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Abstract

Contexts play an important role in the saliency detec-

tion task. However, given a context region, not all contex-

tual information is helpful for the final task. In this paper,

we propose a novel pixel-wise contextual attention network,

i.e., the PiCANet, to learn to selectively attend to informa-

tive context locations for each pixel. Specifically, for each

pixel, it can generate an attention map in which each at-

tention weight corresponds to the contextual relevance at

each context location. An attended contextual feature can

then be constructed by selectively aggregating the contextu-

al information. We formulate the proposed PiCANet in both

global and local forms to attend to global and local con-

texts, respectively. Both models are fully differentiable and

can be embedded into CNNs for joint training. We also in-

corporate the proposed models with the U-Net architecture

to detect salient objects. Extensive experiments show that

the proposed PiCANets can consistently improve saliency

detection performance. The global and local PiCANets fa-

cilitate learning global contrast and homogeneousness, re-

spectively. As a result, our saliency model can detect salient

objects more accurately and uniformly, thus performing fa-

vorably against the state-of-the-art methods.

1. Introduction

Saliency detection aims at modeling human visual at-

tention mechanism to detect distinct regions or objects, on

which people likely focus their eyes in visual scenes. Con-

textual information plays an essential role in this visual task.

As one of the earliest pioneering computational saliency

models, Itti et al. [12] calculate the feature difference be-

tween each pixel and its surrounding regions as the contrast

to infer saliency. Numerous methods have been subsequent-

ly developed [7, 4, 15] that utilize local or global contexts

as the reference to evaluate the contrast of each image loca-

tion (i.e., local or global contrast). These models aggregate

visual information at all the locations of the referred context

region into a contextual feature to infer contrast.
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Figure 1. Example of learned global and local pixel-wise contex-

tual attention maps. (a) shows the original image and two example

pixels, i.e., the red dot on the foreground dog and the blue dot

on the background. (b) and (c) show the learned global and lo-

cal contextual attention maps for the two pixels, respectively. The

brightness of each location indicates the magnitude of its attention

weight. The red boxes indicate the referred context regions.

Recently, convolutional neural networks (CNNs) have

been introduced into saliency detection to learn effective

contextual representation. Specifically, several methods

[18, 24, 47] first directly use CNNs to extract features from

multiple image regions with varying contexts and subse-

quently combine these contextual features to infer saliency.

Some other models [17, 19, 23, 22, 37, 9, 26, 45, 46, 38]

adopt fully convolutional networks (FCNs) [25] for feature

representation at each image location and generate salien-

cy map in a convolutional way. In these models, the first

school extracts contextual features from each input image

region, while the second one extracts features at each image

location from its corresponding receptive field.

However, all the existing models utilize context region-

s holistically to construct contextual features, in which the

information at every contextual location is integrated. Intu-

itively, for a specific image pixel, not all of its contextual

information contribute to its final decision. Some related

regions are usually more useful, while other noisy respons-

es should be discarded. For example, for the red dot pix-

el in the first row in Figure 1, we need to compare it with

the background to infer its global contrast. If we want to
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check whether it belongs to the foreground dog for uniform-

ly highlighting the whole dog, we need to refer to other parts

of the dog. While for the blue dot pixel in the second row,

we need to refer to the foreground dog and other parts of

the background, respectively. Thus, if we can identify rel-

evant context regions and construct informative contextual

feature for each pixel, better decisions can be made. N-

evertheless, this important issue has not been addressed by

existing methods.

To address the problem discussed above, in this paper we

propose a novel Pixel-wise Contextual Attention network,

which is referred as PiCANet, to learn these informative

contextual regions for each image pixel. It significantly im-

proves the soft attention model [1] by generating contextu-

al attention for every pixel , which is a genuine novel idea

for the whole neural network community. Specifically, as

shown in Figure 1, the proposed PiCANet learns to generate

soft attention over the context regions for each pixel, where

the attention weights indicate how relevant each context lo-

cation is w.r.t. the referred pixel. The features from the

context regions are then weighted and aggregated to obtain

an attended contextual feature, which only considers infor-

mative context locations while ignores detrimental ones for

each pixel. As a result, the proposed PiCANets can facili-

tate the saliency detection task significantly.

