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Abstract

Stereo matching algorithms usually consist of four steps,

including matching cost calculation, matching cost aggre-

gation, disparity calculation, and disparity refinement. Ex-

isting CNN-based methods only adopt CNN to solve parts of

the four steps, or use different networks to deal with differ-

ent steps, making them difficult to obtain the overall optimal

solution. In this paper, we propose a network architecture to

incorporate all steps of stereo matching. The network con-

sists of three parts. The first part calculates the multi-scale

shared features. The second part performs matching cost

calculation, matching cost aggregation and disparity cal-

culation to estimate the initial disparity using shared fea-

tures. The initial disparity and the shared features are used

to calculate the feature constancy that measures correct-

ness of the correspondence between two input images. The

initial disparity and the feature constancy are then fed into

a sub-network to refine the initial disparity. The proposed

method has been evaluated on the Scene Flow and KITTI

datasets. It achieves the state-of-the-art performance on

the KITTI 2012 and KITTI 2015 benchmarks while main-

taining a very fast running time. Source code is available at

http://github.com/leonzfa/iResNet.

1. Introduction

Stereo matching aims to estimate correspondences of

all pixels between two rectified images [1, 23, 6]. It is a

core problem for many stereo vision tasks and has numer-

ous applications in areas such as autonomous vehicles [29],

robotics navigation [25], and augmented reality [33].

Stereo matching has been intensively investigated for

several decades, with a popular four-step pipeline being de-

veloped. This pipeline includes matching cost calculation,

matching cost aggregation, disparity calculation and dis-

∗Equal contribution.

parity refinement [23]. The four-step pipeline dominants

existing stereo matching algorithms [24, 22, 9, 21], while

each of its steps is important to the overall stereo matching

performance. Due to the powerful representative capabil-

ity of deep convolution neural network (CNN) for various

vision tasks [14, 31, 15], CNN has been employed to im-

prove stereo matching performance and outperforms tradi-

tional methods significantly [28, 32, 12, 17, 16].

Zbontar and LeCun [32] first introduced CNN to cal-

culate the matching cost to measure the similarity of two

pixels of two images. This method achieved the best per-

formance on the KITTI 2012 [3], KITTI 2015 [18] and

Middlebury [23, 24, 22, 9, 21] stereo datasets at that time.

They argued that it is unreliable to consider only the differ-

ence of photometry in pixels or hand-crafted image features

for matching cost. In contrast, CNN can learn more robust

and discriminative features from images, and produces im-

proved stereo matching cost. Following the work [32], sev-

eral methods were proposed to improve the computational

efficiency [16] or matching accuracy [28]. However, these

methods still suffer from few limitations. First, to calcu-

late the matching cost at all potential disparities, multiple

forward passes have to be conducted by the network, re-

sulting in high computational burden. Second, the pixels

in occluded regions (i.e., only visible in one of the two im-

ages) cannot be used to perform training. It is therefore

difficult to obtain a reliable disparity estimation in these re-

gions. Third, several heuristic post-processing steps are re-

quired to refine the disparity. The performance and the gen-

eralization ability of these methods are therefore limited, as

a number of parameters have to be chosen empirically.

Alternatively, the matching cost calculation, matching

cost aggregation and disparity calculation steps can be

seamlessly integrated into a CNN to directly estimate the

disparity from stereo images [17, 12]. Traditionally, the

matching cost aggregation and disparity calculation steps

are solved by minimizing an energy function defined upon

matching costs. For example, the Semi-Global Matching
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(SGM) method [8] uses dynamic programming to optimize

a path-wise form of the energy function in several direc-

tions. Both the energy function and its solving process are

hand-engineered. Different from the traditional methods,

Mayer et al. [17] and Kendall et al. [12] directly stacked

several convolution layers upon the matching costs, and

trained the whole neural network to minimize the distance

between the network output and the groundtruth disparity.

These methods can achieve higher accuracy and computa-

tional efficiency than the methods that use CNN for match-

ing cost calculation only.

If all steps are integrated into a whole network for joint

optimization, better disparity estimation performance can

be expected. However, it is non-trivial to integrate the dis-

parity refinement step with the other three steps. Existing

methods [4, 19] used additional networks for disparity re-

finement. Specifically, once the disparity is calculated by

CNN, one network or multiple networks are introduced to

model the joint space of the inputs (including stereo images

and initial disparity) and the output (i.e., refined disparity)

to refine the disparity.

