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Abstract

One property that remains lacking in image captions

generated by contemporary methods is discriminability: be-

ing able to tell two images apart given the caption for one of

them. We propose a way to improve this aspect of caption

generation. By incorporating into the captioning training

objective a loss component directly related to ability (by a

machine) to disambiguate image/caption matches, we ob-

tain systems that produce much more discriminative cap-

tion, according to human evaluation. Remarkably, our ap-

proach leads to improvement in other aspects of generated

captions, reflected by a battery of standard scores such as

BLEU, SPICE etc. Our approach is modular and can be

applied to a variety of model/loss combinations commonly

proposed for image captioning.

1. Introduction

Image captioning is a task of mapping images to text for

human consumption. Broadly speaking, in order for a cap-

tion to be good it must satisfy two requirements: it should

be a fluent, well-formed phrase or sentence in the target lan-

guage; and it should be informative, or descriptive, con-

veying meaningful non-trivial information about the visual

scene it describes. Our goal in the work presented here is to

improve captioning on both of these fronts.

Because these properties are somewhat vaguely defined,

objective evaluation of caption quality remains a challenge,

more so than evaluation of earlier established tasks like ob-

ject detection or depth estimation. However, a number of

metrics have emerged as preferred, if imperfect, evaluation

measures. Comparison to human (“gold standard”) captions

collected for test images is done by means of metrics bor-

rowed from machine translation, such as BLEU[1], as well

as new metrics introduced for the captioning task, such as

CIDEr[2] and SPICE[3].

In contrast, to assess how informative a caption is, we

may design an explicitly discriminative task the success

of which would depend on how accurately the caption de-

scribes the visual input. One approach to this is to con-

Human: a large jetliner taking
off from an airport runway
ATTN+CIDER: a large airplane
is flying in the sky
Ours: a large airplane taking off
from runway

Human: a jet airplane flying
above the clouds in the distance
ATTN+CIDER: a large airplane
is flying in the sky
Ours: a plane flying in the sky
with a cloudy sky

Figure 1. Example captions generated by human, an existing au-

tomatic system (ATTN+CIDER[6]), and a model trained with our

proposed method (ATTN+CIDER+DISC(1), see Section 5)

sider referring expressions [4]: captions for an image re-

gion, produced with the goal of unambiguously identifying

the region within the image to the recipient. We can also

consider the ability of a recipient to identify an entire image

that matches the caption, out of two (or more) images [5].

This – caption discriminability – is the focus of our work

presented here.

Traditionally used training objectives, such as maximum

likelihood estimation (MLE) or CIDEr, tend to encourage

the model to “play it safe”, often yielding overly general

captions as illustrated in Fig. 1. Despite the visual differ-

ences in the image, a top captioning system [6] produces the

same caption for both images. In contrast, humans appear

to notice “interesting” details that are likely to distinguish

the image from other potentially similar images, even with-

out explicitly being requested to do so. (We confirm this

assertion empirically in Sec. 5.)

To reduce this gap, we propose to incorporate an explicit

measure for discriminability into learning a caption genera-

tor, as part of the training loss. Our discriminability loss is

derived from the ability of a (pre-trained) retrieval model to

match the correct image to its caption significantly stronger

than any other image in a set, and vice versa (caption to

correct image above other captions).

Language-based measures like BLEU reward machine

captions for mimicking human captions, and so since, as we

state above, human captions are discriminative, one could
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expect these measures to be correlated with descriptiveness.

However, in practice, given an imperfect caption generator,

there may be a tradeoff between fluency and descriptive-

ness; our training regime allows us to negotiate this tradeoff

and ultimately improve both aspects of a generator.

Our discriminability loss can be added to any gradient-

based learning procedure for caption generators. We show

in Sec. 5 that it can improve some recently proposed models

which currently at or near state of the art for captioning, for

all metrics evaluated. In particular, to our knowledge, we

establish new state of the art in discriminative captioning.

2. Related work

Image captioning Most modern approaches [7, 8, 9] en-

code an image using a convolutional neural network (CNN),

and feed this as input to an recurrent network (RNN), typ-

ically with some form of gating or memory. The RNN can

generate a arbitrary-length sequence of words. Within this

generic framework, many efforts [7, 10, 11, 8, 12, 13, 14,

15, 16] explored different encoder-decoder structures, in-

cluding attention-based models. There has also been explo-

ration of different training objectives. For example, [17, 18]

add some auxiliary tasks like word appearance predic-

tion; [19] uses Conditional Variational Autoencoder(CVAE)

and optimize over evidence lower bound(ELBO); [20, 6, 21,

22] applied Reinforcement Learning algorithms on image

captioning, so that the models can be optimized directly on

the non-differentiable metrics like SPICE, CIDEr, BLEU

etc.