To incorporate contexts with different scopes, we formu-

late the PiCANet in two forms: global and local PiCANet-

s, to selectively integrate global context and local context,

respectively. Furthermore, our implementations of the Pi-

CANets are fully differentiable. Thus they can be flexibly

embedded into ConvNets and enable joint training.

We hierarchically embed global and local PiCANets into

a U-Net architecture [30], which is an encoder-decoder con-

volutional network with skip connections, to detect salien-

t objects. In the decoder, we progressively employ sever-

al global and local PiCANets on multiscale feature maps.

Thus, we construct the attended contextual features from

the global view to local contexts, from coarse scale to fine

scales, and use them to enhance the convolutional features

to facilitate saliency inference at each pixel. Figure 1 shows

some examples of the learned attention maps. For each pix-

el (the red and the blue dots), the learned global attention

shown in Figure 1(b) can attend to backgrounds for fore-

ground objects and vice verse, which exactly matches the

global contrast mechanism. While the learned local atten-

tion shown in Figure 1(c) can attend to regions that have the

similar appearance with the referred pixel in its local con-

text to make the saliency map more homogeneous.

Our contributions can be summarized as follows:

1. We propose the novel PiCANet to generate attention

over the context regions for each pixel. Consequently, infor-

mative contextual features can be obtained to facilitate the

final decision. Furthermore, we formulate PiCANet in both

global and local forms to attend to global and local con-

texts, respectively, and with full differentiability to enable

joint training with ConvNets.

2. We propose a novel saliency detection model by em-

bedding PiCANets into a U-Net architecture. PiCANets are

used to hierarchically incorporate the attended global con-

text and multiscale local contexts, which can effectively im-

prove saliency detection performance.

3. Extensive experimental results on six benchmark

datasets demonstrate the effectiveness of the proposed Pi-

CANets and the saliency model when compared with other

state-of-the-art models. We also present in-depth analyses

and explain why the proposed PiCANets perform well.

2. Related Work

Attention networks. Recently, attention models are in-

troduced into neural networks to mimic the visual atten-

tion mechanism of focusing on informative regions in visual

scenes. Mnih et al. [28] propose a recurrent attention mod-

el with hard alignment. However, it is difficult to train such

hard attention models. Subsequently, Bahdanau et al. [1]

develop an attention model with differentiable soft align-

ments for machine translation. In recent years, attention

models have been applied to several vision tasks. Xu et al.

[41] use an recurrent attention model for image caption to

align words with image regions. In [32], Sermanet et al.

adopt a recurrent attention model for fine-grained classifi-

cation via attending to discriminative regions. In addition,

attention models are introduced for visual question answer-

ing to attend to question-related image regions [40, 44]. Li

et al. [20] utilize attention to attend to the global contex-

t to guide object detection. These works demonstrate that

attention models can be significantly helpful for computer

vision tasks via attending to informative contexts. Howev-

er, existing approaches only consider generating one global

contextual attention map at one time, which we refer as the

image-wise contextual attention. These models limit the ap-

plication of attention networks in convolutional nets, espe-

cially for pixel-wise tasks, since different pixels have differ-

ent informative context regions. In [3], Chen et al. generate

attention weights for each pixel for semantic segmentation.

Nevertheless, this method uses attention to select adaptive

scales on multiscale features for each pixel, which we re-

fer as the pixel-wise scale attention. In contrast, our pro-

posed PiCANet generates attention for context regions of

each pixel.