To bridge the gap between disparity calculation and dis-

parity refinement, we propose to use feature constancy to

identify the correctness of the initial disparity, and then per-

form disparity refinement using feature constancy. Here,

“constancy” is borrowed from the area of optical estimation,

where “grey value constancy” and “gradient constancy”

are used [2]. “Feature constancy” means the correspon-

dence of two pixels in feature space. Specifically, the fea-

ture constancy includes two terms, i.e., feature correlation

and reconstruction error. The correlation between features

extracted from left and right images is considered as the

first feature constancy term, which measures the correspon-

dence at all possible disparities. The reconstruction error

in feature space is considered as the second feature con-

stancy term estimated with the knowledge on initial dispar-

ity. Then, the disparity refinement task aims to improve

the quality of the initial disparity given the feature con-

stancy, this can be implemented by a small sub-network.

These will be further explained in Sec. 3.3. Experiments on

the Scene Flow and KITTI datasets have showed the effec-

tiveness of our disparity refinement approach. Our method

seamlessly integrates the disparity calculation and disparity

refinement into one network for joint optimization, and im-

proves the accuracy of the initial disparity by a notable mar-

gin. Our method achieves the state-of-the-art performance

on the KITTI 2012 and KITTI 2015 benchmarks. It also has

a very high running efficiency.

The contributions of this paper can be summarized as

follows: 1) We integrate all steps of stereo matching into

one network to improve accuracy and efficiency; 2) We per-

form disparity refinement with a sub-network using the fea-

ture constancy; 3) We achieve the state-of-the-art perfor-

mance on the KITTI benchmarks.

2. Related works

Over the last few years, CNN has been introduced to

solve various problems in stereo matching. Existing CNN-

based methods can broadly be divided into the following

three categories.

2.1. CNN for Matching Cost Learning

In this category, CNN is used to learn the matching

cost. Zbontar and LeCun [32] trained a CNN to compute

the matching cost between two image patches (e.g., 9 ×

9), which is followed by several post-processing steps, in-

cluding cross-based cost aggregation, semi-global match-

ing, left-right constancy check, sub-pixel enhancement, me-

dian filtering and bilateral filtering. This architecture needs

multiple forward passes to calculate matching cost at all

possible disparities. Therefore, this method is computation-

ally expensive. Luo et al. [16] introduced a product layer

to compute the inner product between the two representa-

tions of a siamese architecture, and trained the network as

multi-class classification over all possible disparities to re-

duce computational time. Park and Lee [20] introduced a

pixel-wise pyramid pooling scheme to enlarge the recep-

tive field during the comparison of two input patches. This

method produced more accurate matching cost than [32].

Shaked and Wolf [28] deepened the network for match-

ing cost calculation using a highway network architecture

with multi-level weighted residual shortcuts. It was demon-

strated that this architecture outperformed several networks,

such as the base network from MC-CNN [32], the conven-

tional high-way network [30], ResNets [7], DenseNet [10],

and the ResNets of ResNets [34].

2.2. CNN for Disparity Regression

In this category, CNN is carefully designed to directly

estimate the disparity, which enables end-to-end training.

Mayer et al. [17] proposed an encoder-decoder architecture

for disparity regression. The matching cost calculation is

seamlessly integrated into the encoder part. The disparity is

directly regressed in a forward pass. Kendall et al. [12] used

3-D convolutions upon the matching costs to incorporate

contextual information and introduced a differentiable “soft

argmin” operation to regress the disparity. Both methods

can run very fast, with 0.06s and 0.9s consumed on a single

Nvidia GTX Titan X GPU, respectively. However, disparity

refinement is not included in these networks, which limits

their performance.

2.3. Multiple Sub­networks

In this category, different networks are used to han-

dle the four steps for stereo matching. Shaked and Wolf
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Figure 1. The architecture of our proposed network. It incorporates all of the four steps for stereo matching into a single network. Note

that, the skip connections between encoder and decoder at different scales are omitted here for better visualization.

