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Abstract

Image-to-image translation tasks have been widely in-

vestigated with Generative Adversarial Networks (GANs)

and dual learning. However, existing models lack the abili-

ty to control the translated results in the target domain and

their results usually lack of diversity in the sense that a fixed

image usually leads to (almost) deterministic translation re-

sult. In this paper, we study a new problem, conditional

image-to-image translation, which is to translate an image

from the source domain to the target domain conditioned on

a given image in the target domain. It requires that the gen-

erated image should inherit some domain-specific features

of the conditional image from the target domain. Therefore,

changing the conditional image in the target domain will

lead to diverse translation results for a fixed input image

from the source domain, and therefore the conditional in-

put image helps to control the translation results. We tackle

this problem with unpaired data based on GANs and du-

al learning. We twist two conditional translation models

(one translation from A domain to B domain, and the other

one from B domain to A domain) together for inputs com-

bination and reconstruction while preserving domain inde-

pendent features. We carry out experiments on men’s faces

from-to women’s faces translation and edges to shoes&bags

translations. The results demonstrate the effectiveness of

our proposed method.

1. Introduction

Image-to-image translation covers a large variety of

computer vision problems, including image stylization [4],

segmentation [13] and saliency detection [5]. It aims at

learning a mapping that can convert an image from a source

domain to a target domain, while preserving the main pre-

sentations of the input images. For example, in the afore-

mentioned three tasks, an input image might be converted

to a portrait similar to Van Gogh’s styles, a heat map s-

plitted into different regions, or a pencil sketch, while the

edges and outlines remain unchanged. Since it is usual-

ly hard to collect a large amount of parallel data for such

tasks, unsupervised learning algorithms have been widely

adopted. Particularly, the generative adversarial networks

(GAN) [6] and dual learning [7, 21] are extensively studied

in image-to-image translations. [22, 9, 25] tackle image-

to-image translation by the aforementioned two techniques,

where the GANs are used to ensure the generated images

belonging to the target domain, and dual learning can help

improve image qualities by minimizing reconstruction loss.

An implicit assumption of image-to-image translation

is that an image contains two kinds of features1: domain-

independent features, which are preserved during the trans-

lation (i.e., the edges of face, eyes, nose and mouse while

translating a man’ face to a woman’ face), and domain-

specific features, which are changed during the transla-

tion (i.e., the color and style of the hair for face image

translation). Image-to-Image translation aims at transfer-

ring images from the source domain to the target domain

by preserving domain-independent features while replacing

domain-specific features.

While it is not difficult for existing image-to-image

translation methods to convert an image from a source do-

main to a target domain, it is not easy for them to control

or manipulate the style in fine granularity of the generated

image in the target domain. Consider the gender transform

problem studied in [9], which is to translate a man’s photo to

a woman’s. Can we translate Hillary’s photo to a man’ pho-

to with the hair style and color of Trump? DiscoGAN [9]

can indeed output a woman’s photo given a man’s photo as

input, but cannot control the hair style or color of the out-

put image. DualGAN [22, 25] cannot implement this kind

of fine-granularity control neither. To fulfill such a blank

in image translation, we propose the concept of condition-

al image-to-image translation, which can specify domain-

specific features in the target domain, carried by another

input image from the target domain. An example of condi-

tional image-to-image translation is shown in Figure 1, in

1 Note that the two kinds of features are relative concepts, and domain-

specific features in one task might be domain-independent features in an-

other task, depending on what domains one focuses on in the task.
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Figure 1. Conditional image-to-image translation. (a) Condition-

al women-to-men photo translation. (b) Conditional edges-to-

handbags translation. The purple arrow represents translation flow

and the green arrow represents the conditional information flow.

which we want to convert Hillary’s photo to a man’s photo.

As shown in the figure, with an addition man’s photo as in-

put, we can control the translated image (e.g., the hair color

and style).

