figure 4. (a) One image from each dataset, with one positive and one negative click. (b) Ground-truth segmentation mask. (c-e) Segmen-

tation results generated for this input by graph cuts [4], deep object selection [41], and our approach.

the augmented input representation (VGG feature maps as

input) described in Section 3 (“Without augmented input”

condition). Next, we replace the task loss (IoU) by two

alternative losses (cross-entropy or L1). Next, we remove

network g, reduce the number of output channels in f to 1,

and train f with the task loss to produce a single segmen-

tation mask that is used as the model’s output (“Without

diversity” condition). Next, we evaluate the performance

of the pipeline without the distance transforms Tp and Tn
in the input representations (“Without distance transforms”

condition), without the clicks Sp and Sn in the input repre-

sentation (“Without click input” condition), and without the

soft constraints (4) in the loss (“Without soft constraints”

condition). Finally, we replace the network g by the ranked

diversity loss (RDL, (7)). The results demonstrate that all

the ideas presented in the paper contribute to the model’s

performance.

We now analyze the effect of the number M of inter-

mediate solutions. Figure 5 plots the average number of

Model #clicks

Without augmented input 9.41

Without IoU loss (replaced by cross-entropy) 7.18

Without IoU loss (replaced by L1) 6.93

Without diversity 7.26

Without distance transforms 9.11

Without click input 9.67

Without soft constraints 6.32

Selection network g replaced by RDL 6.13

Full model 5.95

Table 3. Ablation study that evaluates the contribution of different

ideas to the performance of the presented model. The table reports

the average number of clicks required to achieve 85% IoU on the

DAVIS dataset.

clicks required to achieve 85% or 90% IoU on the DAVIS

and GrabCut datasets for different settings of M between 1
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Figure 5. Effect of the hyperparameter M . Each curve shows the

average number of clicks (vertical axis) required to achieve 85% or

90% IoU on the DAVIS and GrabCut datasets for different settings

of M (horizontal axis).

and 8. The results indicate that increasing the number of

intermediate solutions helps up to M = 6, at which point

the performance plateaus. We therefore use M = 6 in all

other experiments.

Next, we perform a controlled experiment that studies

the effect of the specific ConvNet architecture we used. As

described in Section 3, we used the context aggregation net-

work (CAN) for dense prediction [44, 7]. We can use a dif-

ferent architecture for this purpose, such as the U-net [36].

Table 4 reports the performance of the presented approach

when the segmentation network f uses the U-net architec-

ture rather than the CAN. The results indicate that the CAN

is somewhat more effective, but the difference is mild and

the presented approach would outperform all baselines with

the U-net as well.

DAVIS GrabCut

Model 85% 90% 85% 90%

U-net 6.25 9.96 3.22 4.81

CAN 5.95 9.57 3.20 4.79

Table 4. The effect of specific architecture of the segmentation

subnetwork f . Average number of clicks required to reach 85%

and 90% IoU on the DAVIS and GrabCut datasets.

User study. We conducted a user study to evaluate the per-

formance of the presented approach with real human input.

Five paid participants were given a tutorial on the interface

and then performed 30 interactive segmentation tasks each.

In a single task, the participant is given an image and the

desired segmentation mask, and is asked to obtain the de-

sired mask by placing positive and negative clicks. The task

continues until 20 clicks are placed or 85% IoU is reached.

Each image/mask pair is given three times, with a differ-
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Figure 6. User study. Participants performed interactive segmen-

tation tasks until 20 clicks or 85% IoU were reached. This figure

shows the average numbers of clicks (horizontal) required to reach

a certain Jaccard error (vertical). Left is better.

ent model driving the segmentation interface in each trial:

graph cuts, DOS (with post-processing), and our approach.

The order of the conditions is randomized every time. The

participants were not told what the conditions are, merely

that there are different models driving the interface. The

image/mask pairs are randomly sampled from the DAVIS

dataset. In total, 50 segmentation tasks were performed

with each model, across participants and across randomized

trials. The results are shown in Figure 6. The desired seg-

mentation was obtained with the smallest number of clicks

when the interface was driven by the presented model. The

average number of clicks to reach 85% IoU was 4.36 with

the presented approach versus 7.14 with DOS and 12.90

with graph cuts.

6. Conclusion

We have presented a new approach to interactive image

segmentation. Our approach reduces user-guided segmen-

tation to a forward pass in a convolutional network. The

network is structured so as to represent multiple segmenta-

tions before selecting one for display. We have shown that

the presented model outperforms all prior approaches to in-

teractive segmentation, while being the fastest.
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[46] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Tor-

ralba. Learning deep features for discriminative localization.

In CVPR, 2016. 4

585


