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Abstract

We observed that recent state-of-the-art results on sin-

gle image human pose estimation were achieved by multi-

stage Convolution Neural Networks (CNN). Notwithstand-

ing the superior performance on static images, the applica-

tion of these models on videos is not only computationally

intensive, it also suffers from performance degeneration and

flicking. Such suboptimal results are mainly attributed to

the inability of imposing sequential geometric consistency,

handling severe image quality degradation (e.g. motion

blur and occlusion) as well as the inability of capturing the

temporal correlation among video frames. In this paper, we

proposed a novel recurrent network to tackle these prob-

lems. We showed that if we were to impose the weight shar-

ing scheme to the multi-stage CNN, it could be re-written

as a Recurrent Neural Network (RNN). This property de-

couples the relationship among multiple network stages and

results in significantly faster speed in invoking the network

for videos. It also enables the adoption of Long Short-Term

Memory (LSTM) units between video frames. We found such

memory augmented RNN is very effective in imposing geo-

metric consistency among frames. It also well handles in-

put quality degradation in videos while successfully stabi-

lizes the sequential outputs. The experiments showed that

our approach significantly outperformed current state-of-

the-art methods on two large-scale video pose estimation

benchmarks. We also explored the memory cells inside the

LSTM and provided insights on why such mechanism would

benefit the prediction for video-based pose estimations.1

1. Introduction

Estimating joint locations of human bodies is a challeng-

ing problem in computer vision which finds many real ap-

plications in areas including augmented reality, animation

and automatic photo editing. Previous methods [2, 6, 38]

1Code is publicly available at https://github.com/lawy623/

LSTM_Pose_Machines.

Figure 1. Comparison of results produced by Convolutional Pose

Machine (CPM) [36] after setting the video as a series of static im-

ages (Up) and our method (Down). Several problems occur during

pose estimation on videos: a) Errors and our correct results in es-

timating symmetric joints. b) Errors and our correct results when

joints are occluded. c) Flicking results and our results when the

body moves rapidly.

mainly addressed this problem by well designed graphical

models. Newly developed approaches [5, 23, 36] achieved

higher performance with deep Convolutional Neural Net-

works (CNN).

Nevertheless, those state-of-the-art models were trained

on still images, limiting their performance on videos. Fig-

ure 1 demonstrates some unsatisfactory situations. For in-

stance, the lack of geometric consistency makes the pre-

vious methods prone to making obvious errors. Mistakes

caused by serious occlusion and large motion are not un-

common as well. In addition, those models usually have

a deep architecture and would be computationally very in-

tensive for real-time applications. Therefore, a relatively

light-weight model is preferable if we want to deploy it in a
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real-time video processing system.

An ideal model of such kind must be able to model the

geometric consistency as well as the temporal dependency

among video frames. One way to address this is to calculate

the flow between every two frames and use this additional

cue to improve the prediction [26, 32]. This approach is

effective when the flow can be accurately calculated. How-

ever, this is not always the case because the calculation of

optical flow suffers from image quality degradation as well.

In this paper, we adopted a data-driven approach to bet-

ter tackle this problem. We showed that a multi-stage CNN

could be re-written as a Recurrent Neural Network (RNN)

if we impose the weight sharing scheme. This new for-

mulation decouples the relationship among multiple net-

work stages and results in significantly faster speed in in-

voking the network for videos. It also enables the adop-

tion of Long Short-Term Memory (LSTM) units between

video frames. By effectively learning the temporal depen-

dency among video frames, this novel architecture well cap-

tures the geometric relationships of joints in time and in-

creases the stability of joint predictions on moving bodies.

We evaluated our method on two large-scale video pose es-

timation benchmarks namely, Penn Action [40] and sub-

JHMDB [14]. Our method significantly outperformed all

previous methods both in performance and speed.

To well justify our findings, we also investigated the in-

ternal dynamics of the memory cells inside our LSTM and

explained why and how LSTM units would improve the

video pose estimation performance. The memory cells were

visualized and insights were provided.

The contributions of our work can be summarized as fol-

lows.

• First, we built a novel recurrent architecture with

LSTM to capture temporal geometric consistency and

dependency among video frames for pose estimation.

Our method surpassed all the existing approaches on

two large-scale benchmarks.

