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Abstract

Incidental scene text spotting is considered one of the

most difficult and valuable challenges in the document anal-

ysis community. Most existing methods treat text detection

and recognition as separate tasks. In this work, we pro-

pose a unified end-to-end trainable Fast Oriented Text Spot-

ting (FOTS) network for simultaneous detection and recog-

nition, sharing computation and visual information among

the two complementary tasks. Specifically, RoIRotate is in-

troduced to share convolutional features between detection

and recognition. Benefiting from convolution sharing strat-

egy, our FOTS has little computation overhead compared

to baseline text detection network, and the joint training

method makes our method perform better than these two-

stage methods. Experiments on ICDAR 2015, ICDAR 2017

MLT, and ICDAR 2013 datasets demonstrate that the pro-

posed method outperforms state-of-the-art methods signifi-

cantly, which further allows us to develop the first real-time

oriented text spotting system which surpasses all previous

state-of-the-art results by more than 5% on ICDAR 2015

text spotting task while keeping 22.6 fps.

1. Introduction

Reading text in natural images has attracted increasing

attention in the computer vision community [49, 43, 53, 44,

14, 15, 34], due to its numerous practical applications in

document analysis, scene understanding, robot navigation,

and image retrieval. Although previous works have made

significant progress in both text detection and text recogni-

tion, it is still challenging due to the large variance of text

patterns and highly complicated background.

The most common way in scene text reading is to divide

it into text detection and text recognition, which are han-

dled as two separate tasks [20, 34]. Deep learning based

approaches become dominate in both parts. In text detec-

tion, usually a convolutional neural network is used to ex-

tract feature maps from a scene image, and then different
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Figure 1: Different to previous two-stage methods, FOTS solves

oriented text spotting problem straightforward and efficiently.

FOTS can detect and recognize text simultaneously with little

computation cost compared to a single text detection network

(44.2ms vs. 41.7ms) and almost twice as fast as the two-stage

method (44.2ms vs. 84.2ms). This is detailed in Sec. 4.4.

decoders are used to decode the regions [49, 43, 53]. While

in text recognition, a network for sequential prediction is

conducted on top of text regions, one by one [44, 14]. It

leads to heavy time cost especially for images with a num-

ber of text regions. Another problem is that it ignores the

correlation in visual cues shared in detection and recogni-

tion. A single detection network cannot be supervised by

labels from text recognition, and vice versa.

In this paper, we propose to simultaneously consider text

detection and recognition. It leads to the fast oriented text

spotting system (FOTS) which can be trained end-to-end.

In contrast to previous two-stage text spotting, our method

learns better features through convolutional neural network,

which are shared between text detection and text recogni-

tion. Since feature extraction usually takes most of the time,

it shrinks the computation to a single detection network,

shown in Fig. 1. The key to connect detection and recog-

nition is the ROIRotate, which gets proper features from
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Figure 2: Overall architecture. The network predicts both text regions and text labels in a single forward pass.

feature maps according to the oriented detection bounding

boxes.

The architecture is presented in Fig. 2. Feature maps

are firstly extracted with shared convolutions. The fully

convolutional network based oriented text detection branch

is built on top of the feature map to predict the detection

bounding boxes. The RoIRotate operator extracts text pro-

posal features corresponding to the detection results from

the feature map. The text proposal features are then fed

into Recurrent Neural Network (RNN) encoder and Con-

nectionist Temporal Classification (CTC) decoder [9] for

text recognition. Since all the modules in the network are

differentiable, the whole system can be trained end-to-end.

To the best of our knoweldge, this is the first end-to-end

trainable framework for oriented text detection and recogni-

tion. We find that the network can be easily trained without

complicated post-processing and hyper-parameter tuning.

The contributions are summarized as follows.

• We propose an end-to-end trainable framework for fast

oriented text spotting. By sharing convolutional fea-

tures, the network can detect and recognize text si-

multaneously with little computation overhead, which

leads to real-time speed.

• We introduce the RoIRotate, a new differentiable oper-

ator to extract the oriented text regions from convolu-

tional feature maps. This operation unifies text detec-

tion and recognition into an end-to-end pipeline.