Visual Semantic Embedding methods Image-Caption re-

trieval has been considered as a task relying on image

captioning [7, 8, 9, 11]. However, it can also be re-

garded as a multi-modal embedding task. In previous

works [23, 24, 25, 26, 27, 28] visual and textual embed-

dings are trained with the objective to minimize matching

loss, e.g., ranking loss on cosine distance, or to enforce par-

tial order on captions and images.

Discrimination tasks in the context of caption evalua-

tion were proposed in [5, 29]: given a set of other im-

ages, called distractors, the generated captions of each im-

age have to distinguish one from others. In the ”speaker-

listener” model [29], the speaker is trained to generate cap-

tions, and a listener to prefer the correct image over a wrong

one, given the caption. At test time, the listener re-ranks the

captions sampled from the speaker. [5] propose a decoding

mechanism which can suppress the caption elements that

are common for both target image and disctractor image.

In contrast to our work, both [5] and [29] require the dis-

tractor to be presented prior to caption production. We aim

to generate distinctive captions a-priori, without a specific

distractor at hand, like humans appear to do.

Referring expressions is another flavor of discriminative

captioning task that has attracted interest after the release of

the standard datasets [4, 30, 31]. [32, 33] learned to gen-

erate more discriminative referring expressions guided by a

referring expression comprehension model. The techniques

in those papers are strongly tied to the task of describing a

region within an image, while our goal here is to describes

natural scenes in their entirety.

Visual Dialog has recently attracted interests in the

field [34, 35]. While it’s hard to evaulate generic ‘chat’, [36,

37] propose goal-driven visual dialog tasks and datasets.

[36] proposes the ‘image guessing’ game where two agents

– Q-BOT and A-BOT – who communicate in natural lan-

guage dialog so that Q-BOT can select an unseen image

from a lineup of images. GuessWhat Game [37] is similar,

but guess an object in a image during a dialog. In another re-

lated effort [38] the machine must show understanding the

difference between two images by asking a question that

has different answers for two images. Our work shares the

ultimate purpose (producing text that allows image identifi-

cation) with these efforts, but in contrast to those, our aim

is to generate a caption in a single “shot”. This is somewhat

similar to round 0 of the dialog in [36], where the agent is

given a caption generated by [8] (without regard to any dis-

crimination task) and chooses an image from a set. Since

our captions are shown in Sec. 5 to be both fluent and dis-

criminative, switching to using them may improve/shorten

visual dialog.

Similar work Finally, some recent work is similar to ours in

its goals (learning to produce discriminative captions) and,

to a degree, in techniques. The motivation in [39] is simi-

lar, but the focus is on caption (rather than image) retrieval.

The objective is contrastive: pushing the negative captions

from different images to have lower probability than posi-

tive captions using noise contrastive learning. In [40], more

meaningful visual dialog responses are generated by distill-

ing knowledge from a discriminative model trained to rank

different dialog responses given the previous dialog context.

[41, 42] proposes using Conditional Gernerative Adversar-

ial Network to train image captioning. They both learn a

discriminator to distinguish human captions from machine

captions. For more detailed discussion of [39, 41, 42], see

supplementary material.

Despite being motivated by a desire to improve caption

discriminability, all these methods are fundamentally re-

main tied to the objective of matching the surface form of

human captions, and do not include an explicitly discrimi-

native objective in training. Ours is the first work incorpo-

rate both image retrieval and caption retrieval into caption

generation training. We can easily “plug” our method into

existing models, for instance combine it with CIDEr op-

timization, leading to improvements in metrics across the

board: both the discriminative metrics (image identifica-

tion) and traditional metrics such as ROUGE end METEOR

(Tables 2,3).

6965



3. Models

Our model involves two main ingredients: a retrieval

model that scores images caption pairs, and a caption gen-

erator that maps an image to a caption. We describe the

models used in our experiments below; however we note

that our approach is very modular, and can be applied to

different retrieval models and/or different caption genera-

tors. Then we describe the key element of our approach:

combining these two ingredients in a collaborative frame-

work. We use the retrieval score derived from the retrieval

model to help guide training of the generator.

3.1. Retrieval model

The retrieval model we use is taken from [43]. It is a em-

bedding network which embeds both text and image into a

shared semantic space in which a similarity (compatibility)

score can be calculated between a caption and an image. We

outline the model below, for details see [43].