• Second, the new architecture decouples the relation-

ship among network stages and results in much faster

inference speed for videos.

• Third, we probed into the LSTM memory cells and vi-

sualized how they would help to improve the joint pre-

dictions on videos. It provides insights and justifies

our findings.

2. Related Works

Early works on single-image pose estimation started

from building graphical structures [2, 6, 28, 33, 38] to model

the relations between joints. However, those methods rely

heavily on hand-crafted features which restrict their gener-

ality on varied human poses in reality. The performance of

these methods has recently been surpassed by CNN based

methods [4, 5, 23, 34, 35, 36]. Those deep models had

the capacity to generalize from unseen scenes by learning

various spatial relations from data. Recent works [23, 36]

employed the strategy of iteratively refining the output of

each network stage and achieved state-of-the-art results in

many image-based benchmarks. In [3], a recurrent model

was proposed to reduce training parameters, but it was de-

signed for images rather than videos.

Directly applying the existing image-based methods on

video sequences produces sub-optimal results. There are

two major problems. First, these models failed to capture

temporal dependency among video frames and they were

unable to keep the geometric consistency. It can be shown

that the image-based models can easily suffer from motion

blur and occlusion and usually generate inconsistent results

for neighbouring frames. Second, the image-based models

are usually very deep and computationally expensive. It is

problematic when adopting them in real-time applications.

A few previous studies integrated temporal cues into

pose estimation [8, 12, 19, 24, 26, 27, 32]. Modeep [12]

first tried to merge motion features into ConvNet, and Pfis-

ter et al. [27] made a creative attempt to insert consecutive

frames at different color channels as input. In later works

[26, 32], dense optical flow [37] was produced and used

to adjust the predicted positions in order to let the move-

ment smooth across frames. Good results were achieved by

Thin-Slicing Network [32] which relied on both adjustment

from optical flow and a spatial-temporal model. However,

this system is computationally very intensive and is slower

than the previous image-based method. Our method is sim-

ilar to the Chained Model [8], which is a simple recurrent

architecture that can capture temporal dependencies. Un-

like [8], our model better captured temporal dependency

by memory augmented RNN (LSTM) and it achieved bet-

ter performance. LSTM have been widely used in pose-

related tasks such as motion tracking and action recognition

[7, 13, 20, 22]. RPSM [19] also adopted the LSTM for pose

estimation in 3D space, but its LSTM operated in the do-

main between 2D and 3D conversion and mainly concerned

about the quality of such conversion. By employing LSTM

in 2D video-based pose estimation, we are able to outper-

form current state-of-the-art methods while keeping a con-

cise architecture.

Understanding the underlying mechanism behind neural

networks is important and of great interests among many re-

searchers. Several works [21, 39] aimed to explain what the

convolution models had learned by reconstructing the fea-

tures into original images. Likewise, [17] studied the long-

range interactions captured by recurrent neural network in

text processing. And in particular, it interpreted the func-

tion of LSTM in text-based works. In this paper, we com-

bined the analysis from these two sides, and visualized how
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our model learned and helped the work of locating moving

joints in videos.

3. Analysis and Our Approach

3.1. Pose Machines: From Image to Video

Pose Machine [29] was first brought up as a method to

predict joint locations in a sequentially refined manner. The

model was built on the inference machine framework to

learn strong interconnections between body parts. Convo-

lutional Pose Machine (CPM) [36] inherited the idea from

pose machine with implementing it in a deep architecture.

At the same time, it adopted a fully convolutional design

by producing predicted heat maps at the end of the system.

As a critical strategy exploited in pose machines, passing

prior beliefs into next stages and supervising the loss in all

stages benefit the training of such a deep ConvNet by ad-

dressing the problem of gradient vanishing. Following the

descriptions in [36], we can formulate the model mathemat-

ically in the following way: Denote bs ∈ R
W×H×(P+1) (P

joints plus one background channel with size W × H) as

the beliefs in stage s ∈ {1, 2, ...., S}, they can be calculated

iteratively by:

bs = gs(X), s = 1,

bs = gs(Fs(X)⊕ bs−1), s = 2, 3, ..., S,
(1)

where X ∈ R
W×H×C is the original image sent into every

stage. Fs(·) is a ConvNet used to extract valuable features

from input image. Those features will be concatenated (in-

dicated by operation ⊕) with prior beliefs (i.e. bs−1) and

sent into another ConvNet gs(·) to produce refined belief

maps. It is easy to observe that CPM does a great job on

pose estimation because gs(·) and Fs(·) are not identical

across different stages s even though they share the same

architecture (in fact gs=1(·) uses a deeper structure com-

pared with gs>1(·) in order to produce more precise con-

fidence maps for further refinements since its unprocessed

input contains only local evidences). It repetitively modifies

the confidence maps by adding intermediate supervisions at

the end of each stage. However, applying this deep structure

for video-based pose estimation is not practical because it

does not integrate any temporal information.