1.1. Problem Setup

We first define some notations. Suppose there are t-

wo image domains DA and DB . Following the implic-

it assumption, an image xA ∈ DA can be represented as

xA = xi
A ⊕ xs

A, where xi
A’s are domain-independent fea-

tures, xs
A’s are domain-specific features, and ⊕ is the op-

erator that can merge the two kinds of features into a com-

plete image. Similarly, for an image xB ∈ DB , we have

xB = xi
B ⊕ xs

B . Take the images in Figure 1 as exam-

ples: (1) If the two domains are man’s and woman’s pho-

tos, the domain-independent features are individual facial

organs like eyes and mouths and the domain-specific fea-

tures are beard and hair style. (2) If the two domains are

real bags and the edges of bags, the domain-independent

features are exactly the edges of bags themselves, and the

domain-specific are the colors and textures.

The problem of conditional image-to-image translation

from domain DA to DB is as follows: Taken an image

xA ∈ DA as input and an image xB ∈ DB as condition-

al input, outputs an image xAB in domain DB that keeping

the domain-independent features of xA and combining the

domain-specific features carried in xB , i.e.,

xAB = GA→B(xA, xB) = xi
A ⊕ xs

B , (1)

where GA→B denotes the translation function. Similarly,

we have the reverse conditional translation

xBA = GB→A(xB , xA) = xi
B ⊕ xs

A. (2)

For simplicity, we call GA→B the forward translation

and GB→A the reverse translation. In this work we study

how to learn such two translations.

1.2. Our Results

There are three main challenges in solving the condition-

al image translation problem. The first one is how to extract

the domain-independent and domain-specific features for a

given image. The second is how to merge the features from

two different domains into a natural image in the target do-

main. The third one is that there is no parallel data for us to

learn such the mappings.

To tackle these challenges, we propose the condition-

al dual-GAN (briefly, cd-GAN), which can leverage the

strengths of both GAN and dual learning. Under such a

framework, the mappings of two directions, GA→B and

GB→A, are jointly learned. The model of cd-GAN follows

the encoder-decoder based framework: the encoder is used

to extract the domain-independent and domain-specific fea-

tures and the decoder is to merge the two kinds of fea-

tures to generate images. We chose GAN and dual learn-

ing due to the following considerations: (1) The dual learn-

ing framework can help learn to extract and merge the

domain-specific and domain-independent features by min-

imizing carefully designed reconstruction errors, includ-

ing reconstruction errors of the whole image, the domain-

independent features, and the domain-specific features. (2)

GAN can ensure that the generated images well mimic the

natural images in the target domain. (3) Both dual learning

[7, 22, 25] and GAN [6, 19, 1] work well under unsuper-

vised settings.

We carry out experiments on different tasks, including

face-to-face translation, edge-to-shoe translation, and edge-

to-handbag translation. The results demonstrate that our

network can effectively translate image with conditional in-

formation and robust to various applications.

Our main contributions lie in two folds: (1) We de-

fine a new problem, conditional image-to-image translation,

which is a more general framework than conventional im-

age translation. (2) We propose the cd-GAN algorithm to

solve the problem in an end-to-end way.

The remaining parts are organized follows. We introduce

related work in Section 2 and present the details of cd-GAN

in Section 3, including network architecture and the training

algorithm. Then we report experimental results in Section

4 and conclude in Section 5.

2. Related Work

Image generation has been widely explored in recen-

t years. Models based on variational autoencoder (VAE)

[11] aim to improve the quality and efficiency of image

generation by learning an inference network. GANs [6]

were firstly proposed to generate images from random vari-

ables by a two-player minimax game. Researchers have

been exploited the capability of GANs for various image

generation tasks. [1] proposed to synthesize images at
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multiple resolutions with a Laplacian pyramid of adver-

sarial generators and discriminators, and can condition on

class labels for controllable generation. [19] introduced a

class of deep convolutional generative networks (DCGANs)

for high-quality image generation and unsupervised image

classification tasks.