We start with an image I and caption c. First, domain-

specific encoders compute an image feature vector φ(I),
e.g., using a CNN, and a caption feature vector ψ(c), e.g.

using an RNN-based text encoder. These feature vectors are

then projected into a joint space by WI and Wc.

f(i) = W
T
I φ(I) (1)

g(c) = W
T
c ψ(c) (2)

The similarity score between I and c is now computed as

the cosine similarity in the embedding space:

s(I, c) =
f(I) · g(c)

‖f(I)‖‖g(c)‖
(3)

The parameters of the caption embedding ψ, as well as the

maps WI and Wc, are learned jointly, end-to-end, by min-

imizing the contrastive loss defined below. In our case, the

image embedding network φ is a pre-trained CNN and the

parameters are fixed during training.

Contrastive loss is a sum of two hinge losses:

LCON(c, I) = max
c′

[α+ s(I, c′)− s(I, c)]+

+max
I′

[α+ s(I ′, c)− s(I, c)]+ (4)

where [x]+ ≡ max(x, 0). The max in (4) is taken, in prac-

tice, over a batch of B images and corresponding captions.

The (image,caption) pairs (I, c) are correct matches, while

(I ′, c) and (I, c′) are incorrect (e.g., c′ is a caption that does

not describe I). Intuitively, this loss “wants” the model to

assign the matching pair (I, c) the score higher (by at least

α) than the score of any mismatching pair, either (I ′, c) or

(I, c′) that can be formed from the batch. This objective

can be viewed as a hard negative mining version of triplet

loss [44].

3.2. Discriminability loss

The ideal way to measure discriminability is to pass it to

human and get feedback from them, like in [45]. However

it is rather costly and very slow to collect. Here, we pro-

pose instead to use a pre-trained retrieval model to work as

a proxy for human perception. Specifically, we define the

discriminability loss follows.

Suppose we have a captioning system, parameterized by

a set of parameters θ, that can output conditional distribu-

tion over captions for an image, pc(c|I;θ). Then, the ob-

jective of minimizing the discriminability loss is

min
θ

Eĉ ∼ p(c|I;θ) [LCON(ĉ, I)] (5)

In other words, the objective involves the same contrastive

loss used to train the retrieval model. However, when

training the retrieval model, the loss relies on ground truth

image-caption pairs (with human-produced captions), and

is back-propagated to update parameters of the retrieval

model. Now, when using the loss to train caption genera-

tors, an input batch (over which the max in (4) is computed)

will include pairs of images with captions that are sampled

from the posterior distribution produced by a caption gener-

ator; the signal derived from the loss will be used to update

parameters θ of the generator, while holding the retrieval

model fixed.

3.3. Caption generation models

We now briefly describe two caption generation models

used in our experiments; both are introduced in [6] where

further details can be found. Discussion on training these

models with discriminability loss is deferred until Sec. 4.

FC Model The first model is a simple sequence encoder

initialized with visual features. Words are represented with

an embedding matrix (a vector per word). Visual features

are extracted from an image using a CNN.

The caption sequence is generated by a form of LSTM

model. Its output at time t depends on the previously gener-

ated word and on the context/hidden state (evolving as per

LSTM update rules). At training time the word fed to the

state t is the ground truth word wt−1; at test time, it is the

predicted word ŵt−1. The first word is a special BOS (be-

ginning of sentence) token. The sequence production is ter-

minated when the special EOS token is output. The image

features (mapped to the dimensions of word embeddings)

serve at the initial “word” w−1, fed to the state at t = 0.

ATTN model The main difference between the second

model and the FC model is that each image is now encoded

into a set of spacial features: each encodes a sub-region of

the image. At each word t, the context (and thus the out-

put) depends not only on the previous output and the inter-

nal state of the LSTM, but also a weighted average of all

the spatial features. This weighted averaging of features is
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called attention mechanism, and the attention weights are

computed by a parametric function.

Both models provide us with a posterior distribution over

sequence of words c = (w0, . . . , wT ), factorized as

p(c|I; θ) =
∏

t

p(wt|wt−1, I;θ) (6)

4. Learning to reward discriminability

Given a generator model, we may want to train it to

minimize the discriminability loss (4). A natural approach

would be to use gradient descent. Unfortunately, the loss

is non-differentiable since it involves sampling captions for

input images in a batch.

One way to tackle this is by the Gumbel-softmax

reparametrization trick [46, 47] which has been used in im-

age captioning and visual dialog [42, 40]. Instead, in this

paper, we follow the philosophy of [20, 48, 32, 6] and treat

captioning as a reinforcement learning problem. Specif-

ically we use the REINFORCE algorithm [49]. In simi-

lar contexts, REINFORCE has been applied in [32, 48] to

train sequence prediction. Here we use a variant of “RE-

INFORCE with baseline” algorithm proposed in the “self-

critical” approach of [6], as outlined below.