[28] used their highway network for matching cost calcu-

lation and an additional global disparity CNN to replace

the “winner-takes-all” strategy used in conventional match-

ing cost aggregation and disparity calculation steps. This

method improves performance in several challenging situ-

ations, such as in occluded, distorted, highly reflective and

sparse textured regions. Gidaris et al. [4] used the method

in [16] to calculate the initial disparity, and then applied

three additional neural networks for disparity refinement.

Seki and Pollefeys [27] proposed SGM-Nets to learn the

SGM parametrization. They obtained better penalties than

the hand tuned method used in MC-CNN [32]. Peng et. al

[19] built their work upon [17] by cascading an additional

network for disparity refinement.

In our work, we incorporate all steps into one network.

As a result, all steps can share the same features and can

be optimized jointly. Besides, we introduce feature con-

stancy into our network for improved disparity refinement

using both feature correlation and reconstruction error. It is

clearly demonstrated that better disparity estimation perfor-

mance can be achieved by our method.

3. Approach

Different from existing methods that use multiple net-

works for different steps in stereo matching, we incorporate

all steps into a single network to enable end-to-end train-

ing. The proposed network consists of three parts: multi-

scale shared feature extraction, initial disparity estimation

and disparity refinement. The framework of the proposed

network is shown in Figure 1, and the network architecture

is described in Table 1.

3.1. Stem Block for Multi­scale Feature Extraction

The stem block extracts multi-scale shared features from

the two input images for both initial disparity estimation

and disparity refinement sub-networks. It contains two con-

volution layers with stride of 2 to reduce the resolution of

inputs, and two deconvolution layers to up-sample the out-

puts of the two convolution layers to full-resolution. The

up-sampled features are fused through an additional 1 × 1

convolution layer. An illustration is shown in Figure 1. The

outputs of this stem block can be divided into three types:

1) The outputs of the second convolution layer (i.e.,

conv2a for the left image and conv2b for the right im-

age). Correlation with a large displacement (i.e., 40)

is performed between conv2a and conv2b to capture

the long-range but coarse-grained correspondence be-

tween two images. It is used by the first sub-network

for initial disparity estimation.

2) The outputs of the first convolution layer (i.e., conv1a

and conv1b). They are first compressed to fewer chan-

nels to obtain c conv1a and c conv1b through a con-

2813



volution layer with a kernel size of 3×3, on which

correlation with a small displacement (i.e., 20) is per-

formed to capture short-range but fine-grained cor-

respondence, which is complementary to the former

correlation. Besides, these features also act as the

first feature constancy term used by the second sub-

network.

3) Multi-scale fusion features (i.e., up 1a2a and

up 1b2b). They are first used as skip connection

features to bring detailed information for the first sub-

network. They are then used to calculate the second

feature constancy term for the second sub-network.

3.2. Initial Disparity Estimation Sub­network

This sub-network generates a disparity map from

“conv2a” and “conv2b” through an encoder-decoder archi-

tecture, which is inspired by DispNetCorr1D [17]. Disp-

NetCorr1D can only produce disparity of half resolution.

Using the full-resolution multi-scale fusion features as skip

connection features, we are able to estimate initial dispar-

ity of full resolution. The multi-scale fusion features are

also used to calculate the reconstruction error, as will be de-

scribed in Sec. 3.3. In this sub-network, a correlation layer

[17] is first introduced to calculate the matching costs in

feature space (i.e., inner product between two feature maps

at every possible disparity). There is a trade-off between

accuracy and computational efficiency for matching cost

calculation. That is, if matching cost is calculated using

high-level features, more details are lost and several sim-

ilar correspondences cannot be distinguished. In contrast,

if matching cost is calculated using low-level features, the

computational cost is high as feature maps are too large, and

the receptive field is too small to capture robust features.

The matching cost is then concatenated with features

from the left image. By concatenation, we expect the sub-

network to consider low-level semantic information when

performing disparity estimation over the matching costs. To

some extend, it helps aggregate the matching cost and im-

proves disparity estimation.

Disparity estimation is performed in the decoder part at

different scales, where skip connection is introduced at each

scale, as illustrated in Table 1. For the sake of computa-

tional efficiency, the multi-scale fusion features (described

in Sec. 3.1) are only skip connected to the last layer of

the decoder to perform full-resolution disparity estimation.

This sub-network is called DES-net.