Instead of learning to generate image samples from

scratch (i.e., random vectors), the basic idea of image-to-

image translation is to learn a parametric translation func-

tion that transforms an input image in a source domain to

an image in a target domain. [13] proposed a fully con-

volutional network (FCN) for image-to-segmentation trans-

lation. Pix2pix [8] extended the basic FCN framework to

other image-to-image translation tasks, including label-to-

street scene and aerial-to-map. Meanwhile, pix2pix utilized

adversarial training technique to ensure high-level domain

similarity of the translation results.

The image-to-image models mentioned above require

paired training data between the source and target domain-

s. There is another line of works studying unpaired do-

main translation. Based on adversarial training, [3] and

[2] proposed algorithms to jointly learn to map latent s-

pace to data space and project the data space back to laten-

t space. [20] presented a domain transfer network (DTN)

for unsupervised cross-domain image generation employ-

ing a compound loss function including multiclass adver-

sarial loss and f -constancy component, which could gener-

ate convincing novel images of previously unseen entities

and preserve their identity. [7] developed a dual learning

mechanism which can enable a neural machine translation

system to automatically learn from unlabeled data through

a dual learning game. Following the idea of dual learning,

DualGAN [22], DiscoGAN [9] and CycleGAN [25] were

proposed to tackle the unpaired image translation problem

by training two cross domain transfer GANs at the same

time. [15] proposed to utilize dual learning for semantic

image segmentation. [14] further proposed a conditional

CycleGAN for face super-resolution by adding facial at-

tributes obtained from human annotation. However, col-

lecting a large amount of such human annotated data can be

hard and expensive.

In this work, we study a new setting of image-to-image

translation, in which we hope to control the generated im-

ages in fine granularity with unpaired data. We call such a

new problem conditional image-to-image translation.

3. Conditional Dual GAN

Figure 2 shows the overall architecture of the proposed

model, in which the left part is an encoder-decoder based

framework for image translation and the right part includes

additional components introduced to train the encoder and

decoder.

3.1. The Encoder­Decoder Framework

As shown in the figure, there are two encoders eA and

eB and two decoders gA and gB .

The encoders serve as feature extractors, which take an

image as input and output the two kinds of features, domain-

independent features and domain-specific features, with the

corresponding modules in the encoders. In particular, given

two images xA and xB , we have

(xi
A, x

s
A) = eA(xA); (xi

B , x
s
B) = eB(xB). (3)

If only looking at the encoder, there is no difference be-

tween the two kinds of features. It is the remaining parts

of the overall model and the training process that differenti-

ate the two kinds of features. More details are discussed in

Section 3.3.

The decoders serve as generators, which take as input-

s the domain-independent features from the image in the

source domain and the domain-specific features from the

image in the target domain and output a generated image in

the target domain. That is,

xAB = gB(x
i
A, x

s
B); xBA = gA(x

i
B , x

s
A). (4)

3.2. Training Algorithm

We leverage dual learning techniques and the GAN tech-

niques to train the encoders and decoders. The optimization

process is shown in the right part of Figure 2.

3.2.1 GAN loss

To ensure the generated xAB and xBA are in the corre-

sponding domains, we employ two discriminators dA and

dB to differentiate the real images and synthetic ones. dA
(or dB) takes an image as input and outputs a probability

indicating how likely the input is a natural image from do-

main DA (or DB). The objective function is

ℓGAN = log(dA(xA)) + log(1− dA(xBA))

+ log(dB(xB)) + log(1− dB(xAB)).
(5)

The goal of the encoders and decoders eA, eB , gA, gB is

to generate images as similar to natural images and fool the

discriminators dA and dB , i.e., they try to minimize ℓGAN.

The goal of dA and dB is to differentiate generated images

from natural images, i.e., they try to maximize ℓGAN.