Chained model [8] provided us a motivation to construct

an RNN style model for this problem. And we were also

inspired by the design of CPM to reform it into a recur-

rent one. Referring to Eq. (1), we found that CPM could

be easily transformed into a recurrent structure by sharing

the weights of those two functions gs(·) and Fs(·) across

stages. Mathematically, a new Recurrent Pose Machine de-

rived from CPM can be formulated as:

bt = g0(Xt), t = 1,

bt = g(F(Xt)⊕ bt−1), t = 2, 3, ..., T.
(2)

Here, bt is no longer the belief maps in a certain stage as

described in Eq. (1), but it represents the produced belief

maps matched with frame t ∈ {1, 2, ...., T} where T is now

the length of frames in this video. The input Xt(16t6T )’s

are not the same in different stages, but they are consecu-

tive frames from a video sequence. Similarly, g0(·) at the

initial place is still different from g(·), and now all the fol-

lowing stages share an exactly identical function. With this

implementation, the model is rebuilt with recurrent design

and it can be used to predict joint locations from a variable-

length video. Apart from its recurrent property, it also ac-

complishes another notable achievement which is lessening

the parameters for predicting locations from a single frame.

Training of the model described in Eq. (2) can now be

proceeded collectively on a set of successive frames. How-

ever, this RNN model cannot achieve optimal performance

on video-based pose estimation. We found that it was ben-

eficial to include an LSTM unit [10] because of its special

gate designs and memory implementation. This modifica-

tion can be achieved by further adapting Eq. (2). In other

words, our new memory-enabled recurrent pose machines

become:

bt = g(L̃(F
′

(Xt))), t = 1,

bt = g(L̃(F(Xt)⊕ bt−1))), t = 2, 3, ..., T.
(3)

L̃(·) is a function controlling memory’s inflow and outflow

procedures. In Eq. (2), g0(·) contains two parts, namely

a feature encoder and a prediction generator. Since L̃(·)
directly receives processed features, we separate these two

parts and plug the LSTM between them as shown in Eq.

(3). The extractor acts like F(·) in other stages but it is

much deeper, so we denote it as F
′

(·). Now we can also

see that the generators g(·) are identical across all stages.

Since nothing is in LSTM’s memory at the first stage, L̃(·)
will be a little bit different from that in subsequent stages,

but they all perform similar functionality. We will discuss

the implementation in detail in later sections, and more im-

portantly, we will explain how the LSTM can robustly boost

the performance of our recurrent pose machines.

3.2. LSTM Pose Machines

Details of the Model. Figure 2 illustrates our structure

stated in Eq. (3) for pose estimation on video. Consecutive

frames in the same video clip will be sent into the network

as input in different stages. As shown in the figure, when

t = 1, F
′

(Xt) can be decomposed as F0(Xt) ⊕ F(Xt),
where F0(·) is the ConvNet1 aiming at processing raw in-

put and F(·) is the encoder ConvNet2 consistently used in

all stages. F0(·) produces preliminary belief maps associ-

ated with the first frame. Since the prediction does not have

a high confidence level, it will be concatenated with F(X1)
again to generate a more accurate result. LSTM is the most
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Figure 2. Network architecture for LSTM Pose Machines. This network consists of T stages, where T is the number of frames. In each

stage, one frame from a sequence will be sent into the network as input. ConvNet2 is a multi-layer CNN network for extracting features

while an additional ConvNet1 will be used in the first stage for initialization. Results from the last stage will be concatenated with newly

processed inputs plus a central Gaussian map, and they will be sent into the LSTM module. Outputs from LSTM will pass ConvNet3 and

produce predictions for each frame. The architectures of those ConvNets are the same as the counterparts used in the CPM model [36] but

their weights are shared across stages. LSTM also enables weight sharing, which reduces the number of parameters in our network.

