
Decoupled Networks

Weiyang Liu1*, Zhen Liu1*, Zhiding Yu2, Bo Dai1, Rongmei Lin3, Yisen Wang1,4, James M. Rehg1, Le Song1,5

1Georgia Institute of Technology 2NVIDIA 3Emory University 4Tsinghua University 5Ant Financial

Abstract

Inner product-based convolution has been a central com-

ponent of convolutional neural networks (CNNs) and the

key to learning visual representations. Inspired by the

observation that CNN-learned features are naturally de-

coupled with the norm of features corresponding to the

intra-class variation and the angle corresponding to the se-

mantic difference, we propose a generic decoupled learn-

ing framework which models the intra-class variation and

semantic difference independently. Specifically, we first

reparametrize the inner product to a decoupled form and

then generalize it to the decoupled convolution operator

which serves as the building block of our decoupled net-

works. We present several effective instances of the de-

coupled convolution operator. Each decoupled operator is

well motivated and has an intuitive geometric interpreta-

tion. Based on these decoupled operators, we further pro-

pose to directly learn the operator from data. Extensive

experiments show that such decoupled reparameterization

renders significant performance gain with easier conver-

gence and stronger robustness.

1. Introduction

Convolutional neural networks have pushed the bound-

aries on a wide variety of vision tasks, including object

recognition [20, 21, 4], object detection [2, 19, 18], se-

mantic segmentation [15], etc. A significant portion of re-

cent studies on CNNs focused on increasing network depth

and representation ability via improved architectures such

as shortcut connections [4, 7] and multi-branch convolu-

tion [21, 25]. Despite these advances, understanding how

convolution naturally leads to discriminative representation

and good generalization remains an interesting problem.

Current CNNs often encode the similarity between a

patch x and a kernel w via inner product. The formu-

lation of inner product 〈w,x〉=w
⊤
x couples the seman-

tic difference (i.e., inter-class variation) and the intra-class

variation in one unified measure. As a result, when the in-

ner product between two samples is large, one can not tell

*Equal contributions. Email:{wyliu,liuzhen1994}@gatech.edu

0

1

2

3

4

5

6

7

8

9

Intra-Class Variation

Semantic/label Difference

Origin (0,0)

Figure 1: CNN learned features are naturally decoupled. These 2D features

are output directly from the CNN by setting the feature dimension as 2.

whether the two samples have large semantic/label differ-

ence or have large intra-class variation. In order to better

study the properties of CNN representation and further im-

prove existing frameworks, we propose to explicitly decou-

ple semantic difference and intra-class variation1. Specif-

ically, we reparametrize the inner product with the norms

and the angle, i.e., ‖w‖2‖x‖2 cos(θ(w,x)). Our direct intu-

ition comes from the the observation in Fig. 1 where angle

accounts for semantic/label difference and feature norm ac-

counts for intra-class variation. The larger the feature norm,

the more confident the prediction. Such naturally decoupled

phenomenon inspires us to propose the decoupled convolu-

tion operators. We hope that decoupling norm and angle in

inner product can better model the intra-class variation and

the semantic difference in deep networks.

On top of the idea to decouple the norm and the angle

in an inner product, we propose a novel decoupled net-

work (DCNet) by generalizing traditional inner product-

based convolution operators (‖w‖‖x‖ cos(θ(w,x))) to de-

coupled operators. To this end, we define such opera-

tor as multiplication of a function of norms h(‖w‖, ‖x‖)
and a function of angle g(θ(w,x)). The decoupled opera-

tor provides a generic framework to better model the intra-

class variation and the semantic difference, and the original

CNNs are equivalent to setting h(‖w‖, ‖x‖) as ‖w‖‖x‖

1Although the concepts of semantic difference and intra-class variation

often refer to classification, they are extended to convolutions in this pa-

per. Specifically, semantic difference means the pattern similarity between

local patch x and kernel w, while intra-class variation refers to the energy

of local patch x and kernel w.

2771

and g(θ(w,x)) as cos(θ(w,x)). The magnitude function

h(‖w‖, ‖x‖) models the intra-class variation while the an-

gular function g(θ(w,x)) models the semantic difference.

From the decoupling point of view, the original CNNs

make a strong assumption that the intra-class variation can

be linearly modeled via the multiplication of norms and the

semantic difference is described by the cosine of the angle.

However, this modeling approach is not necessarily optimal

for all tasks. With the decoupled learning framework, we

can either design the decoupled operators based on the task

itself or learn them directly from data. The advantages of

DCNets are in four aspects. First, DCNets not only allow us

to use some alternative functions to better model the intra-

class variation and the semantic difference, but they also

enable us to directly learn these functions rather than fixing

them. Second, with bounded magnitude functions, DCNets

can improve the problem conditioning as analyzed in [13],

and therefore DCNets can converge faster while achieving

comparable or even better accuracy than the original CNNs.

Third, some instances of DCNets can have stronger robust-

ness against adversarial attacks. We can squeeze the fea-

ture space of each class with a bounded h(·), which can

bring certain robustness. Last, the decoupled operators are

very flexible and architecture-agnostic. They could be eas-

ily adapted to any kind of architectures such as VGG [20],

GoogleNet [21] and ResNet [4].