3.2.2 Dual learning loss

The key idea of dual learning is to improve the performance

of a model by minimizing the reconstruction error.

To reconstruct the two images x̂A and x̂B , as shown in

Figure 2, we first extract the two kinds of features of the

generated images:

(x̂i
A, x̂

s
B) = eB(xAB); (x̂i

B , x̂
s
A) = eA(xBA), (6)
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Figure 2. Architecture of the proposed conditional dual GAN (cd-GAN).

and then reconstruct images as follows:

x̂A = gA(x̂
i
A, x

s
A); x̂B = gB(x̂

i
B , x

s
B). (7)

We evaluate the reconstruction quality from three aspect-

s: the image level reconstruction error ℓim
dual, the reconstruc-

tion error ℓdi
dual of the domain-independent features, and the

reconstruction error ℓds
dual of the domain-specific features as

follows:

ℓim
dual(xA, xB) = ‖xA − x̂A‖

2 + ‖xB − x̂B‖
2, (8)

ℓdi
dual(xA, xB) = ‖x

i
A − x̂i

A‖
2 + ‖xi

B − x̂i
B‖

2, (9)

ℓds
dual(xA, xB) = ‖x

s
A − x̂s

A‖
2 + ‖xs

B − x̂s
B‖

2. (10)

Compared with the existing dual learning approach-

es [22] which only consider the image level reconstruction

error, our method considers more aspects and therefore is

expected to achieve better accuracy.

3.2.3 Overall training process

Since the discriminators only impact the GAN loss ℓGAN,

we only use this loss to compute the gradients and update

dA and dB . In contrast, the encoders and decoders impact

all the 4 losses (i.e., the GAN loss and three reconstruction

errors), we use all the 4 objectives to compute gradients and

update models for them. Note that since the 4 objectives

are of different magnitudes, their gradients may vary a lot

in terms of magnitudes. To smooth the training process, we

normalize the gradients so that their magnitudes are compa-

rable across 4 losses. We summarize the training process in

Algorithm 1.

Algorithm 1 cd-GAN training process

Require: Training images {xA,i}
m
i=1
⊂ DA, {xB,j}

m
j=1
⊂

DB , batch size K, optimizer Opt(·, ·);
1: Randomly initialize eA, eB , gA, gB , dA and dB .

2: Randomly sample a minibatch of images and prepare

the data pairs S = {(xA,k, xB,k)}
K
k=1

.

3: For any data pair (xA,k, xB,k) ∈ S , generate condition-

al translations by Eqn.(3,4), and reconstruct the images

by Eqn.(6,7);

4: Update the discriminators as follows:

dA ← Opt(dA, (1/K)∇dA

∑K

k=1
ℓGAN(xA,k, xB,k)),

dB ← Opt(dB , (1/K)∇dB

∑K

k=1
ℓGAN(xA,k, xB,k));

5: For each Θ ∈ {eA, eB , gA, gB}, compute the gradients

∆GAN = (1/K)∇Θ

∑K

k=1
ℓGAN(xA,k, xB,k),

∆im = (1/K)∇Θ

∑K

k=1
ℓim

dual(xA,k, xB,k),

∆di = (1/K)∇Θ

∑K

k=1
ℓdi

dual(xA,k, xB,k),

∆ds = (1/K)∇Θ

∑K

k=1
ℓds

dual(xA,k, xB,k),
normalize the four gradients to make their magni-

tudes comparable, sum them to obtain ∆, and Θ →
Opt(Θ,∆).

6: Repeat step 2 to step 6 until convergence

In Algorithm 1, the choice of optimizers Opt(·, ·) is quite

flexible, whose two inputs are the parameters to be opti-
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mized and the corresponding gradients. One can choose

different optimizers (e.g. Adam [10], or nesterov gradien-

t descend [18]) for different tasks, depending on common

practice for specific tasks and personal preferences. Be-

sides, the eA, eB , gA, gB , dA, dB might refer to either the

models themselves, or their parameters, depending on the

context.