3.3. Disparity Refinement Sub­network

Although the disparity map estimated in Sec. 3.2 is al-

ready good, it still suffers from several challenges such as

depth discontinuities and outliers. Consequently, disparity

refinement is required to further improve the depth estima-

tion performance.

Table 1. The detailed architecture of our network. Note that, in the

“Input” column, “+” means concatenation into one bottom blob,

while “,” means the inputs are fed into different bottom blobs, in

which case the input channel number means the channel number

of each bottom blob.

Type Name k s c I/O Input

Stem Block for Multi-scale Shared Features Extraction

Conv
conv1a

conv1b
7 2 3/64

left image

right image

Deconv
up 1a

up 1b
4 2 64/32

conv1a

conv1b

Conv
conv2a

conv2b
5 2 64/128

conv1a

conv1b

Deconv
up 2a

up 2b
8 4 128/32

conv2a

conv2b

Conv
up 1a2a

up 1b2b
1 1 64/32

up 1a+up 2a

up 1b+up 2b

Initial Disparity Estimation Sub-network

Corr corr1d 1 1 128/81 conv2a, conv2b

Conv conv redir 1 1 128/64 conv2a

Conv conv3 3 2 145/256 corr1d+conv redir

Conv conv3 1 3 1 256/256 conv3

Conv conv4 3 2 256/512 conv3 1

Conv conv4 1 3 1 512/512 conv4

Conv conv5 3 2 512/512 conv4 1

Conv conv5 1 3 1 512/512 conv5

Conv conv6 3 2 512/1024 conv5 1

Conv conv6 1 3 1 1024/1024 conv6

Conv disp6 3 1 1024/1 conv6 1

Deconv uconv5 4 2 1024/512 conv6 1

Conv iconv5 3 1 1025/512 uconv5+disp6+conv5 1

Conv disp5 3 1 512/1 iconv5

Deconv uconv4 4 2 512/256 iconv5

Conv iconv4 3 1 769/256 uconv4+disp5+conv4 1

Conv disp4 3 1 256/1 iconv4

Deconv uconv3 4 2 256/128 iconv4

Conv iconv3 3 1 385/128 uconv3+disp4+conv3 1

Conv disp3 3 1 128/1 iconv3

Deconv uconv2 4 2 128/64 iconv3

Conv iconv2 3 1 193/64 uconv2+disp3+conv2a

Conv disp2 3 1 64/1 iconv2

Deconv uconv1 4 2 64/32 iconv2

Conv iconv1 3 1 97/32 uconv1+disp2+conv1a

Conv disp1 3 1 32/1 iconv1

Deconv uconv0 4 2 32/32 iconv1

Conv iconv0 3 1 65/32 uconv0+disp1+up 1a2a

Conv disp0 3 1 32/1 iconv0

Disparity Refinement Sub-network

Warp w up 1b2b - - 32/32 up 1b2b, disp0

Conv r conv0 3 1 65/32
|up 1a2a-w up 1b2b|
+disp0+up 1a2a

Conv r conv1 3 2 32/64 r conv0

Conv
c conv1a

c conv1b
3 1 64/16

conv1a

conv1b

Corr r corr 1 1 16/41 c conv1a, c conv1b

Conv r conv1 1 3 1 105/64 r conv1+r corr

Conv r conv2 3 2 64/128 r conv1 1

Conv r conv2 1 3 1 128/128 r conv2

Conv r res2 3 1 128/1 r conv2 1

Deconv r uconv1 4 2 128/64 r conv2 1

Conv r iconv1 3 1 129/64 r uconv1+r res2+r conv1 1

Conv r res1 3 1 64/1 r iconv1

Deconv r uconv0 4 2 64/32 r iconv1

Conv r iconv0 3 1 65/32 r uconv1+r res1+r conv0

Conv r res0 3 1 32/1 r iconv0

In this paper, we perform disparity refinement using fea-

ture constancy. Specifically, once the initial disparity dispi
is obtained using DES-net, we calculate the two feature con-

stancy terms (i.e., feature correlation fc and reconstruction

error re). Then, the task of disparity refinement is to obtain

the refined disparity dispr considering these three types of
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information, i.e.,

{dispi, fc, re}
CNN
−−−→ dispr (1)

Specifically, the first feature constancy term fc is calculated

as the correlation between feature maps of the left and right

images (i.e., c conv1a and c conv1b). fc measures the cor-

respondence of two feature maps at all displacements in

disparity range that considered. It produces large values at

correct disparities. The second feature constancy term re is

calculated as the reconstruction error of the initial disparity,

i.e., the absolute difference between the multi-scale fusion

features (Sec. 3.1) of the left image and the back-warped

features of the right image. Note that, to calculate re, only

one displacement is conducted at each location in feature

maps, which relies on the corresponding value of the initial

disparity. If the reconstruction error is large, the estimated

disparity is more likely to be incorrect or from occluded re-

gions.