The objective is to learn parameters θ of the policy (here

defining a mapping from I to c, i.e., p) that would maximize

the reward computed by function R(c, I). The algorithm

computes an update to approximate the gradient of the ex-

pected reward (a function of stochastic policy parameters),

known as the policy gradient:

∇θEĉ∼p(c|I;θ)[R(ĉ, I)] ≈ (R(ĉ, I)− b)∇θ log p(ĉ|I;θ)
(7)

Here ĉ represents the caption sampled from (6). The

baseline b is computed by a function designed to make

it independent of the sample (leading to variance reduc-

tion without increasing bias [50]). In our case, folllow-

ing [6], the baseline is the value of the reward R(c∗, I) on

the greedy decoding1 output c∗ = (BOS, w∗
1 , . . . , w

∗
T ),

w∗
t = argmax

w

p(w|w∗
0,...,t−1, I)

We could apply this to maximizing the reward defined

simply as the negative discriminability loss −LCON(ĉ, I).
However, as observed in previous work [33], this does not

yield human-friendly captions since discriminability loss

will not directly hurt from influency. So we will combine

the discriminability loss with other, traditional objectives in

defining the reward, as described below.

1We also tried setting b to the reward of ground truth caption, and found

no significant difference.

4.1. Training with maximum likelihood

The standard objective in training a sequence prediction

model is to maximize word-level log-likelihood, which for

a pair (I, c) is defined as RLL(c, I) = log p(c|I;θ). The pa-

rameters θ here include word embedding matrix and LSTM

weights which are updated as part of training, and the CNN

weights, which are held fixed after pre-training on a vision

task such as ImageNet classification. This reward can be

directly maximized via gradient ascent (equivalent to gradi-

ent descent on the cross-entropy loss), yielding maximum

likelihood estimate (MLE) of the model parameters.

Combining the log-likelihood reward with discriminabil-

ity loss in the REINFORCE framework corresponds to

defining the reward as

R(c, I) = RLL(c, I) − λLCON(ĉ, I), (8)

yielding the policy gradient:

∇θE[R(c, I)] ≈ ∇θRLL(c, I)

− λ [LCON(ĉ, I)− LCON(c
∗, I)]∇θ log p(ĉ|I;θ)

(9)

The coefficient λ determines the tradeoff between matching

human captions (expressed by the cross-entropy) and dis-

criminative properties expressed by LCON.

4.2. Training with CIDEr optimization

In our experiments, it was hard to train with the com-

bined objective in (9). For small λ, the solutions seemed

stuck in a local minimum; but increasing λ would abruptly

make output less fluent.

An alternative to MLE is to train the model to maxi-

mize some other reward/score, such as BLEU or METEOR.

Here if pursue optimization of the CIDEr score [2]. CIDEr

measures consensus in image captions by performing a TF-

IDF weighting for each n-gram, and optimizing over CIDEr

can also benefit other metrics[6]. We found that in prac-

tice, the discriminability loss appears to “cooperate” better

with CIDEr than with log-likelihood; we also observed bet-

ter performance, across many metrics, on validation set as

described in Section 5.

Compared to [6], which uses CIDEr as reward function,

the difference here is we use a weighted sum of cider score

and discriminability loss.

∇θE[R(ĉ, I)] ≈ (R(ĉ, I)−R(c∗, I))∇θ log p(ĉ|I;θ),
(10)

where the reward is the combination

R(ĉ, I) = CIDEr(ĉ)− λLCON(ĉ, I), (11)

with λ again representing the relative weight of discrim-

inability loss vs. CIDEr.
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5. Experiments and results

The main goal of our experiments is to evaluate the util-

ity of the proposed discriminability objective in training im-

age captions. Recall that our motivation for introducing this

objective is two-fold: to make the captions more discrimi-

native, and to improve caption quality in general (with the

implied assumption that expected discriminability is part of

the unobservable human “objective” in describing images).

Dataset. We train and evaluate our model on COCO dataset

[51]. To enable direct comparisons, we use the data split

from [5], which includes 113,287 images for training, 5,000

images for validation, and another 5,000 held out for test.

Each image is associated with five human captions.

5.1. Implementation details

As the basis for caption generators, we used two models

described in Section 3, FC and ATTN, with relevant imple-

mentation details as follows.

For image encoder in retrieval and FC captioning model,

we used a pretrained Resnet-101 [52]. For each image, we

take the global average pooling of the final convolutional

layer output, which results in a vector of dimension 2048.