• FOTS significantly surpasses state-of-the-art methods

on a number of text detection and text spotting bench-

marks, including ICDAR 2015 [26], ICDAR 2017

MLT [1] and ICDAR 2013 [27].

2. Related Work

Text spotting is an active topic in computer vision and

document analysis. In this section, we present a brief intro-

duction to related works including text detection, text recog-

nition and text spotting methods that combine both.

2.1. Text Detection

Most conventional methods of text detection consider

text as a composition of characters. These character based

methods first localize characters in an image and then group

them into words or text lines. Sliding-window-based meth-

ods [22, 28, 3, 54] and connected-components based meth-

ods [18, 40, 2] are two representative categories in conven-

tional methods.

Recently, many deep learning based methods are pro-

posed to directly detect words in images. Tian et al. [49]

employ a vertical anchor mechanism to predict the fixed-

width sequential proposals and then connect them. Ma et

al. [39] introduce a novel rotation-based framework for ar-

bitrarily oriented text by proposing Rotation RPN and Ro-

tation RoI pooling. Shi et al. [43] first predict text segments

and then link them into complete instances using the link-

age prediction. With dense predictions and one step post

processing, Zhou et al. [53] and He et al. [15] propose deep

direct regression methods for multi-oriented scene text de-

tection.

2.2. Text Recognition

Generally, scene text recognition aims to decode a se-

quence of label from regularly cropped but variable-length

text images. Most previous methods [8, 30] capture indi-

vidual characters and refine misclassified characters later.

Apart from character level approaches, recent text region

recognition approaches can be classified into three cate-

gories: word classification based, sequence-to-label decode

based and sequence-to-sequence model based methods.

Jaderberg et al. [19] pose the word recognition problem

as a conventional multi-class classification task with a large

number of class labels. Su et al. [48] frame text recogni-

tion as a sequence labelling problem, where RNN is built

upon HOG features and adopt CTC as decoder. Shi et al.

[44] and He et al. [14] propose deep recurrent models to en-

code the max-out CNN features and adopt CTC to decode

the encoded sequence. Fujii et al. [5] propose an encoder

and summarizer network to perform line-level script iden-

tification. Lee et al. [31] use an attention-based sequence-

to-sequence structure to automatically focus on certain ex-

tracted CNN features and implicitly learn a character level

language model embodied in RNN. To handle irregular in-

put images, Shi et al. [45] and Liu et al. [37] introduce spa-

tial attention mechanism to transform a distorted text region

into a canonical pose suitable for recognition.

2.3. Text Spotting

Most previous text spotting methods first generate text

proposals using a text detection model and then recognize
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Figure 3: Architecture of shared convolutions. Conv1-Res5 are

operations from ResNet-50, and Deconv consists of one convolu-

tion to reduce feature channels and one bilinear upsampling oper-

ation.

them with a separate text recognition model. Jaderberg et

al. [20] first generate holistic text proposals with a high re-

call using an ensemble model, and then use a word classi-

fier for word recognition. Gupta et al. [10] train a Fully-

Convolutional Regression Network for text detection and

adopt the word classifier in [19] for text recognition. Liao

et al. [34] use an SSD [36] based method for text detection

and CRNN [44] for text recognition.

Recently Li et al. [33] propose an end-to-end text spot-

ting method, which uses a text proposal network inspired

by RPN [41] for text detection and LSTM with attention

mechanism [38, 45, 3] for text recognition. Our method has

two mainly advantages compared to them: (1) We intro-

duce RoIRotate and use totally different text detection al-

gorithm to solve more complicated and difficult situations,

while their method is only suitable for horizontal text. (2)

Our method is much better than theirs in terms of speed and

performance, and in particular, nearly cost-free text recog-

nition step enables our text spotting system to run at real-

time speed, while their method takes approximately 900ms

to process an input image of 600×800 pixels.

3. Methodology

FOTS is an end-to-end trainable framework that detects

and recognizes all words in a natural scene image simul-

taneously. It consists of four parts: shared convolutions,

the text detection branch, RoIRotate operation and the text

recognition branch.