In practice, given the initial disparity produced by the

disparity estimation sub-network (Sec. 3.2), the disparity

refinement sub-network estimates the residual to the initial

disparity. The summation of the residual and the initial dis-

parity is considered as the refined disparity map. Since both

the initial disparity and the two feature constancy terms are

used to produce the disparity map dispr (as shown in Eq.

(1), the disparity estimation performance is expected to be

improved. This sub-network is called DRS-net. Note that,

since the four steps for stereo matching are integrated into a

single CNN network, end-to-end training is ensured.

3.4. Iterative Refinement

To extract more information from the multi-scale fu-

sion features and to ultimately improve the disparity esti-

mation accuracy, an iterative refinement approach is pro-

posed. Specifically, the refined disparity map produced by

the second sub-network (Sec. 3.3) is considered as a new

initial disparity map, the feature constancy calculation and

disparity refinement processes are then repeated to obtain a

new refined disparity. This procedure is repeated until the

improvement between two consecutive iterations is small.

Note that, as the number of iterations is increased, the im-

provement decreases.

4. Experiments

In this section, we evaluate our method iResNet (iterative

residual prediction network) on two datasets, i.e., Scene

Flow [17] and KITTI [3, 18]. The Scene Flow dataset [17]

is a synthesised dataset containing 35, 454 training image

pairs and 4, 370 test image pairs. Dense groundtruth dis-

parities are provided for both training and test sets. Be-

sides, this dataset is sufficiently large to train a model with-

out over-fitting. Therefore, the Scene Flow dataset [17]

is used to investigate different aspects of our method in

Sec. 4.1. The KITTI dataset includes two subsets, i.e.,

KITTI 2012 and KITTI 2015. The KITTI 2012 dataset con-

sists of 194 training image pairs and 195 test image pairs,

while the KITTI 2015 dataset consists of 200 training im-

age pairs and 200 test image pairs. These images were

recorded in real scenes under different weather conditions.

Our method is further compared to the state-of-the-art meth-

ods on the KITTI dataset (Sec. 4.2), with the best results

being achieved.

Our method was implemented in CAFFE [11]. All mod-

els were optimized using the Adam method [13] with β1 =

0.9, β2 = 0.999, and a batch size of 2. “Multi-step” learning

rate was used for the training. Specifically, for training on

the Scene Flow dataset, the learning rate was initially set to

10−4 and then reduced by a half at the 200k-th, 350k-th and

500k-th iterations, the training was stopped at the 650k-th

iteration. This training procedure was repeated for an addi-

tional round to further optimize the model. For fine-tuning

on the KITTI dataset, the learning rate was set to 2× 10−5

for the first 20k iterations and then reduced to 10−5 for the

subsequent 120k iterations.

Data augmentation was also conducted for training, in-

cluding spatial and chromatic transformations. The spatial

transformations include translation, cropping and scaling,

while the chromatic transformations includes color, contrast

and brightness transformations. This data augmentation can

help to learn a robust model against illumination changes

and noise.

4.1. Ablation Experiments

In this section, we present several ablation experiments

on the Scene Flow dataset to justify our design choices. For

evaluation, we use the end-point-error (EPE), which is cal-

culated as the average absolute distance between estimated

and groundtruth disparity. We also use the percentage of

disparities with their EPE larger than t pixels (> t px).