Saliency detection. Traditional saliency models mainly

rely on various saliency cues to detect salient objects, in-

cluding local contrast [15], global contrast [4], and back-

ground prior [43]. Lately, with the utilization of CNNs,

many work have achieved promising results on saliency de-

tection. Next, we briefly review these models.
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Liu et al. [24] and Li and Yu [18] adopt CNNs to extract

multiscale contextual features on multiscale image regions

to infer saliency for each pixel and each superpixel, respec-

tively. Similarly, Zhao et al. [47] use CNNs on both global

and local contexts. In [19], an FCN based saliency mod-

el and a multiscale image region based saliency model are

combined. Wang et al. [37] recurrently adopt an FCN to

refine saliency maps progressively. Liu and Han [23] use

a U-Net based network to hierarchically predict and refine

saliency maps from the global view to finer local views.

Similarly, Luo et al. [26] and Zhang et al. [45] also uti-

lize U-Net based models to incorporate multi-level contexts

to detect salient objects. Wang et al. [38] also use several

stages to progressively refine saliency maps by combining

local and global context information. In [9], short connec-

tions are introduced into the multi-scale side outputs within

the HED network [39] to improve saliency detection per-

formance. Hu et al. [10] propose to adopt a level sets based

loss to train their saliency detection network and use guided

super-pixel filtering to refine saliency maps.

Although existing DNN based models incorporate var-

ious contexts for saliency detection, these methods al-

l use context regions holistically. Typically, the work in

[23, 26, 45], which have similar U-Net architectures with

the one we use in this paper, incorporate multiscale con-

texts via diverse network architectures which indiscrimi-

nately integrate the information from their receptive field.

In contrast, we use the proposed PiCANets to only selec-

tively attend to informative context locations. In [17], au-

thors use a recurrent attention model to select local regions

to refine their saliency maps. However, they adopt the spa-

tial transformer attention network [13] to select one refining

region at each time step, where their model still falls into the

image-wise attention category. In contrast, our PiCANets

can generate soft contextual attention for each pixel.

3. Pixel-wise Contextual Attention Network

The proposed PiCANet aims at generating an attention

map at each pixel over its context region and constructing

an attended contextual feature to enhance the feature repre-

sentability of Convnets. Given a convolutional (Conv) fea-

ture map F ∈ R
W×H×C , where W , H , C denote its width,

height and number of channels, respectively, we propose t-

wo pixel-wise attention modes: global attention and local

attention. For each location (w, h) in F , the former gener-

ates attention over the whole feature map F , while the latter

works on a local region centered at (w, h).

3.1. Global PiCANet

For the global attention, we show the network architec-

ture in Figure 2(a). Since we tend to generate attention over

the global context for each pixel, we need to make each

pixel be able to “see” the overall feature map F first. To

this end, one can use various network architectures whose

receptive field is the whole image, e.g., a fully connected

layer. Here we employ a more effective and efficient ReNet

model [35], which uses four recurrent neural networks to

sweep an image both horizontally and vertically along both

directions, to incorporate the global context. Specifically,

as shown in the orange dashed box in Figure 2(a), a bidirec-

tional LSTM (biLSTM) [6] is first deployed along each row

of F , then the two hidden states of each pixel are concate-

nated, making each pixel memorize both its left and right

contexts. Next, another biLSTM is deployed along each

column of the obtained feature map, so that each pixel can

memorize both its top and bottom contexts. By alternately

scanning horizontally and vertically, the contexts from four

directions can be blended, which propagate the information

of each pixel to all other pixels. Thus, global context is ef-

ficiently incorporated at each pixel.

Next, we use a vanilla Conv layer to transform the ReNet

feature map to D channels, where D = W × H . Then,

at each pixel (w, h), the obtained feature vector, which is

denoted as xw,h, is normalized via a softmax function to

generate the global attention weights αw,h:

αw,h
i =

exp (xw,h
i )

∑D

j=1
exp (xw,h

j )
, (1)

where i ∈ {1, · · · , D}, xw,h,αw,h ∈ R
D, and αw,h

i corre-

sponds to the contextual relevance at the ith context location

(Wi, Hi) w.r.t. the referred pixel (w, h).
Finally, as shown in Figure 2(b), for the pixel (w, h), the

features at all locations in F are weighted summed by αw,h

to construct the attended contextual feature Fatt:

F
w,h
att =

D∑

i=1

αw,h
i fi, (2)

where fi ∈ R
C is the Conv feature at (Wi, Hi) in F and

Fatt has the same size with F .