Specifically, we propose two different types of decou-

pled convolution operators: bounded operators and un-

bounded operators. We present multiple instances for each

type of decoupled operators. Empirically, the bounded op-

erators may yield faster convergence and better robustness

against adversarial attacks, and the unbounded operators

may have better representational power. These decoupled

operators can also be either smooth or non-smooth, which

can yield different behaviors. Moreover, we introduce a

novel concept - operator radius for the decoupled opera-

tors. The operator radius describes the critical change of

the derivative of the magnitude function h(·) with respect

to the input ‖x‖. By jointly learning the operator radius via

back-propagation, we further propose learnable decoupled

operators. Moreover, we show some alternative ways to

optimize these operators that improve upon standard back-

propagation. Our contributions can be summarized as:

• Inspired by the observation that CNN-learned features

are naturally decoupled, we propose an explicitly decou-

pled framework to study neural networks.

• We show that CNNs make a strong assumption to model

the intra-class and inter-class variation, which may not be

optimal. By decoupling the inner product, we are able to

design more effective magnitude and angular functions

rather than the original convolution for different tasks.

• In comparison to standard CNNs, DCNets have easier

convergence, better accuracy and stronger robustness.

2. Related Works

There are an increasing number of works [23, 17, 11,

12, 14, 24, 26, 9] that focus on improving the classification

layer in order to increase the discriminativeness of learned

features. [12] models the angular function for each class

differently and defines a more difficult task than classifi-

cation, improving the network generalization. Built upon

[12], [11] further normalizes the weights of the last fully

connected layer (i.e., classification layer) and reported im-

proved results on face recognition. [23, 17, 24] normalize

the input features before entering the last fully connected

layer, achieving promising performance on face recogni-

tion. However, these existing works can be viewed as

heuristic modifications and are often restricted to the last

fully connected layer. In contrast, the decoupled learning

provides a more general and systematic way to study the

CNNs. In our framework, the previous work can be viewed

as proposing a new magnitude function h(‖w‖, ‖x‖) or

angular function g(θ(w,x)) for the last fully connected

layer. For example, normalizing the weights is to let

h(‖w‖, ‖x‖) be ‖x‖ and normalizing the input is equiva-

lent to h(‖w‖, ‖x‖)=‖w‖.
[13] proposes a deep hyperspherical learning framework

which directly makes h(‖w‖, ‖x‖) equal to 1 such that

all the activation outputs only depend on g(θ(w,x)). The

framework provides faster convergence compared to the

original CNNs, but is somehow restricted in the sense that

h(‖w‖, ‖x‖) is only allowed to be 1, and therefore can be

sub-optimal in some cases. From the decoupling perspec-

tive, hyperspherical learning only cares about the semantic

difference and aims to compress the intra-class variation to

a space that is as small as possible, while the decoupled

framework focuses on both. As a non-trivial generalization

of [13], our decoupled network is a more generic and unified

framework to model both intra-class variation and semantic

difference, providing the flexibility to design or learn both

magnitude function h(·) and angular function g(·).

3. Decoupled Networks

3.1. Reparametrizing Convolution via Decoupling

For a conventional convolution operator f(·, ·), the out-

put is calculated by the inner product of the input patch x

and the filter w (both x and w are vectorized into columns):

f(w,x) = 〈w,x〉 = w
⊤
x (1)

which can be further formulated as a decoupled form that

separates the norm and the angle:

f(w,x) = ‖w‖ ‖x‖ cos(θ(w,x)) (2)

where θ(w,x) is the angle between x and w. Our proposed

decoupled convolution operator takes the general form of

fd(w,x) = h(‖w‖ , ‖x‖) · g(θ(w,x)) (3)

2772

which explicitly decouples the norm of w,x and the angle

between them. We define h(‖w‖, ‖x‖) as the magnitude

function and g(θ(w,x)) as the angular activation function. It

is easy to see that the decoupled convolution operator in-

cludes the original convolution operator as a special case.

As illustrated in Fig. 1, the semantic difference and intra-

class variation are usually decoupled and very suitable for

this formulation. Based on the decoupled operator, we pro-

pose several alternative ways to model the semantic differ-

ence and intra-class variation.

3.2. Decoupled Convolution Operators

We discuss how to better model the intra-class variation,

and then give a few instances of the decoupled operator.

3.2.1 On Better Modeling of the Intra-class Variation

Hyperspherical learning [13] has discussed the model-

ing of the inter-class variation (i.e., the angular function).

The design of angular function g(·) is relatively easy but

restricted, because it only takes the angle as input. In con-

trast, the magnitude function h(·) takes the norm of w and

the norm of x as two inputs, and therefore it is more com-

plicated to design. ‖w‖ is the intrinsic property of a ker-

nel itself, corresponding to the importance of the kernel

rather than the intra-class variation of the inputs. Therefore,

we tend not to include ‖w‖ into the magnitude function

h(·). Moreover, removing ‖w‖ from h(·) indicates that all

kernels (or operators) are assigned with equal importance,

which encourages the network to make decision based on as

many kernels as possible and therefore may make the net-

work generalize better. However, incorporating the kernel

importance to the network learning can improve the rep-

resentational power and may be useful when dealing with

a large-scale dataset with numerous categories. By com-

bining ‖w‖ back to h(·), the operators become weighted

decoupled operators. There are multiple ways of incorpo-

rating ‖w‖ back to the magnitude function. We will discuss

and empirically evaluate these variants later.

3.2.2 Bounded Decoupled Operators

The output of the bounded operators must be bounded by

a finite constant regardless of its input and kernel, namely

|fd(w,x)|≤c where c is a positive constant. For simplicity,

we first consider the decoupled operator without the norm

of the weights (i.e., ‖w‖ is not included in h(·)).