4.1.1 Multi-scale Skip Connection

In Sec. 3, multi-scale skip connection is used to intro-

duce features from different levels to improve disparity es-

timation and refinement performance. To demonstrate its

effectiveness, the multi-scale skip connection scheme of

our network was replaced by a single-scale skip connec-

tion scheme, the comparative results are shown in Table

3. It can be observed that the multi-scale skip connection

scheme outperforms its single-scale counterpart, with the

EPE being reduced from 2.55 to 2.50. That is because,

the output of the first convolution layer contains high fre-

quency information, it produces high reconstruction error

for both regions along object boundaries and regions with

large color changes. Note that, regions on an object surface
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far from boundaries usually have a very accurate initial dis-

parity estimation (i.e., the true reconstruction error is small),

although large color changes occur due to texture variation.

Therefore, the reconstruction errors given by the first con-

volution layer for these regions are inaccurate. In this case,

multi-scale skip connection is able to improve the reliabil-

ity of resulted reconstruction errors. Besides, introducing

high-level features is also useful for feature constancy cal-

culation, as higher-level features leverage more context in-

formation with a wide field of view.

4.1.2 Feature Constancy for Disparity Refinement

To seamlessly integrate the initial disparity estimation

sub-network (DES-net) and the disparity refinement sub-

network (DRS-net) into a whole network, the feature con-

stancy calculation and its subsequent sub-network play an

important role. To demonstrate its effectiveness, we first re-

moved all feature constancy used in our network (as shown

in Table 1) and then retrained the model. The results are

shown in Table 2. It can be observed that if no feature

constancy is introduced for disparity refinement, the perfor-

mance improvement is very small, with EPE being reduced

from 2.81 to 2.72.

Then, we evaluate the importance of the three informa-

tion in Eq. (1), i.e., initial disparity dispi, feature correla-

tion fc, and reconstruction error re produced by the initial

disparity, as explained in Sec. 3. The results are shown

in Table 2. It is observed that, the reconstruction error re

plays the major role for the performance improvement. If

the reconstruction error is removed, EPE is increased from

2.50 to 2.70. That is because this term provides the some

knowledge about the initial disparity. That is, regions with

poor initial disparity can be identified and then be contra-

puntally refined. Besides, removing initial disparity dispi
or feature correlation fc from the disparity refinement sub-

network slightly degrades the overall performance. Their

EPE values are increased from 2.50 to 2.56 and 2.61, re-

spectively. If all the three parts are incorporated, the dispar-

ity refinement network can achieve the best performance.

4.1.3 Iterative Refinement

Iterative feature constancy calculation can further improve

the overall performance. In practice, we do not train multi-

ple DRS-nets. Instead, we directly stack another DRS-net,

whose weights are exactly the same as the original DRS-

net, at the top of the whole network. As the number of

iterations is increased, the performance improvement is de-

creased rapidly. Specifically, the first iteration can reduce

EPE from 2.50 to 2.46, while the second iteration can only

reduce EPE from 2.46 to 2.45. Moreover, there is no ob-

vious performance improvement after the third iteration of

refinement. It can be concluded that: 1) Our framework can

Figure 2. Disparity refinement results on the Scene Flow test set

under different iterations. The first row represents the input im-

ages, the second row shows the initial disparity without any re-

finement, the third and fourth rows show the refined disparity after

1 and 2 iterations, respectively. The last row gives the groundtruth

disparity.

efficiently extract useful information for disparity estima-

tion using feature constancy information; 2) The informa-

tion contained in feature space is still limited. Therefore, it

is possible to improve the disparity refinement performance

by introducing more powerful features.

To further demonstrate the effectiveness of iterative re-

finement, the disparity estimation results for 2 iterations are

shown in Figure 2. It can be observed that, lots of details

cannot be accurately estimated in the initial disparity, e.g.,

the areas shown in red boxes. However, after two iterations

of refinement, most inaccurate estimations can be corrected,

and the refined disparity map looks more smooth.
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Table 2. Comparative results on the Scene Flow dataset for networks with different settings on the disparity refinement sub-network.

DES-net and DRS-net represent the initial disparity estimation sub-network and the disparity refinement sub-network, respectively.