3.1. Overall Architecture

An overview of our framework is illustrated in Fig. 2.

The text detection branch and recognition branch share con-

volutional features, and the architecture of the shared net-

work is shown in Fig. 3. The backbone of the shared

network is ResNet-50 [12]. Inspired by Feature Pyramid

Network [35], we concatenate low-level feature maps and

high-level semantic feature maps. The resolution of feature

maps produced by shared convolutions is 1/4 of the input

image. The text detection branch outputs dense per-pixel

prediction of text using features produced by shared con-

volutions. With oriented text region proposals produced by

Type
Kernel Out

Channels[size, stride]

conv bn relu [3, 1] 64

conv bn relu [3, 1] 64

height-max-pool [(2, 1), (2, 1)] 64

conv bn relu [3, 1] 128

conv bn relu [3, 1] 128

height-max-pool [(2, 1), (2, 1)] 128

conv bn relu [3, 1] 256

conv bn relu [3, 1] 256

height-max-pool [(2, 1), (2, 1)] 256

bi-directional lstm 256

fully-connected |S|

Table 1: The detailed structure of the text recognition branch. All

convolutions are followed by batch normalization and ReLU acti-

vation. Note that height-max-pool aims to reduce feature dimen-

sion along height axis only.

detection branch, the proposed RoIRotate converts corre-

sponding shared features into fixed-height representations

while keeping the original region aspect ratio. Finally, the

text recognition branch recognizes words in region propos-

als. CNN and LSTM are adopted to encode text sequence

information, followed by a CTC decoder. The structure of

our text recognition branch is shown in Tab. 1.

3.2. Text Detection Branch

Inspired by [53, 15], we adopt a fully convolutional net-

work as the text detector. As there are a lot of small text

boxes in natural scene images, we upscale the feature maps

from 1/32 to 1/4 size of the original input image in shared

convolutions. After extracting shared features, one convo-

lution is applied to output dense per-pixel predictions of text

to be present. The first channel computes the probability of

each pixel being a positive sample. Similar to [53], pixels

in shrunk version of the original text regions are considered

positive. For each positive sample, the following 4 channels

predict its distances to top, bottom, left, right sides of the

bounding box that contains this pixel, and the last channel

predicts the orientation of the related bounding box. Final

detection results are produced by applying thresholding and

NMS to these positive samples.

In our experiments, we observe that many patterns sim-

ilar to text strokes are hard to classify, such as fences, lat-

tices, etc. We adopt online hard example mining (OHEM)

[46] to better distinguish these patterns, which also solves

the class imbalance problem. This provides a F-measure

improvement of about 2% on ICDAR 2015 dataset.

The detection branch loss function is composed of two

sterms: text classification term and bounding box regression

term. The text classification term can be seen as pixel-wise

classification loss for a down-sampled score map. Only

shrunk version of the original text region is considered as

the positive area, while the area between the bounding box
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Figure 4: Illustration of RoIRotate. Here we use the input image to

illustrate text locations, but it is actually operated on feature maps

in the network. Best view in color.

and the shrunk version is considered as “NOT CARE”, and

does not contribute to the loss for the classification. De-

note the set of selected positive elements by OHEM in the

score map as Ω, the loss function for classification can be

formulated as:

Lcls =
1

|Ω|

∑

x∈Ω

H(px, p
∗
x)

=
1

|Ω|

∑

x∈Ω

(−p∗x log px − (1− p∗x) log(1− px))

(1)

where | · | is the number of elements in a set, and H(px, p
∗
x)

represents the cross entropy loss between px, the prediction

of the score map, and p∗x, the binary label that indicates text

or non-text.

As for the regression loss, we adopt the IoU loss in [52]

and the rotation angle loss in [53], since they are robust to

variation in object shape, scale and orientation:

Lreg =
1

|Ω|

∑

x∈Ω

IoU(Rx,R
∗
x) + λθ(1− cos(θx, θ

∗
x)) (2)

Here, IoU(Rx,R
∗
x) is the IoU loss between the predicted

bounding box Rx, and the ground truth R
∗
x. The second

term is rotation angle loss, where θx and θ∗x represent pre-

dicted orientation and the ground truth orientation respec-

tively. We set the hyper-parameter λθ to 10 in experiments.

