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Abstract

We propose a novel crowd counting approach that lever-

ages abundantly available unlabeled crowd imagery in

a learning-to-rank framework. To induce a ranking of

cropped images , we use the observation that any sub-image

of a crowded scene image is guaranteed to contain the same

number or fewer persons than the super-image. This al-

lows us to address the problem of limited size of existing

datasets for crowd counting. We collect two crowd scene

datasets from Google using keyword searches and query-

by-example image retrieval, respectively. We demonstrate

how to efficiently learn from these unlabeled datasets by in-

corporating learning-to-rank in a multi-task network which

simultaneously ranks images and estimates crowd density

maps. Experiments on two of the most challenging crowd

counting datasets show that our approach obtains state-of-

the-art results.

1. Introduction

Crowd counting and crowd density estimation tech-

niques aim to count the number of persons in crowded

scenes. They are essential in video surveillance [3], safety

monitoring, and behavior analysis [29]. Person counting

and density estimation are instances of a broader class of

classical counting problems in computer vision. Counting

semantic image features is important in medical and bio-

logical image processing [18], vehicle counting [25], and

numerous other application contexts.

Despite the attention the crowd counting problem has re-

ceived, both classically and in the recent computer vision

literature, it remains a difficult task in practice. Perspec-

tive distortion, clutter, occlusion, non-uniform distribution

of people, complex illumination, scale variation, and a host

of other scene-incidental imaging conditions render per-

son counting and crowd density estimation in unconstrained

images an extremely daunting problem. Techniques for

crowd counting have been recently improved using Convo-

lutional Neural Networks (CNNs). These recent approaches
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Figure 1. Using ranked sub-images for self-supervised training.

We sample a decreasing sequence of sub-images I1, I2, and I3
from an unlabeled image. Though we do not know the exact per-

son counts C(Ii), we use the fact that C(I1) ≥ C(I2) ≥ C(I3)
as self-supervision to learn representations for person counting.

include scale-aware regression models [25], multi-column

CNNs [37], and switching networks [1]. As with most CNN

architectures, however, these person counting and crowd

density estimation techniques are highly data-driven. Even

modestly deep architectures for visual recognition require

massive amounts of labeled training data for learning. For

person counting, the labeling burden is even more onerous

than usual. Training data for person counting requires that

each individual person be meticulously labeled in training

images. It is for this reason that person counting and crowd

density estimation datasets tend to have only a few hundred

images available for training. As a consequence, the ability

to train these sophisticated CNN-based models suffers.

Recently, self-supervised learning has received more at-

tention because it provides an alternative to collecting large

hand-labeled datasets. Self-supervised learning is based on
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Methods Basic CNNs Scale-aware Context-aware Multi-task Fast inference

Zhang et al. (2015) [35] X

Shang et al. [28] X

Marsden et al. [23] X X

Zhang et al. (2016) [37] X

Babu Sam et al. [1] X

Sindagi et al. [31] X X

Ours X X X X

Table 1. State-of-the-art crowd counting networks and their characteristics.

the idea of using an auxiliary task (different, but related to

the original supervised task) for which data is freely avail-

able and no annotation is required. As a consequence, self-

supervised learning can be much more scalable and flexi-

ble. A network trained to estimate the relative location of

patches in images was shown to automatically learn features

discriminative for semantic concepts in [10]. Other exam-

ples include methods that can generate color images from

gray scale images and vice versa [17, 36], recover a whole

patch from the surrounding pixels by inpainting [26], and

learn from equivalence relations [24].

In this paper, we propose a self-supervised task to im-

prove the training of networks for crowd counting. Our ap-

proach leverages unlabeled crowd images at training time

to significantly improve performance. Our key insight is

that even though we do not have an exact count of the

number of persons in a crowd image, we do know that

crops sampled from a crowd image are guaranteed to con-

tain the same or fewer persons than the original (see Fig-

ure 1). This gives a technique for generating a ranking of

sub-images that can be used to train a network to estimate

whether one image contains more persons than another im-

age. The standard approach to exploiting self-supervised

learning is to train the self-supervised task first, after which

the resulting network is fine-tuned on the final task for

which limited data is available. We show that this approach,

which is used by the vast majority of self-supervised meth-

ods [10, 20, 24, 26, 36], does not produce satisfactory re-

sults for crowd counting. Our proposed self-supervision,

however, yields significant improvement over the state-of-

the-art when added as a proxy task to supervised crowd

counting in a multi-task network.