Model > 1px > 3px >5px EPE Params. Time (ms)

DES-net (without disparity refinement) 16.78 6.49 4.31 2.81 42.76M 61

DES-net + DRS-net without feature correlation fc and re 15.65 6.12 4.11 2.72 43.30M 100

DES-net + DRS-net without reconstruction error re 15.54 6.10 4.10 2.70 43.34M 111

DES-net + DRS-net without feature correlation fc 11.13 5.32 3.79 2.56 43.31M 103

DES-net + DRS-net without initial disparity dispi 11.64 5.37 3.81 2.61 43.34M 114

DES-net + DRS-net (iResNet) 10.24 4.93 3.54 2.50 43.34M 114

Refinement × 2 (iResNet-i2) 9.42 4.64 3.37 2.46 43.34M 131

Refinement × 3 (iResNet-i3) 9.28 4.57 3.32 2.45 43.34M 148

Table 3. Comparative results on the Scene Flow dataset for net-

works with single-scale and multi-scale skip connection.

Model > 1px > 3px >5px EPE

Single-scale 10.90 5.23 3.74 2.55

Multi-scale 10.24 4.93 3.54 2.50

Table 4. EPE results on Scene Flow dataset achieved by the pro-

posed iResNet method and the CRL method.

Method EPE Params. Run time(ms)

CRL [19] 1.60 78.77M 162

iResNet 1.40 43.11M 90

4.1.4 Feature Constancy vs Color Constancy

In this experiment, the superiority of feature constancy for

disparity refinement over color constancy is demonstrated.

Our method was compared to the cascade residual learn-

ing (CRL) method [19], which calculated the reconstruction

error in the color space. Intuitively, calculating the recon-

struction error in the feature space could obtain more robust

results, since the learned features are more robust to noise

and luminance changes. Besides, by sharing the features

with the first network, the second network can be designed

shadower, which subsequently leads to a more compact net-

work. CRL [19] used one network (i.e., DispNetC [17]) for

disparity calculation and an additional network (i.e., Dis-

pResNet [19]) for disparity refinement. For fair compari-

son, we also use DispNetC [17] without any fine-tuning as

our disparity estimation sub-network. Note that, in their ex-

periments on the Scene Flow dataset, disparity images (and

their corresponding stereo pairs) with more than 25% of

their disparity values greater than 300 were removed. We

followed the same protocol in this comparison. Compara-

tive results are shown in Table 4. The EPE result of CRL

was taken from the paper [19], and its run time was tested on

Nvidia Titan X (Pascal) using our implementation. It can be

seen that our method (using feature constancy) significantly

outperforms CRL (using color constancy). The EPE values

achieved by our iResNet method and the CRL method are

1.40 and 1.60, respectively. Moreover, our method also re-

quires fewer parameters and costs less computational time.
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Figure 3. Comparison with other state-of-the-art methods on the

KITTI 2015 dataset. The images in the first row are input images

from KITTI 2015. Our iResNet-i2 refinement results (the third

row) can greatly improve the initial disparity (the second row),

and give better visualization effect than other methods, especially

in the upper part of images, where there is no groundtruth in these

regions.

4.2. Benchmark Results

We further compared our method to several existing

methods on the KITTI 2012 and KITTI 2015 benchmarks,

including GC-NET [12], L-ResMatch [28], SGM-Net [27],

SsSMnet [35], PBCP [26], Displets [5], and MC-CNN [32].

For the evaluation on KITTI 2012, we used the percent-

age of erroneous pixels in non-occluded (Out-Noc) and all

(Out-All) areas. Here a pixel is considered to be erroneous
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Table 5. Results on the KITTI 2012 dataset.

> 2px > 3px > 4px > 5px Runtime

Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All (s)

GC-NET [12] 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 0.9

L-ResMatch [28] 3.64 5.06 2.27 3.40 1.76 2.67 1.50 2.26 48

SGM-Net [27] 3.60 5.15 2.29 3.50 1.83 2.80 1.60 2.36 67

SsSMnet [35] 3.34 4.24 2.30 3.00 1.82 2.39 1.53 2.01 0.8

PBCP [26] 3.62 5.01 2.36 3.45 1.88 2.28 1.62 2.32 68

Displets v2 [5] 3.43 4.46 2.37 3.09 1.97 2.52 1.72 2.17 265

MC-CNN-acrt [32] 3.90 5.45 2.43 3.63 1.90 2.85 1.64 2.39 67

DES-net (ours) 4.88 5.54 2.66 3.12 1.78 2.11 1.33 1.59 0.05

iResNet-i2 (ours) 2.69 3.34 1.71 2.16 1.30 1.63 1.06 1.32 0.12

if its disparity EPE is larger than t pixels ( > t px). For

the evaluation on KITTI 2015, we used the percentage of

erroneous pixels in background (D1-bg), foreground (D1-

fg) or all pixels (D1-all) in the non-occluded or all regions.