3.3. Discussions

Our proposed framework can learn to separate the

domain-independent features and domain-specific features.

In Figure 2, consider the path of xA → eA → xi
A → gB →

xAB . Note that after training we ensure that xAB is an im-

age in domain DB and the features xi
A are still preserved in

xAB . Thus, xi
A should try to inherent the features that are

independent to domain DA. Given that xi
A is domain inde-

pendent, it is xs
B that carries information about domainDB .

Thus, xs
B is domain-specific features. Similarly, we can see

that xs
A is domain-specific and xi

B is domain-independent.

DualGAN [22], DiscoGAN [9] and CycleGAN [25] can

be treated as simplified versions of our cd-GAN, by remov-

ing the domain-specific features. For example, in Cycle-

GAN, given an xA ∈ DA, any xAB ∈ DB is a legal trans-

lation, no matter what xB ∈ DB is. In our work, we require

that the generated images should match the inputs from two

domains, which is more difficult.

Furthermore, cd-GAN works for both symmetric trans-

lations and asymmetric translations. In symmetric transla-

tions, both directions of translations need conditional inputs

(illustrated in Figure 1(a)). In asymmetric translations, only

one direction of translation needs a conditional image as in-

put (illustrated in Figure 1(b)). That is, the translation from

bag to edge does not need another edge image as input; even

given an additional edge image as the conditional input, it

does not change or help to control the translation result.

For asymmetric translations, we only need to slight-

ly modify objectives for cd-GAN training. Suppose the

translation direction of GB→A does not need conditional

input. Then we do not need to reconstruct the domain-

specific features xs
A. Accordingly, we modify the error of

domain-specific features as follows, and other 3 losses do

not change.

ℓds
dual(xA, xB) = ‖x

s
B − x̂s

B‖
2 (11)

4. Experiments

We conduct a set of experiments to test the proposed

model. We first describe experimental settings, and then re-

port results for both symmetric translations and asymmetric

translations. Finally we study individual components and

loss functions of the proposed model.

4.1. Settings

For all experiments, the networks take images of 64×64
resolution as inputs. The encoders eA and eB start with 3
convolutional layers, each convolutional layer followed by

leaky rectified linear units (Leaky ReLU) [16]. Then the

network is splitted into two branches: in one branch, a con-

volutional layer is attached to extract domain-independent

features; in the other branch, two fully-connected layers are

attached to extract domain-specific features. Decoder net-

works gA and gB contain 4 deconvolutional layers with Re-

LU units [17], except for the last layer using tanh activation

function. The discriminators dA and dB consist of 4 convo-

lution layers, two fully-connected layers. Each layer is fol-

lowed by Leaky ReLU units except for the last layer using

sigmoid activation function. Details (e.g., number and size

of filters, number of nodes in fully-connected layers) can be

found in the supplementary document.

We use Adam [10] as the optimization algorithm with

learning rate 0.0002. Batch normalization is applied to all

convolution layers and deconvolution layers except for the

first and last ones. Minibatch size is fixed as 200 for all the

tasks.

We implement three related baselines for comparison.

1. DualGAN [22, 9, 25]. DualGAN was primitively

proposed for unconditional image-to-image translation

which does not require conditional input. Similar to

our cd-GAN, DualGAN trains two translation models

jointly.

2. DualGAN-c. In order to enable DualGAN to utilize

conditional input, we design a network as DualGAN-

c. The main difference between DualGAN and

DualGAN-c is that DualGAN-c translates the target

outputs as Eqn.(3,4), and reconstructs inputs as x̂A =
gA(eB(xAB)) and x̂B = gB(eA(xBA)).

3. GAN-c. To verify the effectiveness of dual learning,

we remove the dual learning losses of cd-GAN during

training and obtain GAN-c.