The main contribution of this work is that we propose a

method that can leverage unlabeled crowd imagery at train-

ing time. We propose two different approaches to automati-

cally acquire this data from the Internet. In addition, we an-

alyze three approaches to training using ranked image sets

in combination with datasets of labeled crowd scenes. Fi-

nally, we demonstrate that our approach leads to state-of-

the-art results on two crowd counting datasets and obtains

excellent results on a cross-dataset experiment.

The rest of this paper is organized as follows. In the

next section we briefly review the literature related to crowd

counting. Then, in Section 3 we describe how to system-

atically generate ranked images from unlabeled crowd im-

agery. In Section 4 we introduce our approach to exploiting

this ranked imagery at training time. We follow in Section 5

with an extensive experimental evaluation of our approach

and a comparative analysis with the state-of-the-art.

2. Related work

We divide our discussion of related work into two main

groups as in [32]: traditional approaches and CNN-based

methods. We focus on crowd counting in still images, but

we refer the interested reader to the following papers for

examples of crowd counting in video [5, 9, 22].

Various traditional approaches have been proposed to

deal with the crowd counting problem. The main strate-

gies are divided into the various categories as in [21]. Most

early work on crowd counting used detectors to detect the

heads or full bodies of persons in the scene [11, 19]. This

information can then be used to count. However, detection-

based approaches fail in extremely dense crowded scenes

due to occlusion and low resolution of persons. To address

these issues, researchers proposed to map features learned

from the crowded scene or patches to the number of peo-

ple [4, 6]. By counting using regression, the crowd counting

problem is decomposed into two parts: feature extraction

and a regression model. While regression-based approaches

resulted in improvement, only global counting was consid-

ered without any spatial information (i.e. without estimat-

ing a density map). The authors of [18] proposed to learn

a mapping from patches to corresponding density maps,

which achieved great success on a variety of counting prob-

lems.

As introduced in the review of [32], CNN-based ap-

proaches can be classified into different categories based on

the properties of the CNN (see Table 1 for an overview of

state-of-the-art networks and the properties they hold). Ba-

sic CNNs incorporate only basic CNN layers in their net-

works. The approaches in [12, 34] use the AlexNet net-

work [16] to map from crowd scene patches to global num-

ber of people by changing the output of AlexNet from 1000

to 1. The resulting network can be trained end-to-end.
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Figure 2. Example images from the retrieved crowd scene dataset. (top) Representative images using key words as query. (bottom)

Representative images using training image as query image (the query image is depicted on the left).

Due to the large variations of density in different im-

ages, recent methods have focused on scale-awareness. The

method proposed in [37] trains a multi-column based ar-

chitecture (MCNN) to capture the different densities by us-

ing different sizes of kernels in the network. Similarly, the

authors of [25] propose the Hydra-CNN architecture that

takes different resolutions of patches as inputs and has mul-

tiple output layers (heads) which are combined in the end.

Most recently, in [1] the authors propose a switching CNN

that can select an optimal head instead of combining the in-

formation from all network heads. Finally, context-aware

models are networks that can learn from the context of im-

ages. In [12, 31] the authors propose to classify images

or patches into one of five classes: very high density, high

density, medium density, low density and very low density.

However, the definition of these five classes varies across

datasets and must be carefully chosen using knowledge of

the statistics of each dataset.

Although CNN-based methods have achieved great suc-

cess in crowd counting, due to lack of labeled data it is still

challenging to train deep CNNs without over-fitting. The

authors of [35] propose to learn density map and global

counting in an alternating sequence to obtain better local op-

tima. The method in [15] uses side information like ground-

truth camera angle and height to help the network to learn.

However, this side information is expensive to obtain and is

not available in most existing crowd counting datasets.

There are several works which have studied how to learn

to rank, and they focus on learning a ranking function from

ground-truth rankings [7, 27]. However, these are very dif-

ferent from our approach in which we aim to learn from

rankings. Most related to our work is a recent paper [20]

proposing a method for image quality assessment using au-

tomatically generated rankings of distorted images. In that

work the authors used ranking data to pre-train a network

and then fine-tune on available labeled datasets. We will

show that such an approach fails for crowd counting, and

that only when posed as a multi-task learning problem is the

network able to exploit the additional data from rankings.