The spatial features are extracted from output of a Faster

R-CNN[52, 14] with ResNet-101[53], trained by object and

attribute annotations from Visual Genome[54]. The num-

ber of spatial features varies from image to image. Each

feature encodes a region in the image which is proposed by

region proposal network. Both the FC features and Spa-

tial features are pre-extracted, and no finetuning is applied

on image encoders. For captioning models, the dimension

of LSTM hidden state, image feature embedding, and word

embedding are all set to 512.

The retrieval model uses GRU-RNN to encode text, and

the FC features above as the image feature. The word em-

bedding has 300 dimensions and the GRU hidden state size

and joint embedding size are 1024. The margin α is set to

0.2, as suggested by [43].

Training All of our captioning models are trained accord-

ing to the following scheme. We first pretrain the caption-

ing model using MLE, with Adam[55]. After 40 epochs,

the model is switched to self-critical training with appro-

priate reward (CIDEr alone or CIDEr combined with dis-

criminability) and continue for another 20 epochs. For fair

comparison, we also train another 20 epochs for MLE-only

models.

For both retrieval and captioning models, the batch size

is set to 128 images. The learning rate is initialized to be

5e-4 and decay by a factor 0.8 for every three epochs.

During test time, we apply beam search to sample cap-

tions from captioning model. The beam size is set to 2.

5.2. Experiment design

We consider a variety of possible combination of

captioning objective (MLE/CIDEr), captioning model

(FC/ATTN), and inclusion/exclusion of discriminability,

abbreviating the model references for brevity, so, e.g.,

ATTN+CIDER+DISC(5) corresponds to fine-tuning the at-

tention model with a combination of CIDEr and discrim-

inability loss, with λ = 5.

Evaluation metrics Our experiments consider two fam-

ilies of metrics. The first family of standard metrics

that have been proposed for caption evaluation, mostly

based on comparing generated captions to human ones, in-

cludes BLEU[1], METEOR[56], ROUGE[57], CIDEr[2]

and SPICE[3].

The second set of metrics directly assesses how discrim-

inative the captions are. This includes automatic assess-

ment, by measuring accuracy of the trained retrieval model

on generated captions.

We also assess how discriminative the generated cap-

tions are when presented to humans. To measure this, we

conducted an image discrimination task on Amazon Me-

chanical Turk (AMT), following the protocol in [5]. A sin-

gle task (HIT) involves displaying, along with a caption,

a pair of images (in randomized order). One image is the

target for which the caption was generated, and the sec-

ond is a distractor image. The worker is asked to select

which image is more likely to match the caption. Each tar-

get/distractor pair is presented to five distinct workers; we

report the fraction of HITs with correct selection by at least

k out of five workers, with k = 3, 4, 5. Note that k = 3 suf-

fers from highest variance since the forced choice nature of

the task would produce non-trivial chance of 3/5 correct se-

lections when the caption is random. In our opinion, k = 4
is the most reliable indicator of human ability to discrimi-

nate based on the caption.

The test set used for this evaluation is the set from [5],

constructed as follows. For each image in the original

test set, its nearest neighbor is found based on visual sim-

ilarity, estimated as Euclidean distance between the FC7

feature vectors computed by VGG-16 pre-trained on Ima-

geNet [58]. Then a captioning model is run on the nearest

neighbor images, and the word-level overlap (intersection

over union) of the generated captions is used to and pick

(out of 5000 pairs) the top (highest overlap) 1000 pairs.

For preliminary evaluation, we followed a similar proto-

col to construct our own validation set of target/distractor

pairs; both the target images and distractor images were

taken from the caption validation set (and so were never

seen by any training procedure).

5.3. Retrieval model quality

Before proceeding with main experiments, we report in

Tab. 1 the accuracy of the retrieval model on validation set,
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with human-generated captions. This is relevant since we

rely on this model as a proxy for discriminability in our

training procedure. While this model does not achieve state

of the art for image caption retrieval, it is good enough for

providing training signal to improve caption results.

R@ 1 R@ 5 R@ 10 Med r Mean r

Caption Retrieval

1k val 63.9 90.4 95.9 1.0 2.9
5k val 38.0 68.9 81.1 2.0 10.4

Image Retrieval

1k val 47.9 80.7 89.9 2.0 7.7
5k val 26.1 54.7 67.5 4.0 34.6
Table 1. Retrieval model performance on validation set.