3.2. Local PiCANet

As for the local attention, at each pixel (w, h), we only

perform the attending operation on a local neighboring con-

text region centered at (w, h), which forms a local feature

cube F̄w,h ∈ R
W̄×H̄×C , with the width W̄ and the height

H̄ . The network architecture is shown in Figure 2(c). A-

gain, we first need each pixel to “see” the W̄ × H̄ context

region. We simply use Conv layers to achieve this purpose.

Specifically, we deploy several Conv layers on F to make

their receptive field achieve the size of W̄ × H̄ . Then, as

the same as global PiCANet, a Conv layer is used to trans-

form the resultant feature map to D̄ = W̄ × H̄ channels.

Next, the local attention weights ᾱw,h are also generated

by the softmax normalization (similar to (1)). Finally, as
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Figure 2. (a) Architecture of the proposed global PiCANet. (b) Illustration of the detailed global attending operation. (c) Architecture of

the proposed local PiCANet. (d) Illustration of the detailed local attending operation.

shown in Figure 2(d), for pixel (w, h), the features in F̄w,h

are weighted summed by ᾱw,h to obtain Fatt:

F
w,h
att =

D̄∑

i=1

ᾱw,h
i f̄

w,h
i . (3)

3.3. Effective and Efficient Implementation

For computational efficiency, the attending operation

for all pixels can be implemented simultaneously by a

convolution-like way. We can also adopt the hole algorithm

[2] in the attending operation, which supports sparsely sam-

pling feature maps by using dilated convolution. Thus, we

can use a small D or D̄ with dilation to attend to large con-

text regions to make PiCANets more efficient. The gradi-

ents of the PiCANets can be easily calculated, making end-

to-end training feasible via the back-propagation algorithm

[31]. We can also use a batch normalization (BN) [11] layer

before softmax normalization to make the network training

more effective.

4. Salient Object Detection using PiCANets

In this section, we elaborate our network architecture

which adopts PiCANets hierarchically for salient object de-

tection. The whole network is based on a U-Net [30] ar-

chitecture as shown in Figure 3(a). However, different from

[30], the encoder of our U-Net is an FCN with the hole al-

gorithm [2] to keep the resolutions of feature maps. The

decoder follows the idea of U-Net to use skip connections

and with our proposed global and local PiCANets embed-

ded.

Considering the global PiCANet requires the input fea-

ture map to have a fixed size, we set input images to have

a fixed size of 224 × 224. The encoder part is an FCN

with a pretrained backbone network, e.g., the VGG [33]

network or a ResNet [8]. We take the VGG 16-layer net-

work as an example, which contains 13 Conv layers, 5 max-

pooling layers, and 2 fully connected layers. As shown in

Figure 3(a), in order to preserve relative large spatial sizes

in higher layers for accurate saliency detection, we modify

the pooling strides of the pool4 and pool5 layers to be 1 and

adopt the hole algorithm [2] to introduce dilation of 2 for

the conv5 layers. We also follow [2] to transform the last 2

fully connected layers to Conv layers. Specifically, we use

1024 3× 3 kernels with dilation of 12 for the fc6 layer and

1024 1× 1 kernels for the fc7 layer. Thus, the stride of the

whole encoder network is reduced to 8, and the spatial size

of the final feature map is 28× 28.

Next, we elaborate our decoder part. As shown in Fig-

ure 3(a), the decoder network has 6 decoding modules,

named D7,D5,D4, · · · ,D1. As shown in Figure 3(b), in

Di, where i ∈ {7, 5, 4, · · · , 1}, we usually generate a de-

coding feature map Deci by fusing an intermediate en-

coder feature map Eni with the size of W × H × Ci and

the preceding decoding feature map Deci−1 with the size

of W/2 × H/2× Ci. Eni is the Conv feature map be-

fore the ReLU activation of the ith Conv block in the VGG

encoder part, and they are marked in Figure 3(a). We first

use a BN layer and the ReLU activation on Eni. At the

same time, we upsample Deci−1 to have the spatial size

of W × H by using a deconvolutional layer with bilinear

interpolation. Next, we concatenate these two feature maps

and fuse them into a feature map F i with Ci channels by

using a Conv and a ReLU layer. Then we utilize a global

or a local PiCANet on F i to obtain its attended contextual
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Figure 3. (a) Architecture of our saliency network with the VGG 16-layer backbone. We only show the skip-connected encoder layers of
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represent the feature maps. (b) Illustration of an attended decoding module. En
i denotes a convolutional feature map from the encoder