In another recent paper [24] a method is proposed where

the self-supervised task is to learn to count. The authors

propose two pretext tasks (scaling and tiling) which guide

self-supervised training. The network aims to learn to count

visual primitives in image regions. It is self-supervised by

the fact that the number of visual primitives is not expected

to change under scaling, and that the sum of all visual prim-

itives in individual tiles should equal the total number of

visual primitives in the whole image. Unlike our approach,

they do not consider rankings of regions and their counts are

typically very low (several image primitives). Also, their fi-

nal tasks do not involve counting but rather unsupervised

learning of features for object recognition.

Contributions with respect to the state-of-the-art: Ba-

sic CNNs are simple and fast to train, but usually achieve

lower accuracy. Combining different scale-aware models

and context-aware models has been shown to significantly

increase performance, but the complexity of these models

is high. In addition, considering the scarcity of large an-

notated datasets, ranked patches are used as side informa-

tion to decrease the effect of over-fitting. The model we

propose in this paper is fast to train, uses no side informa-

tion, supports fast inference, is scale-aware, is multi-task,

and outperforms the state-of-the-art. Our key contribution

is in showing how to effectively exploit unlabeled crowd

imagery for pre-training CNNs. In Table 1 we list current

state-of-the-art approaches to crowd counting along with

ours and indicate the characteristics of each.
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3. Generating ranked image sets for counting

As discussed in the introduction, acquiring data for

crowd counting is laborious because images often contain

hundreds of persons which require precise annotation. In-

stead, we propose a self-supervised task for crowd-counting

which exploits crowd images which are not hand-labeled

with person counts during training. Rather than regressing

to the absolute number of persons in the image, we train a

network which compares images and ranks them according

to the number of persons in the images. In this section, we

show how to cheaply collect rank-labeled data which can be

used to train these methods.

The main idea is based on the observation that all patches

contained within a larger patch must have a fewer or equal

number of persons than the larger patch (see Figure 1). This

observation allows us to collect large datasets of crowd im-

ages for which relative ranks exist. Rather than having to

painstakingly annotate each person we are only required to

verify if the image contains a crowd. Given a crowd image

we extract ranked patches according to Algorithm 1.

To collect a large dataset of crowd images from the In-

ternet, we use two different approaches:

• Keyword query: We collect a crowd scene dataset

from Google Images by using different key words:

Crowded, Demonstration, Train station, Mall, Studio,

Beach, all of which have high likelihood of contain-

ing a crowd scene. Then we delete images not rele-

vant to our problem. In the end, we collected a dataset

containing 1180 high resolution crowd scene images,

which is about 24x the size of the UCF CC 50 dataset,

2.5x the size of ShanghaiTech Part A, and 2x the size

of ShanghaiTech Part B. Note that no other annota-

tion of images is performed. Example images from

this dataset are given in Figure 2 (top row).

• Query-by-example image retrieval: For each spe-

cific existing crowd counting dataset, we collect a

dataset by using the training images as queries with

the visual image search engine Google Images. We

choose the first ten similar images and remove irrel-

evant ones. For UCF CC 50 we collect 256 images,

for ShanghaiTech Part A 2229 images, and for Shang-

haiTech Part B 3819 images. An example of images

returned for a specific query image is given in Figure 2

(bottom row).

4. Learning from ranked image sets

In this section we describe our approach to training a

CNN to estimate the number of persons in dense crowd

scenes. We use the ranked image set generation technique

described in the previous section to generate data for the

Algorithm 1 : Algorithm to generate ranked datasets.

Input: A crowd scene image, number of patches k
and scale factor s.

Step 1: Choose an anchor point randomly from the

anchor region. The anchor region is defined

to be 1/r the size of the original image, cen-

tered at the original image center, and with

the same aspect ratio as the original image.

Step 2: Find the largest square patch centered at the

anchor point and contained within the image

boundaries.

Step 3: Crop k− 1 additional square patches, reduc-

ing size iteratively by a scale factor s. Keep

all patches centered at anchor point.

Step 4: Resize all k patches to input size of network.

Output: A list of patches ordered according to the

number of persons in the patch.

self-supervised task of ranking crowd images. We first in-

troduce the network architectures used for counting and

ranking, and then describe three different approaches to

combining both losses.