5.4. Captioning performance

In Table 2, we show the results on validation set with a

variety of model/loss settings. Note that all the FC*/ATTN*

model with different settings are finetuned from the same

model pre-trained with MLE. The results in the table for the

machine scores are based on all the 5k images. For discrim-

inability, we randomly select a subset of 300 image pairs

from validation set. We can draw a number of conclusions

from these results.

Effectiveness of reinforcement learning. In the first column,

we report the retrieval accuracy (Acc, % of pairs in which

the model correctly selects the target vs. distractor) on pairs

given the output of the captioning model. Training with the

discriminability loss produces higher values here, meaning

that our captions are more discriminative to the retrieval

model, as intended. As a control experiment, we also report

the accuracy (Acc-new) obtained by a same architecture but

separately trained retrieval model, not used in training cap-

tion generators. Acc and Acc-new are very similar for all

models, showing that our model does not overfit to the re-

trieval model it uses during training time.

Human discrimination. More importantly, we observe that

incorporating discriminability in training yields captions

that are more discriminative to humans, with higher λ lead-

ing to better human accuracy.

Improved caption quality. We also see that, as hoped, incor-

porating discriminability indeed improves caption quality

as measured by a range of metrics that are not tied to dis-

crimination, such as BLEU etc. Even the CIDEr scores are

improved when adding discriminability to the CIDEr opti-

mization objective with moderate λ. This is somewhat sur-

prising since the addition of LCON could be expected to de-

tract from the original objective of maximizing CIDEr; we

presume that the improvement is due to the additional ob-

jective “nudging” the RL process and helping it escape less

optimal solutions.

Model/loss selection While discriminability loss works for

both ATTN model and FC model, and with both MLE and

CIDEr learning, to make captions more discriminative, and

with mild λ to improve other metrics, the overall perfor-

mance analysis favors ATTN+CIDEr combination. We also

note that ATTN is better than FC on discriminability met-

rics even when trained without LCON, but the gains are less

significant than in automatic metrics.

Effect of λ As stated above, mild λ = 1, combined with

ATTN+CIDER, appear to yield the optimal tradeoff, im-

proving measures of discriminative and descriptive quality

across the board. Higher values of λ do make resulting cap-

tions more discriminative to both humans and machines, but

at the cost of reduction in other metrics, and in our obser-

vations (see Section 5.5) in perceived fluency. This analy-

sis is applicable across model/loss combinations. We also

notice a relative large range of λ(0.5-1.2) can yield similar

improvement on automatic metrics.

Following the observations above, we select a subset of

methods to evaluate on the (previously untouched) test set,

with results shown in Table 3.

Here, we add two more results for comparison. The first

involves presenting AMT workers with human captions for

the target images. Recall that these captions are collected

for each image independently, without explicit instructions

related to discriminability, and without showing potential

distractors. However, human captions prove to be highly

discriminative. This, not surprisingly, indicates that humans

may be incorporating an implicit objective of describing el-

ements in an image that are surprising, notable or otherwise

may help in distinguishing the scene from other, scenes.

While this performance is not perfect (4/5 accuracy of 82%)

it is much higher than for any automatic caption model.

The second additional set of results is for the model

in [5], evaluated on captions provided by the authors. Note

that in contrast to our model (and to human captions), this

method has the benefit of seeing the distractor prior to gen-

erating the caption; nonetheless, its performance is domi-

nated across metrics by our attention models trained with

CIDEr optimization combined with discriminability loss. It

also appears that this models’ gains on discrimination are

offset by a significant deterioration under other metrics.

In contrast, our ATTN+CIDER+DISC model with λ =
10 achieves the most discriminative image captioning re-

sult without major degradation under other metrics; the

ATTN+CIDER+DISC with λ = 1 again shows the best dis-

criminability/descriptiveness tradeoff among the evaluated

models.

Effect on SPICE score To further break down how our

discriminabilty loss does, we analyze the affect of different

models on the SPICE score [2]. It estimates caption qual-

ity by transforming both candidate and reference (human)

captions into a scene graph and computing the matching

between the graphs. SPICE is known to have higher cor-

relation with human ratings than other conventional met-
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Acc Acc-new BLEU4 METEOR ROUGE CIDEr SPICE 3 in 5 4 in 5 5 in 5