Hyperspherical Convolution. If we let h(‖w‖ , ‖x‖)=α,

we will have the hyperspherical convolution (SphereConv)

with the following decoupled form:

fd(w,x) = α · g(θ(w,x)) (4)

where α>0 controls the output scale. g(θ(w,x)) depends

on the geodesic distance on the unit hypersphere and typ-

ically outputs value from −1 to 1, so the final output is

in [−α, α]. Usually, we can use α=1, which reduces to

SphereConv [13] in this case. Geometrically, SphereConv

can be viewed as projecting w and x to a hypersphere and

then performing inner product (if g(θ)=cos(θ)). Based

on [13], SphereConv improves the problem conditioning in

neural networks, making the network converge better.

Hyperball Convolution. The hyperball convolution (Ball-

Conv) uses h(‖w‖ , ‖x‖)=αmin(‖x‖ , ρ)/ρ as its magni-

tude function. The specific form of the BallConv is

fd(w,x) = α ·
min(‖x‖ , ρ)

ρ
· g(θ(w,x)) (5)

where ρ controls the saturation threshold for the input norm

‖x‖ and α scales the output range. When ‖x‖ is larger than

ρ, then the magnitude function will be saturate and output

α. When ‖x‖ is smaller than ρ, the magnitude function

grows linearly with ‖x‖. Geometrically, BallConv can be

viewed as projecting w to a hypersphere and projecting the

input x to a hyperball, and then performing the inner prod-

uct (if g(θ)=cos(θ)). Intuitively, BallConv is more robust

and flexible than SphereConv in the sense that SphereConv

may amplify the x with very small ‖x‖, because x with

small ‖x‖ and the same direction as w could still produce

the maximum output. It makes SphereConv sensitive to per-

turbations to x with small norm. In contrast, BallConv will

not have such a problem, because the multiplicative factor

‖x‖ can help to decrease the output if ‖x‖ is small. More-

over, small ‖x‖ indicates that the local patch is not informa-

tive and should not be emphasized. In this sense, BallConv

is better than SphereConv. In terms of convergence, the

BallConv can still help the network convergence because

its output is bounded with the same range as SphereConv.

Hyperbolic Tangent Convolution. We present a smooth

decoupled operator with bounded output called hyperbolic

tangent convolution (TanhConv). The TanhConv uses a hy-

perbolic tangent function to replace the step function in the

BallConv and can be formulated as

fd(w,x) = α tanh
(‖x‖

ρ

)

· g(θ(w,x)) (6)

where tanh(·) denotes the hyperbolic tangent function and

ρ is parameter controlling the decay curve. The TanhConv

can be viewed as a smooth version of BallConv, which not

only shares the same advantages as BallConv but also has

more convergence gain due to its smoothness [1].

3.2.3 Unbounded Decoupled Operators

Linear Convolution. One of the simplest unbounded de-

coupled operators is the linear convolution (LinearConv):

fd(w,x) = α ‖x‖ · g(θ(w,x)) (7)

where α controls the output scale. LinearConv differs the

original convolution in the sense that it projects the weights

to a hypersphere and has a parameter to control the slope.

2773

Inner Product
based Convolution

w

x2

w

x1 x2x1

Hyperspherical
Convolution

Hyperball
Convolution

Segmented
Convolution

w

x2x1

w

x2x1

Linear
Convolution

w

x2x1

Logarithm
Convolution

w

x2x1

Hyperbolic Tangent
Convolution

w

x2x1

Mixed
Convolution

w

x2x1

Figure 2: Geometric interpretations for decoupled convolution operators.

Green denotes the original vectors, and red denotes the projected vectors.

Segmented Convolution. We propose a segmented convo-

lution (SegConv) which takes the following form:

fd(w,x) =

{

α ‖x‖ · g(θ(w,x)), 0 ≤ ‖x‖ ≤ ρ

(β ‖x‖+ αρ− βρ) · g(θ(w,x)), ρ < ‖x‖
(8)

where α controls the slope when ‖x‖≤ρ and β controls the

slope when ‖x‖>ρ. ρ is the change point of the gradient

of the magnitude function w.r.t. ‖x‖. SegConv is a flexi-

ble multi-range linear function corresponding to ‖x‖. Both

LinearConv and BallConv are special cases of SegConv.

Logarithm Convolution. We present another smooth de-

coupled operator with unbounded output, logarithm convo-

lution (LogConv). LogConv uses a Logarithm function for

the norm of the input ‖x‖ and can be formulated as

fd(w,x) = α log(1 + ‖x‖) · g(θ(w,x)) (9)

where α controls the base of logarithm and is used to adjust

the curvature of the logarithm function.

Mixed Convolution. Mixed convolution (MixConv) com-

bines multiple decoupled convolution operators and enjoys

better flexibility. Because the mixed convolution has many

possible combinations, we only consider the additive com-

bination of LinearConv and LogConv as an example:

fd(w,x) =
(

α ‖x‖+ β log(1 + ‖x‖)
)

· g(θ(w,x)) (10)

which combines LogConv and LinearConv, becoming more

flexible than both original operators.

3.2.4 Properties of Decoupled Operators

Operator Radius. Operator radius is defined to describe

the gradient change point of the magnitude function. Oper-

ator radius differentiates two stages of the magnitude func-

tion. The two stages usually have different gradient ranges

and therefore behave differently during optimization. We

let ρ denote the operator radius in each decoupled operator.