4.1. Crowd density estimation network

Here we explain the network architecture which is

trained on available crowd counting datasets with ground

truth annotations. This network regresses to a crowd den-

sity image which indicates the number of persons per pixel

(examples of such maps are given in Figure 5). A sum-

mation of all values in such a crowd density image gives an

estimate of the number of people in the scene. In the experi-

mental section we will consider this network as the baseline

method to which we compare.

Our baseline network is derived from the VGG-16 net-

work [30], which consists of 13 convolutional layers fol-

lowed by three fully connected layers. We adapt the net-

work to regress to person density maps. We remove its two

fully connected layers, and the max-pooling layer (pool5) to

prevent further reduction of spatial resolution. In their place

we add a single convolutional layer (a single 3 × 3 × 512
filter with stride 1 and zero padding to maintain same size)

which directly regresses to the crowd density map. As the

counting loss, Lc, we use the Euclidean distance between

the estimated and ground truth density maps:

Lc =
1

M

M
∑

i=1

(yi − ŷi)
2 (1)

where M is the number of images in a training batch, yi
is ground truth person density map of the i-th image in the

batch, and the prediction from the network as ŷi. The net-

work is indicated in orange in Figure 3.
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Ranking loss
  (over pairs) 

Counting loss
 (over images)

Mini-batch: 2N

Ranking
3x3x1 conv split

Nx14x14x1

Nx14x14x1

pool2Nx14x14x512

Nx1

Counting

... ...

2Nx14x14x1

... ...

...
... ...

VGG conv

Figure 3. The multi-task framework combining both counting and ranking information. This network can be trained end-to-end for crowd

counting. VGG-conv refers to the convolutional layers of the VGG-16 network. See text for more details.

Ranking

Counting

Ranking plus fine-tuning

Ranking

Counting

Alternating-task training

Ranking

Counting

Multi-task training

Figure 4. Three ways to combine ranking and counting datasets.

Ground truth annotations for crowd counting typically

consist of a set of coordinates which indicate the ’center’

(typically head center of a person). To convert this data

to crowd density maps, we place a Gaussian with standard

deviation of 15 pixels and sum these for all persons in the

scene to obtain yi. This is a standard procedure and is also

used in [25, 37].

The fact that we derive our architecture from the VGG-

16 network has the advantage of being able to use pre-

trained features from ImageNet. Given the large success

of pre-trained features in neural networks, it is somewhat

surprising to note that the vast majority of deep learning

methods for crowd counting train from scratch [37, 1, 31].

We found, however, that using pre-trained features signifi-

cantly improves results.

To further improve the performance of our baseline net-

work, we introduce multi-scale sampling from the available

labeled datasets. Instead of using the whole image as an

input, we randomly sample square patches of varying size

(from 56 to 448 pixels). In the experimental section we

verify that this multi-scale sampling is important for good

performance. Since we are processing patches rather than

images, we will use ŷi to refer to the estimate of patch i
from now on. The importance of multi-scale processing of

crowd data was also noted in [2].

4.2. Crowd ranking network

In the previous section we explained how to collect abun-

dantly available data for crowd counting. This data does

not have crowd density maps and only ranking data is avail-

able via the sampling procedure described in Algorithm 1.

This ranking indicates that an equal number or more per-

sons are present in a patch when compared to another. Here

we present the network which is trained based on this infor-

mation. For this purpose, we replace the Euclidean loss by

an average pooling layer followed by a ranking loss (net-

work in blue in Figure 3). First, the average pooling layer

converts the density map into an estimate of the number of

persons per spatial unit ĉ(Ii) according to:

ĉ (Ii) =
1

M

∑

j

ŷi (xj), (2)

where xj are the spatial coordinates of the density map, and

M = 14 × 14 is the number of spatial units in the density

map. The ranking which is on the total number of persons

in the patch Ĉi also directly holds for its normalized version

ĉi, since Ĉ (Ii) = M × ĉ (Ii).
To enforce the ranking, we apply the pairwise ranking

hinge loss which for a single pair is defined as:

Lr = max (0, ĉ (I2)− ĉ (I1) + ε), (3)

where ε is the margin, which is set to zero in our case. This

loss increases with the difference between two count esti-

mates when their order does not respect the correct ranking.

Without loss of generality, we assume that the rank of ĉ(I1)
is higher than ĉ(I2).