FC+MLE[6] 77.23% 77.23% 0.3308 0.2566 0.5407 1.0005 0.1855 71.78% 50.28% 18.79%

FC+CIDER[6] 74.00% 74.32% 0.3249 0.2550 0.5428 1.0154 0.1899 73.04% 50.58% 24.83%

FC+MSE+DISC (100) 87.42% 87.42% 0.2902 0.2523 0.5261 0.9190 0.1881 76.91% 54.62% 23.20%

FC+CIDER+DISC (1) 79.26% 79.49% 0.3274 0.2574 0.5457 1.0231 0.1939 74.26% 55.53% 24.13%

FC+CIDER+DISC (5) 85.90% 85.68% 0.3072 0.2534 0.5382 0.9678 0.1904 78.63% 58.03% 32.64%

FC+CIDER+DISC (10) 88.69% 88.01% 0.2727 0.2473 0.5224 0.8795 0.1807 80.01% 62.71% 37.15%

ATTN+MLE[6] 72.40% 73.12% 0.3582 0.2719 0.5649 1.1078 0.2019 69.90% 54.60% 28.07%

ATTN+CIDER[6] 71.05% 71.13% 0.3592 0.2695 0.5678 1.1332 0.2083 69.97% 51.34% 27.34%

ATTN+MLE+DISC (100) 82.64% 83.03% 0.3266 0.2697 0.5542 1.0448 0.2057 78.18% 55.63% 21.71%

ATTN+CIDER+DISC (1) 75.74% 76.60% 0.3627 0.2728 0.5706 1.1406 0.2113 72.70% 53.23% 34.33%

ATTN+CIDER+DISC (5) 80.98% 81.43% 0.3504 0.2704 0.5636 1.1026 0.2097 76.69% 60.94% 33.49%

ATTN+CIDER+DISC (10) 83.69% 83.50% 0.3261 0.2673 0.5549 1.0552 0.2070 81.93% 65.12% 35.41%

Table 2. Automatic scores and human-study discriminability on the validation set. The numbers in the parenthesis are discriminability loss

weight λ.

Acc Acc-new BLEU4 METEOR ROUGE CIDEr SPICE 3 in 5 4 in 5 5 in 5

Human 74.30% 74.14% - - - - - 91.14% 82.38% 57.08%

ATTN+MLE[6] 68.60% 66.90% 0.3907 0.2913 0.5956 1.2198 0.2132 72.06% 59.06% 44.25%

ATTN+CIDER[6] 68.19% 65.12% 0.3871 0.2908 0.5971 1.2604 0.2260 70.07% 55.95% 35.95%

CACA[5] 75.80% 76.00% 0.2357 0.2186 0.4719 0.7656 0.1526 74.1%1 56.88%1 35.19%1

ATTN+CIDER+DISC(1) 72.63% 70.68% 0.3971 0.2931 0.6043 1.2770 0.2302 76.91% 61.67% 40.09%

ATTN+CIDER+DISC(10) 79.75% 79.14% 0.3538 0.2821 0.5811 1.1429 0.2204 77.70% 64.63% 44.63%

Table 3. Automatic scores and discriminability on 1k test set.

rics. Furthermore, it provides subclass scores on Color,

Attributes, Cardinality, Object, Relation, Size. We report

the results on these (on validation set) in detail for different

models in Table 4.

By adding the discriminability loss, we improve scores

on Color, Attribute, and Cardinality. With the latter, qualita-

tive results suggest that the improvement may be due to a re-

fined ability to distinguish “one” or “two” from “group of”

or “many”. With small λ, we can also get the best score on

Object. Since the object score is dominant in SPICE, λ = 1
also obtaines highest SPICE score overall in Tables 2,3.

Finally, we can evaluate the diversity in captions

generated by different models. We find that includ-

ing discriminability objective, and using higher λ, are

correlated with captions that are more diverse (4471

distinct captions with ATTN+CIDER+DISC(10) for the

5000 images in validation set, compared to 2640 with

ATTN+CIDER) and slightly longer (avg. length 9.84 with

ATTN+CIDER+DISC(10) vs. 9.20 with ATTN+CIDER).

Detailed analysis can be found in the supplementary mate-

rial.

5.5. Qualitative result

In Figures 1,2, we show a sample of validation set im-

ages and for each include a human caption, the caption

13 in 5 is quoted from [5]; 4 in 5 and 5 in 5 computed by us on the set

of captions provided by the authors.