For BallConv, when ‖x‖ is smaller than ρ, the magnitude

function will be activated and it will grow with ‖x‖ linearly.

When ‖x‖ is larger than ρ, then the magnitude function will

be deactivated and output a constant. For SegConv, ‖x‖=ρ

is the change point of the magnitude function’s slope. The

operator radius of some decoupled operators (SphereConv,

LinearConv, LogConv) is defined to be zero, indicating that

they have no operator radius. The decoupled operator with

non-zero operator radius is similar to a gated operator where

‖x‖=ρ serves as the switch.

Boundedness. The Boundedness of a decoupled opera-

tor may affect its convergence speed and robustness. [13]

shows that using a bounded operator can improve the con-

vergence due to two reasons. First, bounded operators lead

to better problem conditioning in training a deep network

via stochastic gradient descent. Second, bounded operators

make the variance of the output small and partially address

the internal covariate shift problem. The bounded opera-

tors can also constrain the Lipschitz constant of a neural

network, making the entire network more smooth. The Lip-

schitz constant of a neural network is shown to be closely

related to its robustness against adversarial perturbation [6].

In contrast, the unbounded operators may have stronger ap-

proximation power and flexibility than the bounded ones.

Smoothness. The smoothness of the magnitude function

is closely related to the approximation ability and the con-

vergence behavior. In general, using a smooth magnitude

function could have better approximation rate [16] and may

also lead to more stable and faster convergence [1]. How-

ever, a smooth magnitude function may also be more com-

putationally expensive, since it could be more difficult to

approximate a smooth function with polynomials.

3.3. Geometric Interpretations

All the decoupled convolution operators have very clear

geometric interpretations, as illustrated in Fig. 2. Because

all decoupled operators normalize the kernel weights, all the

weights are already on the unit hypersphere. SphereConv

also projects the input vector x on the unit hypersphere and

then computes the similarity between w and x based on

the geodesic distance on the hypersphere (multiplied by a

scaling factor α). Therefore, its output is bounded from

−α to α and only depends on the directions of w and x

(suppose g(θ(w,x)) is in the range of [−1, 1]).
BallConv first projects the input vector x to a hyperball

and then computes the similarity based on the projected x

inside the hyperball and the normalized w on surface of the

hyperball. Specifically, BallConv projects x to the hyper-

sphere if ‖x‖>ρ. TanhConv is a smoothed BallConv and

has similar geometric interpretation, but TanhConv is differ-

entible everywhere and has soft boundary around the opera-

tor radius ‖x‖=ρ. TanhConv can be viewed as performing

projection to a soft hyperball.

SegConv is more flexible than both SphereConv and

BallConv. By using certain parameters, SegConv can re-

duce to either SphereConv or BallConv. SegConv essen-

tially adjusts the norm of the input x with a multi-range lin-

2774

0 0.5 1 1.5 2
Norm of the input x

0

0.5

1

1.5

O
u

tp
u

t
o

f
th

e
m

ag
n

it
u

d
e

fu
n

ct
io

n

SphereConv

BallConv

TanhConv

LinearConv

SegConv

LogConv

0 0.5 1 1.5 2 2.5 3

Angle between the kernel and the input

-1

-0.5

0

0.5

1

O
u

tp
u

t
o

f
th

e
an

g
u

la
r

ac
ti

v
at

io
n Cosine

Linear

Sigmoid (k=0.3)

Sigmoid (k=0.7)

Square Cosine

Figure 3: Magnitude function (ρ=1) and angular activation function.

ear multiplicative factor. Geometrically, such a factor will

either push the vector close to the hypersphere or away from

the hypersphere depending on the selection of α and β. For

example, we consider the case where α=1 and 0<β<1.

When ‖x‖≤ρ, the magnitude function h(·) in SegConv will

directly output ‖x‖. When ‖x‖>ρ, h(·) in SegConv will

output a value smaller than ‖x‖, as shown in Fig. 2.

LinearConv is the simplest unbounded operator and its

magnitude function grows linearly with ‖x‖. When α=1,

the magnitude function h(·) in LinearConv simply outputs

‖x‖, which does not perform any projection.

LogConv use a logarithm function to transform the norm

of the input x. After such nonlinear transformation on x,

LogConv computes similarity based on the transformed in-

put x and the normalized weights on a hypersphere.

3.4. Design of the Angular Activation Function

The design of the angular function g(θ(w,x)) mostly fol-

lows the deep hyperspherical learning [13]. We use four

different types of g(θ(w,x)) in this paper. The linear angu-

lar activation is defined as

g(θ(w,x)) = −
2

π
θ(w,x) + 1, (11)

whose output grows linearly with the angle θ(w,x). The co-

sine angular activation is defined as

g(θ(w,x))=cos(θ(w,x)), (12)

which is also used by the original convolution operator.

Moreover, the sigmoid angular activation is defined as

g(θ(w,x)) =
1 + exp(− π

2k
)

1− exp(− π

2k
)
·
1− exp(

θ(w,x)

k
− π

2k
)

1 + exp(
θ(w,x)

k
− π

2k
)
, (13)

where k controls the curvature. Additionally, we also pro-

pose a square cosine angular activation function:

g(θ(w,x)) = sign(cos(θ)) · cos2(θ), (14)

which can encourage a degree of angular margin near the

decision boundary and may improve network generaliza-

tion. In addition to fixing these angular activations prior

to training, we can also jointly learn the parameter k in

the sigmoid activation using back-propagation, which is a

learnable angular activation [13]. Fig. 3 shows the curves

of these angular activation functions.