The gradient with respect to the network parameters θ of

the loss in Eq. 3 is given by:

∇θLr=

{

0 if ĉ (I2)−ĉ (I1) + ε ≤ 0

∇θ ĉ (I2)−∇θ ĉ (I1) otherwise
(4)

When network outputs the correct ranking there is no back-

propagated gradient. However, when the network estimates

are not in accordance with the correct ranking the backprop-

agated gradient causes the network to increase its estimate

for the patch with lower score and to decrease its estimate

for the one with higher score (note that in backpropagation

the gradient is subtracted).
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A typical implementation of the ranking loss would in-

volve a Siamese network [8] where two images are sent

through parallel branches of the network which share their

parameters. However, in [20] the authors show that it is

computationally advantageous (and sometimes leads to bet-

ter minima) to send the images in a batch through a single

branch and combine them when computing the ranking loss.

The ranking loss is then computed with:

Lr =

M
∑

i=1

∑

j∈S(i)

max (0, ĉ (Ij)− ĉ (Ii) + ε) (5)

where S (i) is the set of patches containing fewer people

than patch i. Note that this relation is only defined for

patches which are contained by patch i. In practice we

sample minibatches of 25 images which contain 5 sets of

5 images which can be compared among them resulting in

a total of 5× (4 + 3 + 2 + 1) = 50 pairs in one minibatch.

4.3. Combining counting and ranking data

Here we discuss three approaches to combining ground

truth labeled crowd scenes with data for which only rank in-

formation is available. These three approaches are depicted

in Figure 4. We shortly introduce them here:

• Ranking plus fine-tuning: In this approach the net-

work is first trained on the large dataset of ranking

data, and is next fine-tuned on the smaller dataset for

which density maps are available. To the best of our

knowledge this is the approach which is used by all

self-supervised methods in vision [10, 26, 36, 24, 20].

• Alternating-task training: While ranking plus fine-

tuning works well when the two tasks are closely re-

lated, it might perform bad for crowd counting be-

cause no supervision is performed to indicate what the

network is actually supposed to count. Therefore, we

propose to alternate between the tasks of counting and

ranking. In practice we perform train for 300 mini-

batches on a single task before switching to the other,

then repeat.

• Multi-task training: In the third approach, we add

the self-supervised task as a proxy to the supervised

counting task and train both simultaneously. In each

minibatch we sample data from both ranking and la-

beled datasets and train both tasks simultaneously as

shown in Figure 3. The loss function for multi-task

training is:

L = Lc + λLr, (6)

where λ sets the relative weight between the counting

and ranking loss.

In the next section we compare these three approaches on

several standard dataset for crowd counting.

5. Experiments

We report on several experiments to evaluate our ap-

proach with respect to baselines and the state-of-the-art

methods.1

5.1. Datasets and Experimental Protocol

We use two standard benchmark crowd counting

datasets. The UCF CC 50 dataset is a very challenging

dataset introduced by [13]. It contains 50 annotated im-

ages of different resolutions, illuminations and scenes. The

variation of densities is very large among images from 94 to

4543 persons with an average of 1280 persons per image.

The ShanghaiTech dataset introduced by [37] is a large-

scale crowd counting dataset consisting of 1198 images

with 330,165 annotated heads. This dataset includes two

parts: 482 images in Part A which are randomly crawled

from the Internet, and 716 images in Part B which are taken

from busy streets. Both parts are further divided into train-

ing and evaluation sets. The training and test of Part A has

300 and 182 images, respectively, whereas that of Part B

has 400 and 316 images, respectively.

Following existing work, we use the mean absolute er-

ror (MAE) and the mean squared error (MSE) to evaluate

different methods. These are defined as follows:

MAE =
1

N

N
∑

i=1

∣

∣

∣
C (Ii)− Ĉ (Ii)

∣

∣

∣
,

MSE =

√

√

√

√

1

N

N
∑

i=1

(

C (Ii)− Ĉ (Ii)
)2

(7)

where N is the number of test images, C (Ii) is the ground

truth number of persons in the ith image and Ĉ (Ii) is the

predicted number of persons in the ith image.