Here, a pixel is considered to be correct if its disparity EPE

is less than 3 or 5% pixels.

The results are shown in Tables 5 and 6. For our method,

the results for both of the DES-net (without disparity refine-

ment) and the final iResNet-i2 model (with disparity refine-

ment of 2 iterations) are presented. It is clear that the dis-

parity refinement sub-network can consistently improve the

performance by a notable margin. Moreover, our iResNet-

i2 model achieves the best disparity estimation performance

on both the KITTI 2012 and KITTI 2015 datasets in differ-

ent scenarios. Note that, our method is also highly efficient,

it achieves the shortest run time on the KITTI 2012 dataset.

The overall run time tested on a single Nvidia Titan X (Pas-

cal) GPU is only 0.12s.

Figure 3 illustrates few qualitative results achieved by

our method and several state-of-the-art methods on the

KITTI 2015 dataset. It can be observed that our method

produces more smooth disparity estimation results. On one

hand, our disparity refinement sub-network DRS-net can

effectively improve the quality of the initial disparity es-

timated by DES-net, with many details being recovered.

On the other hand, our method produces much better re-

sults than other methods in the upper parts of these images,

as shown in white boxes in Figure 3. In fact, the upper

parts of these images correspond to sky or regions beyond

the working distance of a lidar. In that case, groundtruth

disparity cannot be provided for these regions for training,

making the learning based methods to deteriorate. From

Figure 3, we can see that the performance of other methods

in these regions is relatively poor. However, our method

can still achieve acceptable results, with more accurate dis-

parity estimation along boundaries. This also indicates that

our method generalizes well on unseen data. To further

demonstrate the generalization capability of our method, the

iResNet-i2, CRL [19] and DispNetC [17] models are first

trained on the KITTI 2015 training set and then tested on

Table 6. Results on the KITTI 2015 dataset.

All Pixels Non-Occluded Pixels

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

CRL [19] 2.48 3.59 2.67 2.32 3.12 2.45

GC-NET [12] 2.21 6.16 2.87 2.02 5.58 2.61

DRR [4] 2.58 6.04 3.16 2.34 4.87 2.76

SsSMnet [35] 2.70 6.92 3.40 2.46 6.13 3.06

L-ResMatch [28] 2.72 6.95 3.42 2.35 5.74 2.91

Displets v2 [5] 3.00 5.56 3.43 2.73 4.95 3.09

SGM-Net [27] 2.66 8.64 3.66 2.23 7.44 3.09

MC-CNN [32] 2.89 8.88 3.88 2.48 7.64 3.33

DispNetC [17] 4.32 4.41 4.34 4.11 3.72 4.05

DES-net (ours) 3.13 3.87 3.25 2.94 3.21 2.98

iResNet-i2 (ours) 2.25 3.40 2.44 2.07 2.76 2.19

Table 7. The generalization performance from KITTI 2015 bench-

mark to KITTI 2012 benchmark achieved by three methods.

Methods KITTI 2015 KITTI 2012 Performance Drop

iResNet-i2 (ours) 2.44 3.62 1.18

CRL [19] 2.67 4.82 2.15

DispNetC [17] 4.34 9.64 5.3

the KITTI 2015 and 2012 test sets without fine-tuning. The

achieved D1-all errors are shown in Table 7. It is clear that

our method achieves the smallest performance drop.

5. Conclusion

In this work, we propose a network architecture to in-
tegrate the four steps of stereo matching for joint train-
ing. Our network first estimates an initial disparity, and
then uses two feature constancy terms to refine the dis-
parity. The refinement is performed using both fea-
ture correlation and reconstruction error, which effec-
tively improves the quality of the initial estimated dispar-
ity. Moreover, by introducing the multi-scale shared fea-
tures, our network can be designed more compact. Ex-
perimental results show that the proposed method achieves
the state-of-the-art disparity estimation performance on
the KITTI 2012 and KITTI 2015 benchmarks. Be-
sides, our method is also highly efficient for calcula-
tion.
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