For symmetric translations, we carry out experiments

on men-to-women face translations. We use the CelebA

dataset [12], which consists of 84434 men’s images (de-

noted as domain DA) and 118165 women’s images (de-

noted as domain DB). We randomly choose 4732 men’s

images and 6379 women’s images for testing, and use the

rest for training. In this task, the domain-independent fea-

tures are organs (e.g., eyes, nose, mouse, ? and domain-

specific features refer to hair-style, beard, the usage of lip-

stick. For asymmetric translations, we work on edges-to-

shoes and edges-to-bags translations with datasets used in

[23] and [24] respectively. In these two tasks, the domain-

independent features are edges and domain-specific features

are colors, textures, etc.
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Figure 3. Conditional face-to-face translation. (a) Results of

conditional men→women translation. (b) Results of conditional

women→men translation.

4.2. Results

The translation results of face-to-face, edges-to-bags and

edges-to-shoes are shown in Figure 3-5 respectively.

For men-to-women translations, from Figure 3(a), we

have several observations. (1) DualGAN can indeed gen-

erate woman’s photo, but its results are purely based on

the men’s photos, since it does not take the conditional im-

ages as inputs. (2) Although taking the conditional image

as input, DualGAN-c fails to integrate the information (e.g.,

style) from the conditional input into its translation output.

(3) For GAN-c, sometimes its translation result is not rele-

vant to the original source-domain input, e.g., the 4-th row

Figure 3(a). This is because in training it is required to gen-

erate a target-domain image, but its output is not required

to be similar (in certain aspects) to the original input. (4)

cd-GAN works best among all the models by preserving

domain-independent features from the source-domain input

Figure 4. Results of conditional edges→handbags translation.

Figure 5. Results of conditional edges→shoes translation.

and combining the domain-specific features from the target-

domain conditional input. Here are two examples. (1) In 6-

th column of 1-st row, the woman is put on red lipstick. (2)

In 6-th column of 5-th row, the hair-style of the generated

image is the most similar to the conditional input.

We can get similar observations for women-to-men

translations as shown in Figure 3(b), especially for the

domain-specific features such as hair style and beard.

From Figure 4 and 5, we find that cd-GAN can well

leverage the domain-specific information carried in the con-

ditional inputs and control the generated target-domain im-

ages accordingly. DualGAN, DuanGAN-c and GAN-c do

not effectively utilize the conditional inputs.

One important characteristic of conditional image-to-

image translation model is that it can generate diverse

target-domain images for a fixed source-domain image, on-

ly if different target-domain images are provided as input-

s. To verify such this ability of cd-GAN, we conduct t-
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Figure 6. Our cd-GAN model can produce diverse results with dif-

ferent conditional images. (a) Results of women→men translation

with two different men’s images as conditional inputs. (b) Result-

s of edges→handbags translation with two different handbags as

conditional inputs.

wo experiments: (1) for each woman’s photo, we work on

women-to-men translations with different man’s photos as

conditional inputs; (2) for each edge of a bag, we work on

edges-to-bags translations with different bags as conditional

inputs. The results are shown in Figure 6. Figure 6(b) shows

that cd-GAN can fulfill edges with the colors and textures

provided by the conditional inputs. Besides, cd-GAN al-

so achieves reasonable improvements on most face transla-

tions: The domain-independent features like woman’s facial

outline, orientations and expressions are preserved, while

the women specific features like hair-style and the usage the

lipstick are replaced with men’s. An example is the second

row of Figure 6(a), where pointed chins, serious expressions

and looking forward are preserved in the generated images.

The hairstyles (bald v.s. short hair) and the beard (no beard

v.s. short beard) are reflected by the corresponding men’s.

Similar translations of the other images can also be found.

Figure 7. Results produced by different connections and losses of

cd-GANs.

Note that there are several failure cases in face translation-

s, such as first column of Figure 6 (a) and last column of

Figure 6 (b). Most translated results demonstrate the effec-

tiveness of our model. More examples can be found in our

supplementary document.