We use the Caffe [14] framework and train using mini-

batch Stochastic Gradient Descent (SGD). The minibatch

size for both ranking and counting is 25, and for multi-task

training is 50. For the ranking plus fine-tuning method, the

learning rate is 1e-6 for both ranking and fine-tuning. Sim-

ilarly, for the alternating-task training method, the steps for

training both tasks are 300 iterations. For the multi-task

method, we found λ = 100 to provide good results on all

datasets. Learning rates are decreased by a factor of 0.1

every 10K iterations for a total of 20K iterations. For both

training phases we use ℓ2 weight decay (set to 5e-4). During

training we sample one sub-image from each training image

per epoch. We perform down-sampling of three scales and

up-sampling of one scale on the UCF CC 50 dataset and

only up-sampling of one scale is used on the ShanghaiTech

dataset. The number of ranked crops k = 5, the scale factor

s = 0.75 and the anchor region r = 8.

1Code and models: https://github.com/xialeiliu/CrowdCountingCVPR18
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Method Split 1 Split 2 Split 3 Split 4 Split 5 Ave MAE Ave MSE

Basic CNN 701.41 394.52 497.57 263.56 415.23 454.45 620.95

+ Pre-trained model 570.01 350.63 334.89 184.79 202.41 328.54 443.38

+ multi-scale 532.85 307.43 266.75 216.96 216.35 308.06 408.70

Ranking plus fine-tuning 552.68 375.38 241.28 211.66 247.70 325.73 429.28

Alternating-task training 454.33 350.63 172.52 214.03 235.70 285.44 401.29

Multi-task training 443.68 340.31 196.76 218.48 199.54 279.60 408.07
Table 2. MAE and MSE on the UCF CC 50 dataset with five-fold cross validation. The Basic CNN is trained from scratch on the training

set. The second row is the VGG-16 network fine-tuned starting from a pre-trained ImageNet model. The third row is the VGG-16 network

trained with multi-scale data augmentation and starting from a pre-trained model. Results for combining both ranking and counting datasets

are in the last three rows.

5.2. Ablation study

We begin with an ablation study on the UCF CC 50

dataset. The aim is to evaluate the relative gain of the pro-

posed improvements and to evaluate the use of a ranking

loss against the baseline. The ranked images in this ex-

periment are generated from the Keyword dataset. The re-

sults are summarized in Table 2. We can observe the benefit

of using a pre-trained ImageNet model in crowd counting,

with a significant drop in MAE of around 28% compared to

the model trained from scratch. By using both multi-scale

data augmentation and starting from a pre-trained model,

another improvement of around 6% is obtained.

Next, we compare the three methods we propose for

combining the ranking and counting losses. The “Ranking

plus fine-tuning” method, which is the approach applied by

all self-supervised methods in the literature [10, 26, 36, 24,

20], performs worse than directly fine-tuning from a pre-

trained ImageNet model. This is probably caused by the

poorly-defined nature of the self-supervised task. To opti-

mize this task the network could decide to count anything,

e.g. ‘hats’, ‘trees’, or ‘people’, all of which would agree

with the ranking constraints that are imposed. By jointly

learning both the self-supervised and crowd counting tasks,

the self-supervised task is forced to focus on counting per-

sons. As a result the “Alternating-task training” method

improves the MAE by about 12% when compared to the

direct fine-tuning method. Moreover, the “Multi-task train-

ing” approach reduces the MAE further to 279.6. Given its

excellent results we consider only the “Multi-task training”

approach for the remainder of the experiments.

We also probe how performance scales with increasing

training data. We ran an experiment in which we incre-

mentally add supervised training data from Part A of the

ShanghaiTech data. Our approach, using only 60% of the

labeled data, yields about the same accuracy as training the

counting objective alone on 100% of this data.

5.3. Comparison with the state­of­the­art

We start with the results on the UCF CC 50 dataset.

A five-fold cross-validation was performed for evaluating

Method MAE MSE

Idrees et al. [13] 419.5 541.6

Zhang et al. (2015) [35] 467.0 498.5

Zhang et al. (2016) [37] 377.6 509.1

Onoro et al. [25] 333.7 425.2

Walach et al. [33] 364.4 341.4

Babu Sam et al. [1] 318.1 439.2

Sindagi et al. [31] 295.8 320.9

Ours: Multi-task (Query-by-example) 291.5 397.6

Ours: Multi-task (Keyword) 279.6 388.9

Table 3. MAE and MSE error on the UCF CC 50 dataset.