Therefore the full detection loss can be written as:

Ldetect = Lcls + λregLreg (3)

where a hyper-parameter λreg balances two losses, which is

set to 1 in our experiments.

3.3. RoIRotate

RoIRotate applies transformation on oriented feature re-

gions to obtain axis-aligned feature maps, as shown in Fig.

4. In this work, we fix the output height and keep the aspect

ratio unchanged to deal with the variation in text length.

Compared to RoI pooling [6] and RoIAlign [11], RoIRotate

provides a more general operation for extracting features for

regions of interest. We also compare to RRoI pooling pro-

posed in RRPN [39]. RRoI pooling transforms the rotated

region to a fixed size region through max-pooling, while

we use bilinear interpolation to compute the values of the

output. This operation avoids misalignments between the

RoI and the extracted features, and additionally it makes

the lengths of the output features variable, which is more

suitable for text recognition.

This process can be divided into two steps. First, affine

transformation parameters are computed via predicted or

ground truth coordinates of text proposals. Then, affine

transformations are applied to shared feature maps for each

region respectively, and canonical horizontal feature maps

of text regions are obtained. The first step can be formu-

lated as:

tx = l ∗ cos θ − t ∗ sin θ − x (4)

ty = t ∗ cos θ + l ∗ sin θ − y (5)

s =
ht

t+ b
(6)

wt = s ∗ (l + r) (7)

M =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1









s 0 0
0 s 0
0 0 1









1 0 tx
0 1 ty
0 0 1





= s





cos θ − sin θ tx cos θ − ty sin θ
sin θ cos θ tx sin θ + ty cos θ
0 0 1

s



 (8)

where M is the affine transformation matrix. ht, wt rep-

resent height (equals 8 in our setting) and width of feature

maps after affine transformation. (x, y) represents the co-

ordinates of a point in shared feature maps and (t, b, l, r)
stands for distance to top, bottom, left, right sides of the text

proposal respectively, and θ for the orientation. (t, b, l, r)
and θ can be given by ground truth or the detection branch.

With the transformation parameters, it is easy to produce

the final RoI feature using the affine transformation:





xs
i

ysi
1



 = M
−1





xt
i

yti
1



 (9)

and for ∀i ∈ [1 . . . ht], ∀j ∈ [1...wt], ∀c ∈ [1 . . . C],

V c
ij =

hs
∑

n

ws
∑

m

U c
nmk(xs

ij −m; Φx)k(y
s
ij − n; Φy) (10)

where V c
ij is the output value at location (i, j) in channel

c and U c
nm is the input value at location (n,m) in channel

c. hs, ws represent the height and width of the input, and

Φx, Φy are the parameters of a generic sampling kernel k(),
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which defines the interpolation method, specifically bilin-

ear interpolation in this work. As the width of text propos-

als may vary, in practice, we pad the feature maps to the

longest width and ignore the padding parts in recognition

loss function.

Spatial transformer network [21] uses affine transforma-

tion in a similar way, but gets transformation parameters via

a different method and is mainly used in the image domain,

i.e. transforming images themselves. RoIRotate takes fea-

ture maps produced by shared convolutions as input, and

generates the feature maps of all text proposals, with fixed

height and unchanged aspect ratio.

Different from object classification, text recognition is

very sensitive to detection noise. A small error in predicted

text region could cut off several characters, which is harm-

ful to network training, so we use ground truth text regions

instead of predicted text regions during training. When test-

ing, thresholding and NMS are applied to filter predicted

text regions. After RoIRotate, transformed feature maps are

fed to the text recognition branch.

3.4. Text Recognition Branch

The text recognition branch aims to predict text labels us-

ing the region features extracted by shared convolutions and

transformed by RoIRotate. Considering the length of the

label sequence in text regions, input features to LSTM are

reduced only twice (to 1/4 as described in Sec. 3.2) along

width axis through shared convolutions from the original

image. Otherwise discriminable features in compact text re-

gions, especially those of narrow shaped characters, will be

eliminated. Our text recognition branch consists of VGG-

like [47] sequential convolutions, poolings with reduction

along height axis only, one bi-directional LSTM [42, 16],

one fully-connection and the final CTC decoder [9].