network. Dec
∗ denotes a decoding feature map. F i denotes a fusion feature map and F

i
att denotes its attended contextual feature map.

“UP” denotes upsampling. Some important spatial sizes and channel numbers are also marked.

feature map F i
att. Finally we fuse F i and F i

att into Deci

with the size W ×H × Ci+1, via a Conv layer, a BN layer,

and a ReLU layer. We also adopt deep supervision to facil-

itate the network training. Specifically, in each Di, we use

a Conv layer with sigmoid activation on Deci to generate

a saliency map with size W × H , then the resized ground

truth saliency map is used to supervise the network training

based on the average cross-entropy loss.

In each Di, we set Ci to be the same as the channel

number of the ith Conv block in the encoder network. We

adopt global PiCANets in D7 and D5 and local PiCANet-

s in the next three decoding modules. For D1, we simply

fuse En1 and Dec2 into Dec1 with simple Conv layers

for computational efficiency. The influence of different em-

bedding choices of global and local PiCANets is shown in

Section 5.4.

5. Experiments

5.1. Datasets

We use six widely used saliency benchmark dataset-

s to evaluate our method. SOD [29] contains 300 images

with complex backgrounds and multiple foreground object-

s. ECSSD [42] has 1,000 semantically meaningful and

complex images. The PASCAL-S [21] dataset consists of

850 images selected from the PASCAL VOC 2010 segmen-

tation dataset. DUT-O [43] includes 5,168 challenging im-

ages, each of which usually has complicated background

and one or two foreground objects. HKU-IS [18] contain-

s 4,447 images with low color contrast and multiple fore-

ground objects in each image. The last one is the DUTS

[36] dataset, which is currently the largest salient object de-

tection benchmark dataset. It contains 10,553 images in the

training set, i.e., DUTS-TR, and 5,019 images in the test

set, i.e., DUTS-TE. Most of the images have challenging

scenarios for saliency detection.

5.2. Evaluation Metrics

We adopt four evaluation metrics to evaluate our model.

The first one is the precision-recall (PR) curve. Specifically,

saliency maps are first binarized and then compared with

the ground truth under varying thresholds, thus obtaining a

series of precision-recall value pairs to draw the PR curve.

The second metric is the F-measure score which com-
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prehensively considers both precision and recall:

Fβ =
(1 + β2)Precision×Recall

β2Precision+Recall
, (4)

where we set β2 to 0.3 as suggested in previous work.

However, as demonstrated in [27], traditional evalua-

tion metrics easily suffer from the interpolation flaw, de-

pendency flaw, and equal-importance flaw, leading to un-

fair comparison. Thus the authors propose the weighted

F-measure score Fω
β to address these drawbacks. We al-

so follow [5, 34, 10] to adopt it as one of our metrics with

the default settings in [27].

The fourth metric we use is the Mean Absolute Error

(MAE). It computes the average absolute per-pixel differ-

ence between predicted saliency maps and corresponding

ground truth saliency maps.

5.3. Implementation Details

Network structure. In the decoding modules, all of the

convolutional kernels in Figure 3(b) are set to 1 × 1. In

each global PiCANet, we use 256 hidden neurons for the

ReNet, then we use a 1×1 Conv layer to generate D = 100
dimensional attention weights, which can be reshaped to

10 × 10 attention maps. In its attending operation, we use

dilation = 3 to attend to the 28 × 28 global context. In

each local PiCANet, we first use a 7 × 7 Conv layer with

dilation = 2, zero padding, and ReLU activation to gen-

erate an intermediate feature map with 128 channels. Then

we adopt a 1 × 1 Conv layer to generate D̄ = 49 dimen-

sional attention weights, from which 7 × 7 attention maps

can be obtained. Then we utilize these local attention maps

to attend to 13×13 local context regions with dilation = 2
and zero padding.