Part A Part B

Method MAE MSE MAE MSE

Zhang et al. (2015) [35] 181.8 277.7 32.0 49.8

Zhang et al. (2016) [37] 110.2 173.2 26.4 41.3

Babu Sam et al. [1] 90.4 135.0 21.6 33.4

Sindagi et al. [31] 73.6 106.4 20.1 30.1

Ours: Multi-task (Query-by-example) 72.0 106.6 14.4 23.8

Ours: Multi-task (Keyword) 73.6 112.0 13.7 21.4

Table 4. MAE and MSE error on the ShanghaiTech dataset.

the methods. Results are shown in Table 3. Our multi-

task training method with the Keyword dataset reduces the

MAE error from 295.8 to 279.6 compared to the state-of-

the-art. However the MSE of our method on UCF CC 50

dataset is worse then the state-of-the-art methods [33, 31],

which means our methods works better in general but has

more extreme outliers. Compared to training on the Key-

word dataset, learning from the Query-by-example dataset

is slightly worse, which might be because most images from

UCF CC 50 are black and white with low resolution, which

often does not lead to satisfactory query results. An exam-

ple of prediction in UCF CC 50 using our network is shown

in Figure 5.

Next we compare with state-of-the-art on the two sets

of the ShanghaiTech dataset. As shown in Table 4, simi-

lar conclusions as on UCF CC 50 can be drawn. We see

that using the our approach further improves by about 2%

on ShanghaiTech. For both Part A and Part B, our ap-

proach surpasses the state-of-the-art method [31]. An ex-

ample of prediction by our network on ShanghaiTech is

given in Figure 5. For comparison we also provide the re-

sults of our baseline method (including fine-tuning from a
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Figure 5. Examples of predicted density maps for the UCF CC 50 (Top row, true count: 3406 prediction: 3052) and ShanghaiTech datasets

(Bottom row, true count: 361 prediction: 365). Left column: crowd image. Middle column: ground truth. Right column: prediction.

pre-trained model and multi-scale data augmentation) on

this dataset: MAE = 77.7 and MSE = 115.9 on Part

A, and MAE = 14.7 and MSE = 24.7 on Part B. On

Part B our baseline already obtains state-of-the-art, with the

best results for the multi-task approach obtaining around a

30% improvement when compared to the state-of-the-art. It

should also be noted that the method of [31] is complemen-

tary to ours and an approach which combines both methods

is expected to further improve results.

5.4. Evaluation on transfer learning

As proposed in [37], to demonstrate the generalization of

the learned model, we test our method in the transfer learn-

ing setting by using Part A of the ShanghaiTech dataset as

the source domain and using UCF CC 50 dataset as the tar-

get domain. The model trained on Part A of ShanghaiTech

is used to predict the crowd scene images from UCF CC 50

dataset, and the results can be seen in Table 5. Using only

counting information improves the MAE by 12% compared

to reported results in [37]. By combining both ranking

and counting datasets, the MAE decreases from 349.5 to

337.6, and MSE decreases from 475.7 to 434.3. In conclu-

sion, these results show that our method significantly out-

performs the only other work reporting results on the task

of cross-dataset crowd counting.

6. Conclusions

In this work we proposed a method for crowd counting.

The main novelty is based on the observation that a crop

which is contained within a larger crop must contain fewer

or an equal number of persons than the larger crop. This

Method MAE MSE

Zhang et al. (2016) [37] 397.6 624.1

Ours: Counting only 349.5 475.7

Ours: Multi-task 337.6 434.3
Table 5. Transfer learning across datasets. Models were trained on

Part A of ShanghaiTech and tested on UCF CC 50.

allows us to address one of the main problems for crowd

counting, namely the lack of large training datasets. Our

approach enables the exploitation of abundantly available

training data from the Internet by automatically generating

rankings from them. We showed how this additional data

can be leveraged with available annotated data in a multi-

task network.

Experiments show that the proposed self-supervised task

improves results significantly when compared to a net-

work which is only trained on the annotated data. We

show that incorporating the self-supervised task in a multi-

task approach obtains optimal results. Furthermore, we

obtain state-of-the-art results on two challenging datasets

for crowd counting, namely the ShanghaiTech and the

UCF CC 50 dataset. Finally, we show that the learned mod-

els generalize well to other datasets, significantly outper-

forming the only other crowd counting method which re-

ports on this transfer learning task.
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