First, spatial features are fed into several sequential con-

volutions and poolings along height axis with dimension re-

duction to extract higher-level features. For simplicity, all

reported results here are based on VGG-like sequential lay-

ers as shown in Tab. 1.

Next, the extracted higher-level feature maps L ∈
R

C×H×W are permuted to time major form as a sequence

l1, ..., lW ∈ R
C×H and fed into RNN for encoding. Here

we use a bi-directional LSTM, with D = 256 output chan-

nels per direction, to capture range dependencies of the in-

put sequential features. Then, hidden states h1, ...,hW ∈
R

D calculated at each time step in both directions are

summed up and fed into a fully-connection, which gives

each state its distribution xt ∈ R
|S| over the character

classes S. To avoid overfitting on small training datasets

like ICDAR 2015, we add dropout before fully-connection.

Finally, CTC is used to transform frame-wise classifica-

tion scores to label sequence. Given probability distribu-

tion xt over S of each ht, and ground truth label sequence

y∗ = {y1, ..., yT }, T 6 W , the conditional probability of

the label y∗ is the sum of probabilities of all paths π agree-

ing with [9]:

p(y∗|x) =
∑

π∈B−1(y∗)

p(π|x) (11)

where B defines a many-to-one map from the set of possi-

ble labellings with blanks and repeated labels to y∗. The

training process attempts to maximize the log likelihood of

summation of Eq. (11) over the whole training set. Follow-

ing [9], the recognition loss can be formulated as:

Lrecog = −
1

N

N
∑

n=1

log p(y∗
n|x) (12)

where N is the number of text regions in an input image,

and y∗
n is the recognition label.

Combined with detection loss Ldetect in Eq. (3), the full

multi-task loss function is:

L = Ldetect + λrecogLrecog (13)

where a hyper-parameter λrecog controls the trade-off be-

tween two losses. λrecog is set to 1 in our experiments.

3.5. Implementation Details

We use model trained on ImageNet dataset [29] as our

pre-trained model. The training process includes two steps:

first we use Synth800k dataset [10] to train the network

for 10 epochs, and then real data is adopted to fine-tune

the model until convergence. Different training datasets are

adopted for different tasks, which will be discussed in Sec.

4. Some blurred text regions in ICDAR 2015 and ICDAR

2017 MLT datasets are labeled as “DO NOT CARE”, and

we ignore them in training.

Data augmentation is important for robustness of deep

neural networks, especially when the number of real data

is limited, as in our case. First, longer sides of images are

resized from 640 pixels to 2560 pixels. Next, images are

rotated in range [−10◦, 10◦] randomly. Then, the heights of

images are rescaled with ratio from 0.8 to 1.2 while their

widths keep unchanged. Finally, 640×640 random samples

are cropped from the transformed images.

As described in Sec. 3.2, we adopt OHEM for better

performance. For each image, 512 hard negative samples,

512 random negative samples and all positive samples are

selected for classification. As a result, positive-to-negative

ratio is increased from 1:60 to 1:3. And for bounding box

regression, we select 128 hard positive samples and 128 ran-

dom positive samples from each image for training.

At test time, after getting predicted text regions from

the text detection branch, the proposed RoIRotate applies

thresholding and NMS to these text regions and feeds se-

lected text features to the text recognition branch to get final
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Method
Detection

Method
End-to-End Word Spotting

P R F S W G S W G

SegLink [43] 74.74 76.50 75.61 Baseline OpenCV3.0+Tesseract [26] 13.84 12.01 8.01 14.65 12.63 8.43

SSTD [13] 80.23 73.86 76.91 Deep2Text-MO [51, 50, 20] 16.77 16.77 16.77 17.58 17.58 17.58

WordSup [17] 79.33 77.03 78.16 Beam search CUNI+S [26] 22.14 19.80 17.46 23.37 21.07 18.38