Training and testing. We follow [38] and the sugges-

tion in [36] to use the DUTS-TR set as our training set.

For data augmentation, we simply resize each image to

256 × 256 with random mirror-flipping and randomly crop

224 × 224 image regions for training. The whole network

is trained end-to-end using stochastic gradient descent (S-

GD) with momentum. Since deep supervision is adopted

in each decoding module, we empirically weight the loss-

es in D7,D5,D4, · · · ,D1 by 0.5, 0.5, 0.5, 0.8, 0.8, and 1,

respectively, without further tuning. We train the decoder

part from scratch with a learning rate of 0.01 and finetune

the encoder with a 0.1 times smaller learning rate. We set

the batchsize to 10, the maximum iteration step to 20,000,

and decay the learning rates by a factor of 0.1 every 7,000

steps. The momentum and the weight decay are set to 0.9

and 0.0005, respectively.

We implement our model based on the Caffe [14] library.

A GTX Titan X GPU is used for acceleration. When testing,

each image is simply resized to 224× 224 and then fed into

Table 1. Quantitative results of different settings of our model and

baseline models. “MP” and “AP” mean max-pooling and aver-

age pooling, respectively. “+75G432LP” means using Global Pi-

CANets in D7 and D5, and Local PiCANets in D4, D3, D2. Other

settings can be inferred similarly. Blue indicates the best perfor-

mance.

Settings
DUT-O [43] DUTS-TE [36]

Fβ Fω
β

MAE Fβ Fω
β

MAE

U-Net [30] 0.761 0.651 0.073 0.819 0.715 0.060

+75GP 0.778 0.662 0.071 0.834 0.724 0.057

+75G432LP 0.794 0.691 0.068 0.851 0.748 0.054

+MP 0.780 0.671 0.070 0.833 0.727 0.057

+AP 0.778 0.670 0.069 0.831 0.724 0.056

+75432LP 0.787 0.680 0.069 0.842 0.738 0.055

+7G5432LP 0.792 0.690 0.069 0.849 0.744 0.054

+754G32LP 0.794 0.688 0.065 0.850 0.747 0.053

the network to obtain its saliency map. The testing process

only costs 0.178s for each image when using the VGG 16-

layer backbone. Our code will be released.

5.4. Ablation Study

Effectiveness of the proposed PiCANets. To demon-

strate the effectiveness of the proposed PiCANets, we show

quantitative comparison results of our model against base-

line models on two challenging datasets in Table 1. “U-Net”

is the baseline network without PiCANets. “+75GP” means

we only embed two global PiCANets into D7 and D5, while

“+75G432LP” means we embed global PiCANets into D7

and D5, and local PiCANets into D4, D3, D2. The com-

parison results show that when we gradually use PiCANets

to incorporate global and multiscale local contexts selec-

tively, the model performance can be progressively boosted.

A more detailed ablation study of progressively embedding

PiCANets in each decoding module is given in the supple-

mentary material.

For a fair comparison, we also adopt max-pooling (MP)

and average-pooling (AP) to incorporate these contexts. Ta-

ble 1 shows that although using these non-parametric pool-

ing schemes to incorporate global and local contexts can

bring performance gains, using our proposed PiCANets to

select informative contexts is a much better way.

We also show visual comparison results to demonstrate

the effectiveness of the proposed PiCANets. In Figure 5(a)

we show an image and its ground truth saliency map while

(b) shows the predicted saliency maps of the baseline U-Net

(top) and our model (bottom). We can see that our salien-

cy model can obtain more uniformly highlighted saliency

map with the help of PiCANets. In Figure 5(c), we show a

comparison of the Conv feature map F 5 (top) against the at-

tended contextual feature map F 5
att (bottom) with the global

PiCANet. While (d) shows F 2 (top) and F 2
att (bottom) with

the local PiCANet. We can see that the global PiCANet in
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Figure 4. Comparison on four large datasets in terms of the PR curve.