Color Attribute Cardinality Object Relation Size

FC+MLE 9.32 8.74 1.73 34.04 4.81 2.74

FC+MLE+D(100) 15.85 10.31 5.33 34.57 4.43 2.62

FC+C 5.77 7.01 1.80 35.70 5.17 1.70

FC+C+D (1) 8.28 7.81 3.45 36.37 5.25 2.10

FC+C+D (5) 10.87 9.11 6.72 35.58 4.75 2.08

FC+C+D (10) 12.80 9.90 8.50 34.60 4.40 1.70

ATTN+MLE 11.78 10.13 3.00 36.42 5.52 3.67

ATTN+MLE+D(100) 15.80 11.83 14.30 37.16 5.13 3.97

ATTN+C 7.24 8.77 8.93 38.38 6.21 2.39

ATTN+C+D (1) 9.25 9.49 10.51 38.96 5.91 2.58

ATTN+C+D (5) 11.99 10.40 15.23 38.57 5.59 2.53

ATTN+C+D (10) 12.88 10.88 15.72 38.09 5.35 2.53

Table 4. SPICE subclass scores on 5k validation set. All the scores

here are scaled up by 100. (Here +C means using CIDEr optimza-

tion; +D(x) means using discriminability loss with λ being x).

generated by ATTN+CIDER, and our captions produced by

ATTN+CIDER+DISC(1). To emphasize the discriminabil-

ity gap, the images are organized in pairs2, where both im-

ages have the same ATTN+CIDER caption; although these

are mostly correct, compared to our and human result, they

tend to lack discriminative specificity.

To illustrate the task on which we base our evaluation

of discriminability to humans, we show in Figure 3 a sam-

ple of image pairs and associated captions. In each case,

the target is on the left (in AMT experiments the order was

2Note that these pairs are formed for the purpose of this figure; these

are not pairs shown to AMT workers for human evaluation.
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Human: a man riding skis next
to a blue sign near a forest
ATTN+CIDER: a man standing
on skis in the snow
Ours: a man standing in the snow
with a sign

Human: the man is skiing down
the hill with his goggles up
ATTN+CIDER: a man standing
on skis in the snow
Ours: a man riding skis on a
snow covered slope

Human: a hot dog serves with
fries and dip on the side
ATTN+CIDER: a plate of food
with meat and vegetables on a ta-
ble
Ours: a hot dog and french fries
on a plate

Human: a plate topped with
meat and vegetables and sauce
ATTN+CIDER: a plate of food
with meat and vegetables on a ta-
ble
Ours: a plate of food with carrots
and vegetables on a plate

Human: a train on an overpass
with people under it
ATTN+CIDER: a train is on the
tracks at a train station
Ours: a red train parked on the
side of a building

Human: a train coming into the
train station
ATTN+CIDER: a train is on the
tracks at a train station
Ours: a green train traveling
down a train station

Figure 2. Examples of image captions; Ours refers to

ATTN+CIDER+DISC(1)

randomized), and we show captions produced by four au-

tomtic systems, two without added discriminability objec-

tive in training, and two with (with low and high λ, respec-

tively). Again, we can see that discriminability loss encour-

ages learning to produce more discriminative captions, and

that with higher λ this may be associated with reduced flu-

ency. We highlight in green caption elements that (subjec-

tively) seem to aid discriminability, and in red the portions

that seem incorrect or jarringly non-fluent. For additional

experimental results, see supplementary material.

6. Conclusions

We have demonstrated that incorporating a discrim-

inability loss, derived from the loss of a trained im-

age/caption retrieval model, in training image caption gen-

erators improves the quality of resulting captions across

a variety of properties and metrics. It does, as expected,

lead to captions that are more discriminative, allowing

ATTN+MLE: a large clock tower with a clock on it
ATTN+CIDER: a clock tower with a clock on the side of it
ATTN+CIDER+DISC(1): a clock tower with bikes on the side of a river
ATTN+CIDER+DISC(10): a clock tower with bicycles on the boardwalk
near a harbor

ATTN+MLE: a view of an airplane flying through the sky
ATTN+CIDER: a plane is flying in the sky
ATTN+CIDER+DISC(1): a plane flying in the sky with a sunset
ATTN+CIDER+DISC(10): a sunset of a sunset with a sunset in the sun-
set

ATTN+MLE: a couple of people standing next to a stop sign
ATTN+CIDER: a stop sign on the side of a street
ATTN+CIDER+DISC(1): a stop sign in front of a store with umbrellas
ATTN+CIDER+DISC(10): a stop sign sitting in front of a store with
shops

Figure 3. Captions from different models describing the target im-

ages(left). Right images are the corresponding distractors selected

in val/test set; these pairs were included in AMT experiments.

both human recipients and machines to better identify

an image being described, and thus arguably conveying

more valuable information about the images. More sur-

prisingly, it also yields captions that are scored higher

on metrics not directly related to discrimination, such as

BLEU/METEOR/ROUGE/CIDEr as well as SPICE, re-

flecting more descriptive captions. This suggests that richer,

more diverse sources of training signal may further improve

training of caption generators.

In future work, we plan to explore more sophisticated

visual semantic embedding model, which could potentially

give better guidance to training than our current retrieval

model. We are also interested in how to make it even more

discriminative.
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