RRPN [39] 83.52 77.13 80.20 NJU Text (Version3) [26] 32.63 - - 34.10 - -

EAST [53] 83.27 78.33 80.72 StradVision v1 [26] 33.21 - - 34.65 - -

NLPR-CASIA [15] 82 80 81 Stradvision-2 [26] 43.70 - - 45.87 - -

R2CNN [25] 85.62 79.68 82.54 TextProposals+DictNet [7, 19] 53.30 49.61 47.18 56.00 52.26 49.73

CCFLAB FTSN [4] 88.65 80.07 84.14 HUST MCLAB [43, 44] 67.86 - - 70.57 - -

Our Detection 88.84 82.04 85.31 Our Two-Stage 77.11 74.54 58.36 80.38 77.66 58.19

FOTS 91.0 85.17 87.99 FOTS 81.09 75.90 60.80 84.68 79.32 63.29

FOTS RT 85.95 79.83 82.78 FOTS RT 73.45 66.31 51.40 76.74 69.23 53.50

FOTS MS 91.85 87.92 89.84 FOTS MS 83.55 79.11 65.33 87.01 82.39 67.97

Table 2: Comparison with other results on ICDAR 2015 with percentage scores. “FOTS MS” represents multi-scale testing and “FOTS

RT” represents our real-time version, which will be discussed in Sec. 4.4. “End-to-End” and “Word Spotting” are two types of evaluation

protocols for text spotting. “P”, “R”, “F” represent “Precision”, “Recall”, “F-measure” respectively and “S”, “W”, “G” represent F-measure

using “Strong”, “Weak”, “Generic” lexicon respectively.

Method Precision Recall F-measure

linkage-ER-Flow [1] 44.48 25.59 32.49

TH-DL [1] 67.75 34.78 45.97

TDN SJTU2017 [1] 64.27 47.13 54.38

SARI FDU RRPN v1 [39] 71.17 55.50 62.37

SCUT DLVClab1 [1] 80.28 54.54 64.96

Our Detection 79.48 57.45 66.69

FOTS 80.95 57.51 67.25

FOTS MS 81.86 62.30 70.75

Table 3: Comparison with other results on ICDAR 2017 MLT

scene text detection task.

recognition result. For multi-scale testing, results from all

scales are combined and fed to NMS again to get the final

results.

4. Experiments

We evaluate the proposed method on three recent chal-

lenging public benchmarks: ICDAR 2015 [26], ICDAR

2017 MLT [1] and ICDAR 2013 [27], and surpasses state-

of-the-art methods in both text localization and text spotting

tasks. All the training data we use is publicly available.

4.1. Benchmark Datasets

ICDAR 2015 is the Challenge 4 of ICDAR 2015 Ro-

bust Reading Competition, which is commonly used for

oriented scene text detection and spotting. This dataset in-

cludes 1000 training images and 500 testing images. These

images are captured by Google glasses without taking care

of position, so text in the scene can be in arbitrary orien-

tations. For text spotting task, it provides 3 specific lists

of words as lexicons for reference in the test phase, named

as “Strong”, “Weak” and “Generic”. “Strong” lexicon pro-

vides 100 words per-image including all words that appear

in the image. “Weak” lexicon includes all words that ap-

pear in the entire test set. And “Generic” lexicon is a 90k

word vocabulary. In training, we first train our model using

9000 images from ICDAR 2017 MLT training and valida-

tion datasets, then we use 1000 ICDAR 2015 training im-

ages and 229 ICDAR 2013 training images to fine-tune our

model.

ICDAR 2017 MLT is a large scale multi-lingual text

dataset, which includes 7200 training images, 1800 valida-

tion images and 9000 testing images. The dataset is com-

posed of complete scene images which come from 9 lan-

guages, and text regions in this dataset can be in arbitrary

orientations, so it is more diverse and challenging. This

dataset does not have text spotting task so we only report

our text detection result. We use both training set and vali-

dation set to train our model.