(a) (c) (d)(b)

Figure 5. Visual comparison of our model against the baseline U-

Net. (a) An image and its ground truth. (b) Saliency maps of the

baseline U-Net (top) and our model (bottom). (c) F 5 (top) and

F
5

att (bottom). (d) F 2 (top) and F
2

att (bottom).

D5 helps to better discriminate the foreground object from

backgrounds, while the local PiCANet in D2 enhances the

feature map to be more homogenous, which makes the w-

hole foreground object highlighted more uniformly.

To further understand why PiCANets can achieve such

improvements, we visualize the learned attention maps of

two pixels in one image in Figure 6. In column (b), the

top image shows that the global attention of the background

pixel mainly attends to the foreground object while the bot-

tom image shows that for the foreground pixel, it mainly

attends to the background regions. This observation great-

ly matches the global contrast mechanism. Thus our global

PiCANet can help the network to effectively tell the salient

objects from the backgrounds. As for the local attention,

since we used fixed attention size (13 × 13) for differen-

t decoding modules, we can incorporate multiscale atten-

tion from coarse to fine, with large contexts to small ones,

as shown by red rectangles in Figure 6. The (c) and (d)

columns show that local attention mainly attends to homo-

geneous regions with the referred pixel, thus enhancing the

saliency map to be uniform, just as shown in the bottom im-

age in column (a). More visualization can be found in the

supplementary material.

Influence of the embedding choice. We also show com-

parison results of different embedding choices of our glob-

al and local PiCANets in Table 1. It shows that only em-

bedding local PiCANets (“+75432LP”) is inferior. While

(a) (b) (c) (d)

Figure 6. Illustration of the learned attention maps of the proposed

PiCANet. (a) shows an image and its predicted saliency map of

our model. We show the attention maps of two pixels (denoted

as red dots. The top row shows a background pixel and the bot-

tom row shows a foreground pixel.) in D5 (b), D4 (c), and D3

(d), respectively. The attended context regions are marked by red

rectangles.

the results of “+7G5432LP” and “+754G32LP” are slightly

worse than our final choice, i.e., “+75G432LP”. We do not

consider to use global PiCANets in other decoding modules

since the ReNet is time-consuming for large feature maps.

5.5. Comparison with State­of­the­arts

We compare our saliency model against other 9 state-of-

the-art models, namely, SRM [38], DSS [9], NLDF [26],

Amulet [45], UCF [46], DHS [23], RFCN [37], DCL [19],

and MDF [18].

In Table 2, we show the quantitative comparison result-

s. Since [19] and [9] adopt the fully connected condition-

al random field (CRF) [16] as a post-processing technique,

while [38] use the ResNet50 [8] network as their backbone,

for a fair comparison we also adopt them in our model

and compare it with other models under different settings.

The PR curves on four large datasets are also given in Fig-

ure 4. We observe that our model consistently performs

better than all other models under all settings, especially

in terms of the weighted F-measure. It is also worth noting

that even only use the VGG 16-layer backbone and without

any post-processing method, our vanilla PiCANet still per-

forms favorably against all other models. When using both
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Table 2. Comparison of different methods on 6 datasets under different settings. Blue indicates the best performance under each setting

while red indicates the best performance under all settings. “-C”, “-R”, and “-RC” means using the CRF postprocessing, the ResNet50

backbone, and both of them, respectively.