3.5. Weighted Decoupled Operators

All the decoupled operators we have discussed normal-

ize the kernel weights w and the magnitude functions do

not take the weights into consideration. Although empir-

ically we find that the standard decoupled operators work

better than the weighted ones in most cases, we still con-

sider weighted decoupled operators, which incorporate ‖w‖
into the magnitude function, in order to improve the oper-

ator’s flexibility. We propose two straightforward ways to

combine ‖w‖: linear and nonlinear.

Linearly Weighted Decoupled Operator. Similar to the

original inner produce-based convolution, we can directly

multiply the norm of weights into the magnitude function,

which makes the decoupled operators linearly weighted.

For example, SphereConv will become fd(w,x) = α‖w‖ ·
g(θ(w,x)). Notably, linearly weighted LinearConv will be-

come the original inner produce-based convolution.

Nonlinearly Weighted Decoupled Operator. Compared

to linearly weighted decoupled operators, the norm of the

weights are incorporated into the magnitude function in a

nonlinear way. Taking TanhConv as an example, we could

formulate the nonlinearly weighted TanhConv as

fd(w,x) = α tanh(
1

ρ
‖x‖ · ‖w‖) · g(θ(w,x)). (15)

We can also formulate the nonlinearly weighted TanhConv

in an alternative way:

fd(w,x) = α tanh(
1

ρ
‖w‖) · tanh(

1

ρ
‖x‖) · g(θ(w,x)). (16)

The first nonlinearly weighted formulation couples ‖x‖ and

‖w‖ by multiplication and then perform a nonlinear trans-

formation, while the second one performs nonlinear trans-

formations separately for ‖x‖ and ‖w‖, and then multiplies

them. In practice, the linearly weighted operators are fa-

vored over nonlinearly weighted ones due to the simplicity.

3.6. Learnable Decoupled Operators

Because our decoupled operators usually have hyperpa-

rameters, we usually need to do cross-validation in order to

choose suitable parameters, which is time-consuming and

sub-optimal. To address this, we can learn these parameters

jointly with network weight training via back-propagation.

We propose learnable decoupled operators which perform

hyperparameter learning with h(·) and g(θ(w,x)). For ex-

ample, [13] proposed to learn the hyperparameters of sig-

moid angular function. By making both h(‖w‖, ‖x‖) and

g(θ(w,x)) learnable, we can greatly enhance the representa-

tional power and flexibility.

However, making the decoupled operators too flexible

(i.e., too many learnable parameters) may require a pro-

hibitive amount of training data to achieve good gener-

alization. In order to achieve an effective trade-off, we

2775

only investigate learning the operator radius ρ via back-

propagation during the network training.

4. Improving the Optimization for DCNets

We propose several tricks to improve the optimization of

DCNets and enable DCNets to converge to a better local

minima. More analysis and discussion of weight projection

and weight gradients are provided in Appendix G.

4.1. Weight Projection

The forward pass of DCNets is not dependent on the

norm of the weights ‖w‖, because the decoupled operators

take the normalized weights as input. However, ‖w‖ will

significantly affect the backward pass. Taking SphereConv

as an example, we compute the gradient w.r.t. w:

∂

∂w

(

ŵ
⊤
x̂

)

=
x̂− ŵ

⊤
x̂ · ŵ

‖w‖
(17)

where ŵ=w/ ‖w‖ and x̂=x/ ‖x‖. In comparison, ‖w‖
will not affect the gradient w.r.t w in inner product. From

Eq. (17), large ‖w‖ can make the gradients very small so

that the backward pass is not able to update the weights

effectively. To address this issue, we propose weight pro-

jection to control the norm of the weights. Weight projec-

tion performs w←s ·ŵ every certain number of iterations

where ← denotes the replacement operation. s is a posi-

tive constant which controls the norm of the gradient (we

use s=1 in our experiments). In general, larger s leads

to smaller gradients. Note that, weight projection cannot

be used in the weighted decoupled operators, because ‖w‖
will affect the forward pass. We can only apply weight pro-

jection to our standard decoupled operators.

4.2. Weighted Gradients

From Eq. (17), we observe that we could simply multi-

ply ‖w‖ to Eq. (17) to eliminate the effect of ‖w‖ on the

backward pass. We update the weights with the following:

∆w = ‖w‖ ·
∂

∂w

(

ŵ
⊤
x̂

)

= x̂− ŵ
⊤
x̂ · ŵ (18)

which does not depend on ‖w‖ and is called weighted gra-

dients. Using the proposed weighted gradients for back-

propagation, we can also prevent the gradients from being

affected by the norm of the weights.

4.3. Pretraining as a Better Initialization

We find that DCNets may sometimes be trapped into

a bad local minima and yield a less competitive accuracy

while trained on large-scale datasets (e.g., ImageNet). Be-

cause the decoupled operators have stronger nonlinearity,

its loss landscape may be more complex than the original

convolution. The most straightforward way to improve the

optimization is to use a better initialization. To this end, we

use a CNN model that has the same structure and is pre-

trained on the same training set to initialize the DCNet.