ICDAR 2013 consists of 229 training images and 233

testing images, and similar to ICDAR 2015, it also provides

“Strong”, “Weak” and “Generic” lexicons for text spotting

task. Different to above datasets, it contains only horizon-

tal text. Though our method is designed for oriented text,

results in this dataset indicate the proposed method is also

suitable for horizontal text. Due to there are too few training

images, we first use 9000 images from ICDAR 2017 MLT

training and validation datasets to train a pre-trained model

and then use 229 ICDAR 2013 training images to fine-tune.

4.2. Comparison with Two­Stage Method

Different from previous works which divide text detec-

tion and recognition into two unrelated tasks, our method

train these two tasks jointly, and both text detection and

recognition can benefit from each other. To verify this, we

build a two-stage system, in which text detection and recog-

nition models are trained separately. The detection network

is built by removing recognition branch in our proposed net-
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Method
Detection

Method
End-to-End Word Spotting

IC13 DetEval S W G S W G

TextBoxes [34] 85 86 NJU Text (Version3) [27] 74.42 - - 77.89 - -

CTPN [49] 82.15 87.69 StradVision-1 [27] 81.28 78.51 67.15 85.82 82.84 70.19

R2CNN [25] 79.68 87.73 Deep2Text II+ [51, 20] 81.81 79.47 76.99 84.84 83.43 78.90

NLPR-CASIA [15] 86 - VGGMaxBBNet(055) [20, 19] 86.35 - - 90.49 - 76

SSTD [13] 87 88 FCRNall+multi-filt [10] - - - - - 84.7

WordSup [17] - 90.34 Adelaide ConvLSTMs [32] 87.19 86.39 80.12 91.39 90.16 82.91

RRPN [39] - 91 TextBoxes [34] 91.57 89.65 83.89 93.90 91.95 85.92

Jiang et al. [24] 89.54 91.85 Li et al. [33] 91.08 89.81 84.59 94.16 92.42 88.20

Our Detection 86.96 87.32 Our Two-Stage 87.84 86.96 80.79 91.70 90.68 82.97

FOTS 88.23 88.30 FOTS 88.81 87.11 80.81 92.73 90.72 83.51

FOTS MS 92.50 92.82 FOTS MS 91.99 90.11 84.77 95.94 93.90 87.76

Table 4: Comparison with other results on ICDAR 2013. “IC13” and “DetEval” represent F-measure under ICDAR 2013 evaluation and

DetEval evaluation respectively.
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Figure 5: FOTS reduces Miss, False, Split and Merge errors in detection. Bounding boxes in green ellipses represent correct text regions

detected by FOTS, and those in red ellipses represent wrong text regions detected by “Our Detection” method. Best view in color.

work, and similarly, detection branch is removed from ori-

gin network to get the recognition network. For recognition

network, text line regions cropped from source images are

used as training data, similar to previous text recognition

methods [44, 14, 37].

As shown in Tab. 2,3,4, our proposed FOTS significantly

outperforms the two-stage method “Our Detection” in text

localization task and “Our Two-Stage” in text spotting task.

Results show that our joint training strategy pushes model

parameters to a better converged state.

FOTS performs better in detection because text recogni-

tion supervision helps the network to learn detailed charac-

ter level features. To analyze in detail, we summarize four

common issues for text detection, Miss: missing some text

regions, False: regarding some non-text regions as text re-

gions wrongly, Split: wrongly spliting a whole text region

to several individual parts, Merge: wrongly merging sev-

eral independent text regions together. As shown in Fig. 5,

FOTS greatly reduces all of these four types of errors com-

pared to “Our Detection” method. Specifically, “Our Detec-

tion” method focuses on the whole text region feature rather

than character level feature, so this method does not work

well when there is a large variance inside a text region or

a text region has similar patterns with its background, etc.