4.3. Component Study

In this sub section, we study other possible design choic-

es for the model architecture in Figure 2 and losses used in

training. We compare cd-GAN with other four models as

follows:

• cd-GAN-rec. The inputs are reconstructed as

x̂A = gA(x̂
i
A, x̂

s
A); x̂B = gB(x̂

i
B , x̂

s
B) (12)

instead of Eqn.(7). That is, the connection from xs
A

to gA in the right box of Figure 2 is replaced by the

connection from x̂s
A to gA, and the connection from

xs
B to gB in the right box of Figure 2 is replaced by the

connection from x̂s
B to gB .

• cd-GAN-nof. Both domain-specific and domain-

independent feature reconstruction losses, i.e., E-

qn.(10) and Eqn.(9), are removed from dual learning

losses.

• cd-GAN-nos. The domain-specific feature reconstruc-

tion loss, i.e., Eqn.(10), is removed from dual learning

losses.

• cd-GAN-noi. The domain-independent feature recon-

struction loss, i.e., Eqn.(10) is removed from dual

learning losses.

The comparison experiments are conducted on the edges-

to-handbags task. The results are shown in Figure 7. Our
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cd-GAN outperforms the other four candidate models with

better color schemes. Failure of cd-GAN-rec demonstrates

the necessity of “skip connections” (i.e., the connections

from xs
A to gA and from xs

B to gB) for image reconstruc-

tion. Since the domain-specific feature level and image lev-

el reconstruction losses have implicitly put constrains on

domain-specific feature to some extent, the results produced

by cd-GAN-noi are closest to results of cd-GAN among the

four candidate models.

So far, we have shown the translation results of cd-GAN

generated from the combination domain-specific features

and domain-independent features. One may be interested

in what we really learn in the two kinds of features. Here

we try to understand them by generating translation results

using each kind of features separately:

• We generate an image using the domain-specific fea-

tures only:

xA=0

AB = gB(x
i
A = 0, xs

B),

in which we set the domain-independent features to 0.

• We generate an image using the domain-independent

features only:

xB=0

AB = gB(x
i
A, x

s
B = 0),

in which we set the domain-specific features to 0.

The results are shown in Figure 8. As we can see, the image

xA=0

AB has similar style to xB , which indicates that our cd-

GAN can indeed extract domain-specific features. While

xB=0

AB already loses conditional information of xB , it still

preserves main shape of xA, which demonstrates that cd-

GAN indeed extracts domain-independent features.

4.4. User Study

We have conducted user study to compare domain-

specific features similarity between generated images and

conditional images. Total 17 subjects (10 males, 7 females,

age range 20− 35) from different backgrounds are asked to

make comparison of 32 sets of images. We show the sub-

jects source image, conditional image, our result and results

from other methods. Then each subject selects generated

image most similar to conditional image. The result of us-

er study shows that our model obviously outperforms other

methods.

5. Conclusions and Future Work

In this paper, we have studied the problem of conditional

image-to-image translation, in which we translate an image

from a source domain to a target domain conditioned on an-

other target-domain image as input. We have proposed a

Figure 8. Images generated using only domain-independent fea-

tures or domain-specific features.

Figure 9. The result of user study.

new model based on GANs and dual learning. The mod-

el can well leverage the conditional inputs to control and

diversify the translation results. Experiments on two set-

tings (symmetric translations and asymmetric translations)

and three tasks (face-to-face, edges-to-shoes and edges-to-

handbags translations) have demonstrated the effectiveness

of the proposed model.

There are multiple aspects to explore for conditional im-

age translation. First, we will apply the proposed model to

more image translation tasks. Second, it is interesting to de-

sign better models for this translation problem. Third, the

problem of conditional translations may be extend to oth-

er applications, such as conditional video translations and

conditional text translations.
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