5. Discussions

Why Decoupling? Decoupling the intra-class and inter-

class variation gives us the flexibility to design better mod-

els that are more suitable for a given task. Inner product-

based convolution is computationally attractive but not nec-

essarily optimal. The original convolution makes an as-

sumption that the intra-class and inter-class variations are

modeled by h(‖w‖, ‖x‖)=‖w‖‖x‖ and g(θ)=cos(θ), re-

spectively. Such assumptions may not be optimal. h(·) and

g(·) can be task-driven in our novel decoupled framework.

Flexibility of Decoupled Operators. There are numerous

design options for the magnitude and angular function. The

original convolution can be viewed as a special decoupled

operator. Moreover, we can parametrize a decoupled op-

erator with a few learnable parameters and learn them via

back-propagation. However, there is a delicate tradeoff be-

tween the size of the training data, the generalization of the

network and the flexibility of the decoupled operator. Gen-

erally, given a large enough dataset, the network generaliza-

tion improves with more learnable parameters.

A Unified Learning Framework for CNNs. The decou-

pled formulation provides a unified learning framework for

CNNs. Consider a standard CNN with ReLU, we write the

convolution and ReLU as max(0, ‖w‖‖x‖ cos(θ)) which

can be written as ‖w‖‖x‖·max(0, cos(θ)). Such for-

mulation can be viewed as a decoupled operator where

h(‖w‖, ‖x‖)=‖w‖‖x‖ and g(θ)=max(0, cos(θ)). We

can jointly consider the convolution operator and nonlin-

ear activation in the decoupled framework. It is possible

to learn one single function g(·) that represents both angu-

lar activation and the nonlinearity, which is why the square

cosine angular activation works well without ReLU.

Network Regularization. In most instances of DCNets,

the ℓ2 weight decay is no longer suitable. [13] uses an or-

thonormal constraint ‖W⊤
W −I‖2F to regularize the net-

work, where W is the weight matrix whose columns are the

kernel weights and I is identity matrix. We also propose an

orthogonal constraint ‖W⊤
W −diag(W⊤

W)‖2F .

Network Architecture. Due to the non-linear nature of

DCNet, the performance of specific h(·) and g(·) is depen-

dent on the choice of architecture. An interesting challenge

for future work is to inverstigate the link between the archi-

tecture and the choise of h(·) and g(·).

6. Experiments and Results

General. We evaluate both accuracy and robustness of DC-

Nets on objection recognition. For all decoupled operators,

we use the standard softmax loss if not otherwise specified.

Training. The architecture for each task and the training

details are given in Appendix A. For CIFAR-10 and CIFAR-

100, the network is trained by ADAM with 128 batch size.

The learning rate starts from 0.001. For ImageNet-2012,

we use SGD with momentum 0.9 to train the network. The

2776

batch size is 40. The learning rate starts from 0.1. For the

adversarial attacks, the network is trained via ADAM. All

learning rates are divided by 10 when the error plateaus.

Implementation Details. For all decoupled operators that

have non-zero operator radius (i.e., ρ 6=0), we will learn the

operator radius from the training data via back-propagation.

More details are provided in Appendix B.

6.1. Object Recognition

6.1.1 CIFAR-10 and CIFAR-100

Weighted Decoupled Operators. We first compare the

weighted decoupled operators and the standard ones. Be-

cause the weights are incorporated into the forward pass in

the weighted decoupled operators, the optimization tricks

like weight projection and weighted gradients are not ap-

plicable. Therefore, the weighted operators simply use the

conventional gradients to perform back-propagation. For

standard decoupled operators, we show the results using

standard optimization, weight projection and weight gradi-

ents. From the results of TanhConv in Table 1, weighted

decoupled operators do not show obvious advantages.

Method Error

Linearly Weighted Decoupled Operator 22.95

Nonlinearly Weighted Decoupled Operator (Eq. (15)) 23.03

Nonlinearly Weighted Decoupled Operator (Eq. (16)) 23.38

Decoupled Operator (Standard Gradients) 23.09

Decoupled Operator (Weight Projection) 21.17

Decoupled Operator (Weighted Gradients) 21.45

Table 1: Evaluation of weighted operators (TanhConv) on CIFAR-100.

Optimization Tricks. We propose weight projection and

weighted gradients to facilitate the optimization of DCNets.

These two tricks essentially amplify the original gradient

and make the backward update more effective. From Ta-

ble 1, we observe that both weight projection and weighted

gradients work much better than the competing methods.

Method Linear Cosine Sq. Cosine

CNN Baseline - 35.30 -

LinearConv 33.39 31.76 N/C

TanhConv 32.88 31.88 34.26

SegConv 34.69 30.34 N/C

Table 2: Testing error (%) of plain CNN-9 without BN on CIFAR-100.

“N/C” indicates that the model can not converge. “-” denotes no result.

Learning without Batch Normalization. Batch Normal-

ization (BN) [8] is usually crucial for training a well-

performing CNN, but the results in Table 2 show that our

decoupled operators can perform much better than the orig-

inal convolution even without BN.

Learning without ReLU. Our decoupled operators natu-

rally have strong nonlinearity, because our decoupled con-

volution is no longer a linear matrix multiplication. In Ta-

ble 3, square cosine angular activation works extremely well

in plain CNN-9, even better than the networks with ReLU.

The results show that using suitable h(·) and g(·) can lead

to significantly better accuracy than the baseline CNN with

ReLU, even if our DCNet does not use ReLU at all.