As the text recognition supervision forces the model to con-

sider fine details of characters, FOTS learns the semantic in-

formation among different characters in one word that have

different patterns. It also enhances the difference among

characters and background that have similar patterns. As

shown in Fig. 5, for the Miss case, “Our Detection” method

misses the text regions because their color is similar to their

background. For the False case, “Our Detection” method

wrongly recognizes a background region as text because

it has “text-like” patterns (e.g., repetitive structured stripes

with high contrast), while FOTS avoids this mistake after

training with recognition loss which considers details of

characters in the proposed region. For the Split case, “Our

Detection” method splits a text region to two because the

left and right sides of this text region have different colors,

while FOTS predicts this region as a whole because patterns

of characters in this text region are continuous and simi-

lar. For the Merge case, “Our Detection” method wrongly

merges two neighboring text bounding boxes together be-

cause they are too close and have similar patterns, while
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(a) ICDAR 2015 (b) ICDAR 2017 MLT (c) ICDAR 2013

Figure 6: Results of the proposed method. Note: we only show text detection results of ICDAR 2017 MLT due to the absence of text

spotting task.

Dataset Method
Speed

Params
Detection End-to-End

IC15 Our Two-Stage 7.8 fps 3.7 fps 63.90 M

FOTS 7.8 fps 7.5 fps 34.98 M

FOTS RT 24.0 fps 22.6 fps 28.79 M

IC13 Our Two-Stage 23.9 fps 11.2 fps 63.90 M

FOTS 23.9 fps 22.0 fps 34.98 M

Table 5: Speed and model size compared on different methods.

“Our Two-Stage” consists of a detection model with 28.67M pa-

rameters and a recognition model with 35.23M parameters.

FOTS utilizes the character level information given by text

recognition and captures the space between two words.

4.3. Comparisons with State­of­the­Art Results

In this section, we compare FOTS to state-of-the-art

methods. As shown in Tab. 2, 3, 4, our method outper-

forms all others by a large margin in all datasets. Since IC-

DAR 2017 MLT does not have text spotting task, we only

report our text detection result. All text regions in ICDAR

2013 are labeled by horizontal bounding box while many of

them are slightly tilted. As our model is pre-trained using

ICDAR 2017 MLT data, it also can predict orientations of

text regions. Our final text spotting results keep predicted

orientations for better performance, and due to the limita-

tion of the evaluation protocol, our detection results are the

minimum horizontal circumscribed rectangles of network

predictions. It is worth mentioning that in ICDAR 2015 text

spotting task, our method outperforms previous best method

[43, 44] by more than 15% in terms of F-measure.

For single-scale testing, FOTS resizes longer side of in-

put images to 2240, 1280, 920 respectively for ICDAR

2015, ICDAR 2017 MLT and ICDAR 2013 to achieve the

best results, and we apply 3-5 scales for multi-scale testing.

4.4. Speed and Model Size

As shown in Tab. 5, benefiting from our convolution

sharing strategy, FOTS can detect and recognize text jointly

with little computation and storage increment compared to

a single text detection network (7.5 fps vs. 7.8 fps, 22.0 fps

vs. 23.9 fps), and it is almost twice as fast as “Our Two-

Stage” method (7.5 fps vs. 3.7 fps, 22.0 fps vs. 11.2 fps).

As a consequence, our method achieves state-of-the-art per-

formance while keeping real-time speed.

All of these methods are tested on ICDAR 2015 and

ICDAR 2013 test sets. These datasets have 68 text

recognition labels, and we evaluate all test images and

calculate the average speed. For ICDAR 2015, FOTS

uses 2240×1260 size images as inputs, “Our Two-Stage”

method uses 2240×1260 images for detection and 32 pixels

height cropped text region patches for recognition. As for

ICDAR 2013, we resize longer size of input images to 920

and also use 32 pixels height image patches for recognition.

To achieve real-time speed, “FOTS RT” replaces ResNet-50

with ResNet-34 and uses 1280×720 images as inputs. All

results in Tab. 5 are tested on a modified version Caffe [23]

using a TITAN-Xp GPU.

5. Conclusion

In this work, we presented FOTS, an end-to-end train-

able framework for oriented scene text spotting. A novel

RoIRotate operation is proposed to unify detection and

recognition into an end-to-end pipeline. By sharing con-

volutional features, the text recognition step is nearly cost-

free, which enables our system to run at real-time speed.

Experiments on standard benchmarks show that our method

significantly outperforms previous methods in terms of effi-

ciency and performance.
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