Dataset SOD [43] ECSSD [43] PASCAL-S [21] HKU-IS [18] DUT-O [43] DUTS-TE [36]

Metric Fβ Fω
β

MAE Fβ Fω
β

MAE Fβ Fω
β

MAE Fβ Fω
β

MAE Fβ Fω
β

MAE Fβ Fω
β

MAE

VGG-16 [33] backbone

MDF [18] 0.760 0.501 0.192 0.832 0.705 0.105 0.782 0.579 0.165 - - - 0.694 0.565 0.092 0.711 0.509 0.114

RFCN [37] 0.807 0.592 0.166 0.898 0.727 0.095 0.850 0.671 0.132 0.898 0.718 0.080 0.738 0.562 0.095 0.783 0.587 0.090

DHS [23] 0.827 0.686 0.133 0.907 0.841 0.060 0.841 0.732 0.111 0.902 0.806 0.054 - - - 0.829 0.698 0.065

UCF [46] 0.803 0.644 0.169 0.911 0.789 0.078 0.846 0.709 0.128 0.886 0.751 0.074 0.735 0.565 0.132 0.771 0.588 0.117

Amulet [45] 0.808 0.686 0.145 0.915 0.841 0.059 0.858 0.762 0.103 0.896 0.813 0.052 0.743 0.626 0.098 0.778 0.657 0.085

NLDF [26] 0.842 0.708 0.130 0.905 0.839 0.063 0.845 0.743 0.112 0.902 0.838 0.048 0.753 0.634 0.080 0.812 0.710 0.066

PiCANet 0.855 0.721 0.108 0.931 0.865 0.047 0.880 0.781 0.088 0.921 0.847 0.042 0.794 0.691 0.068 0.851 0.748 0.054

VGG-16 [33] backbone + CRF [16]

DCL [19] 0.825 0.641 0.198 0.901 0.820 0.075 0.823 0.678 0.189 0.885 0.736 0.137 0.739 0.575 0.157 0.782 0.606 0.150

DSS [9] 0.846 0.718 0.126 0.916 0.871 0.053 0.846 0.751 0.112 0.911 0.866 0.040 0.771 0.691 0.066 0.825 0.754 0.057

PiCANet-C 0.836 0.727 0.102 0.933 0.898 0.036 0.881 0.809 0.079 0.925 0.889 0.031 0.784 0.722 0.059 0.850 0.791 0.046

ResNet50 [8] backbone

SRM [38] 0.845 0.671 0.132 0.917 0.853 0.054 0.862 0.760 0.098 0.906 0.836 0.046 0.769 0.658 0.069 0.827 0.722 0.059

PiCANet-R 0.858 0.723 0.109 0.935 0.867 0.047 0.881 0.780 0.087 0.919 0.840 0.043 0.803 0.695 0.065 0.860 0.756 0.051

ResNet50 [8] backbone + CRF [16]

PiCANet-RC 0.856 0.742 0.100 0.940 0.908 0.035 0.883 0.812 0.077 0.927 0.890 0.031 0.804 0.743 0.054 0.866 0.811 0.041

Image GT PiCANet
-RC

PiCANet
-C

PiCANet
-R

PiCANet SRM [38] DSS [9] NLDF [26]Amulet [45] UCF [46] DHS [23] RFCN [37] DCL [19] MDF [18]

Figure 7. Qualitative comparison. (GT: ground truth)

of the CRF post-processing and the ResNet50 backbone,

our PiCANet-RC model achieves the best performance and

shows significant performance gains over existing methods.

In Figure 7, we show qualitative comparison. We ob-

serve that our model can handle various challenging scenar-

ios, including images with complex backgrounds and fore-

grounds (rows 1, 2, and 3), varying object scales, object

touching image boundaries (row 5), object having the sim-

ilar appearance with the background (row 4). Most impor-

tantly, even for the vanilla PiCANet and PiCANet-R which

do not use any post-processing methods, they can highlight

salient objects more uniformly than other models with the

help of PiCANets. More visual comparison results can be

found in the supplementary material.

6. Conclusion

In this paper, we propose novel PiCANets to selective-

ly attend to global or local contexts and construct informa-

tive contextual features for each pixel. We apply PiCANet-

s to detect salient objects in a hierarchical fashion. With

the help of attended contexts, our model achieves the best

performance on six benchmark datasets. We also provide

in-depth analyses of the effectiveness of the PiCANets.
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