Method
Cosine

w/o ReLU

Sq. Cosine

w/o ReLU

Cosine

w/ ReLU

Sq. Cosine

w/ ReLU

Baseline 58.24 - 26.01 -

SphereConv 33.31 25.90 26.00 26.97

BallConv 31.81 25.43 25.18 26.48

TanhConv 32.27 25.27 25.15 26.94

LinearConv 36.49 24.36 24.81 25.14

SegConv 33.57 24.29 24.96 25.04

LogConv 33.62 24.91 25.17 25.85

MixConv 33.46 24.93 25.27 25.77

Table 3: Testing error rate (%) of plain CNN-9 on CIFAR-100. Note that,

BN is used in all compared models. Baseline is the original plain CNN-9.

Comparison among Different Decoupled Operators. We

compare different decoupled operators on both plain CNN-

9 and ResNet-32. All the compared decoupled operators

are unweighted and use weight projection during optimiza-

tion. The standard softmax loss and BN are used in all net-

works. For plain CNN-9, we compare the case with and

without ReLU. The results in Table 3 show that DCNets

significantly outperform the baseline. In particular, our DC-

Net with SegConv and square cosine can achieve 24.29%

even without ReLU, which is even better than the networks

with ReLU. For ResNet-32, our DCNets also consistently

outperform the baseline with a considerable margin. The

results further verify that the intra-class and inter-class vari-

ation assumptions of the original CNN are not optimal.

Method Linear Cosine Sq. Cosine

ResNet Baseline - 26.69 -

SphereConv 21.79 21.44 24.40

BallConv 21.44 21.12 24.31

TanhConv 21.6 21.17 24.77

LinearConv 21.09 22.17 21.31

SegConv 20.86 20.91 20.88

LogConv 21.84 21.08 22.86

MixConv 21.02 21.28 21.81

Table 4: Testing error rate (%) of ResNet-32 on CIFAR-100.

1 2 3 4
x10

4

0

0.2

0.4

0.6

0.8

ResNet-32 Baseline

TanhConv (Weigt Projection)

TanhConv (Original Gradient)

LinearConv (Weight Projection)

Iteration

T
es

ti
n

g
 A

cc
u

ra
cy

Figure 4: Convergence.

Convergence. We also eval-

uate the convergence of DC-

Nets using the architecture

of ResNet-32. The conver-

gence curves in Fig. 4 show

that the decoupled opera-

tors are able to converge and

generalize better than origi-

nal convolution operators on

CIFAR-100 dataset.

Method CIFAR-10 CIFAR-100

ResNet-110-original [4] 6.61 25.16

ResNet-1001 [5] 4.92 22.71

ResNet-1001 (64 mini-batch size) [5] 4.64 -

DCNet-32 (TanhConv + Cosine) 4.75 21.12

DCNet-32 (LinearConv + Sq. Cos.) 5.34 20.23

Table 5: Comparison to the state-of-the-art on CIFAR-10 and CIFAR-100.

2777

Comparison to the state-of-the-art. Table 5 shows that

our DCNet-32 has very competitive accuracy compared to

ResNet-1001. In order to achieve best accuracy, we use the

weight-normalized softmax loss [13]. We also find that us-

ing SGD further improves the accuracy of DCNets. Experi-

ments on SGD-trained models are provided in Appendix F.

6.1.2 ImageNet-2012

Standard ResNet. We first evaluate the DCNets with the

standard ResNet-18. All presented decoupled operators use

the cosine angular activation. [13] shows that SphereConv

can perform comparably to the baseline on ImageNet only

when the network is wide enough. Using the weight pro-

jection and pretrained model initialization, SphereConv is

comparable to the baseline even on narrow networks. Most

importantly, TanhConv and LinearConv achieve better ac-

curacy than the baseline ResNet. The learned filters of DC-

Nets on ImageNet are also provided in Appendix E.

Modified ResNet. We also evaluate decoupled opera-

tors with a modified ResNet, similar to SphereFace net-

works [11], to better show the advantages of decoupled op-

erators. DCNets can be trained from scratch and outperform

the baseline by 1%. Moreover, DCNets can converge stably

in very challenging scenarios. From Table 6, we observe

that DCNets can converge to a decent accuracy without BN,

while the baseline model fails to converge without BN.

Method

Standard

ResNet-18

w/ BN

Modified

ResNet-18

w/ BN

Modified

ResNet-18

w/o BN

Baseline 12.63 12.10 N/C

SphereConv 12.68* 11.55 13.30

LinearConv 11.99* 11.50 N/C

TanhConv 12.47* 11.10 12.79

Table 6: Center-crop Top-5 error (%) of standard ResNet-18 and modified

ResNet-18 on ImageNet-2012. * indicates we use the pretrained model of

original CNN on ImageNet-2012 as initialization (see Section 4.3).

6.2. Robustness against Adversarial attacks

We evaluate the robustness of DCNets. DCNets in this

subsection use standard gradients and are trained without

any optimization trick. Fast gradient sign method (FGSM)

[3] and basic iterative method (BIM) [10] are used to attack

the networks. Experimental details and more experiments

are given in Appendix A and Appendix C, respectively.

6.2.1 White-box Adversarial Attacks

We run white-box attacks on both naturally trained mod-

els and FGSM-trained models on CIFAR-10 (results shown

in Table 7). “None” attacks mean that all the testing sam-

ples are normal. For naturally trained models, all DC-

Net variants show significantly better robustness over the

baseline, with naturally trained TanhConv being most resis-

tant. With adversarial training, while DCNets achieve the

best robustness, SphereConv is particularly resistant against

BIM attack. We speculate that the tight spherical constraint

strongly twists the data manifold so that the adversarial gra-

dient updates can only result in small gains.

Target models

Attack Baseline SphereConv BallConv TanhConv

None 85.35 88.58 91.13 91.45

FGSM 18.82 43.64 50.47 52.60

BIM 8.67 8.89 7.74 10.18

None 83.70 87.41 87.47 87.54

FGSM 78.96 85.98 82.20 81.46

BIM 7.96 35.07 17.38 19.86

Table 7: White-box attacks on CIFAR-10. Performance is measured in

accuracy (%). The first three rows are results of naturally trained models,

and the last three rows are results of adversarially trained models.

Target models

Attack Baseline SphereConv BallConv TanhConv

None 85.35 88.58 91.13 91.45

FGSM 50.90 56.71 49.50 50.61

BIM 36.22 43.10 27.48 29.06

None 83.70 87.41 87.47 87.54

FGSM 77.57 76.29 78.67 80.38

BIM 78.55 77.79 80.59 82.47

Table 8: Black-box attacks on CIFAR-10. Performance is measured in

accuracy (%). The first three rows are results of naturally trained models,

and the last three rows are results of adversarially trained models.

6.2.2 Black-box Adversarial Attacks

We run black-box attacks on naturally-trained and

FGSM-trained models on CIFAR-10 (see Table 8). With

natural training, it is surprising that BallConv and Tan-

hConv do not show an advantage over the baseline, while

SphereConv performs the best. The strongly nonlinear land-

scape of BallConv and TanhConv may be too difficult to be

optimized without adversarial training. SphereConv, with

a tighter geometric constraint, is able to withstand adver-

sarial attacks without adversarial training. With adversar-

ial training, SphereConv is less resistant against adversarial

attacks than the baseline. BallConv and TanhConv, how-

ever, show significant advantage over the baseline. Our ob-

servation that adversarial training compromises the robust-

ness of SphereConv matches the conclusion made by [22].

Since SphereConv enforces a tight constraint of output vec-

tors, the landscape around some data points will be dramat-

ically changed during adversarial training. BallConv and

TanhConv are less constrained and thus can fit adversarial

examples without detrimental changes in the landscapes.

7. Concluding Remarks

This paper proposes a decoupled framework for learning

neural networks. The decoupled formulation enables us to

design or learn better decoupled operators than the original

convolution. We argue that standard CNNs do not constitute

an optimal decoupled design in general.

Acknowledgements. The project was supported in part by NSF IIS-
1218749, NSF Award BCS-1524565, NIH BIGDATA 1R01GM108341,
NSF CAREER IIS-1350983, NSF IIS-1639792 EAGER, NSF CNS-
1704701, ONR N00014-15-1-2340, Intel ISTC, NVIDIA, Amazon AWS.

2778

References

[1] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and

accurate deep network learning by exponential linear units

(elus). arXiv preprint arXiv:1511.07289, 2015. 3, 4

[2] R. Girshick. Fast r-cnn. In ICCV, 2015. 1

[3] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-

ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014. 8

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1, 2, 7

[5] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In European Conference on Com-

puter Vision, pages 630–645. Springer, 2016. 7

[6] M. Hein and M. Andriushchenko. Formal guarantees on the

robustness of a classifier against adversarial manipulation. In

NIPS, 2017. 4

[7] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. In CVPR, 2017.

1

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 7

[9] M. Jones and H. Kobori. Improving face verification and per-

son re-identification accuracy using hyperplane similarity. In

ICCV, 2017. 2

[10] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial ma-

chine learning at scale. arXiv preprint arXiv:1611.01236,

2016. 8

[11] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.

Sphereface: Deep hypersphere embedding for face recogni-

tion. In CVPR, 2017. 2, 8

[12] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax

loss for convolutional neural networks. In ICML, 2016. 2

[13] W. Liu, Y.-M. Zhang, X. Li, Z. Yu, B. Dai, T. Zhao, and

L. Song. Deep hyperspherical learning. In NIPS, 2017. 2, 3,

4, 5, 6, 8

[14] Y. Liu, H. Li, and X. Wang. Rethinking feature discrimina-

tion and polymerization for large-scale recognition. arXiv

preprint arXiv:1710.00870, 2017. 2

[15] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 1

[16] H. N. Mhaskar and C. A. Micchelli. How to choose an acti-

vation function. In NIPS, 1994. 4

[17] R. Ranjan, C. D. Castillo, and R. Chellappa. L2-constrained

softmax loss for discriminative face verification. arXiv

preprint arXiv:1703.09507, 2017. 2

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In

CVPR, 2016. 1

[19] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

NIPS, 2015. 1

[20] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 1, 2

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 1, 2

[22] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. Mc-

Daniel. Ensemble adversarial training: Attacks and defenses.

arXiv preprint arXiv:1705.07204, 2017. 8

[23] F. Wang, W. Liu, H. Liu, and J. Cheng. Additive margin soft-

max for face verification. arXiv preprint arXiv:1801.05599,

2018. 2

[24] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille. Normface: l 2
hypersphere embedding for face verification. arXiv preprint

arXiv:1704.06369, 2017. 2

[25] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In CVPR,

2017. 1

[26] Y. Yuan, K. Yang, and C. Zhang. Feature incay for repre-

sentation regularization. arXiv preprint arXiv:1705.10284,

2017. 2

2779