critical component in this architecture. It can be referred

to as the L̃(·) function we mentioned above. In reality, it

takes multiple steps to forget the old memory, absorb new

information and create the output. ConvNet3 is the gen-

erator g(·) we described in Eq. (3) and it is connected to

the output from LSTM. All those ConvNet segments com-

prise several convolution layers, activation layers and pool-

ing layers. They inherit the design of Convolutional Pose

Machines [36], and the architectures of them are the same

as the counterparts used in the CPM model. The difference

is that our model allows weight sharing for all these compo-

nents across stages. Following CPM [36], we add an extra

slice containing a central Gaussian peak during input con-

catenation for better performance. Dropout is also included

in the last layers of ConvNet1.

Convolutional LSTM Module. The structure and func-

tionality of LSTM have been discussed in many prior works

[10, 9, 31]. A vanilla LSTM is defined in [9] and it is the

most commonly used LSTM implementation. In [9], Greff

et al. conducted a comprehensive study on the components

of LSTM, and they found out that this vanilla LSTM with

forget gate, input gate and output gate already outperformed

other variants of LSTM. Eq. (4) illustrates the operations

inside a vanilla LSTM unit that we used in our recurrent

model:

gt = ϕ(Wxg ∗Xt + Whg ∗ ht−1 + ǫg),

it = σ(Wxi ∗Xt + Whi ∗ ht−1 + ǫi),

ft = σ(Wxf ∗Xt + Whf ∗ ht−1 + ǫf ),

ot = σ(Wxo ∗Xt + Who ∗ ht−1 + ǫo),

Ct = ft ⊙ Ct−1 + it ⊙ gt,

ht = ot ⊙ ϕ(Ct)

(4)

Unlike traditional LSTM, ’*’ here does not refer to a ma-

trix multiplication but to a convolution operation similar as

that in [31] and [18]. As a result, all the ’+’ in Eq. (4) repre-

sent the element-wise addition. The ǫ’s here denote the bias

terms. These settings result in our convolutional LSTM de-

sign. it(·), ft(·), ot(·) are the input gate, forget gate and

output gate at time t respectively. They are controlled by

new input Xt and hidden state from last stage ht−1 mutu-

ally. Note that Xt here is not the same as that in Eq. (3).

Here it is already the concatenated inputs (i.e. F(Xt)⊕bt−1

in Eq. (3)). Convolutional design of the gates focuses more

on regional context rather than global information, and it

pays more attention to the changes of joints in smaller local

areas. One convolution layer with 3 × 3 kernel is found to

be best for performance. Ct is the memory cell which pre-

serves knowledges in a long range by forgetting old mem-

ory and taking in new information continuously. Hidden

state ht will be outputted from the newly formed memory

and it will be used to generate current beliefs via the gener-

ator g(·). The first memory cell C1 is calculated by i1 ⊙ g1
only since forget operation is unavailable.

Training of the Model. Our LSTM Pose Machine is im-

plemented in Caffe [15], and functions in LSTM are simply

implemented by convolutions and element-wise operations.

Labels in Cartesian coordinates are transformed into heat

maps with Gaussian peaks centred at the joint positions.

The network has T stages, where T is the number of consec-

utive frames in the training sequence. Loss will be added at

the end of each stage to supervise the learning periodically.

Training aims to reduce the total l2 distance between pre-

diction and ground truth for all joints and all frames jointly.

Loss function is defined as:

F =

T∑

t=1

P+1∑

p=1

‖bt(p)− g.t.t(p)‖
2, (5)
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where bt(p) is the produced belief and g.t.t(p) is the

ground truth heat map for part p in stage t.

4. Experiments and Evaluations

In this section, we present our experiments and quan-

titative results on two widely used datasets. Our method

achieved state-of-the-art results in both of them. Qualita-

tive results will be also provided in this part. At last, we

will explore and visualize the dynamics inside LSTM units.

4.1. Datasets

Penn Action Dataset. Penn Action Dataset [40] is a large

dataset containing in total 2326 video clips, with 1258 clips

for training and 1068 clips for testing. On average each

clip contains 70 frames, but the number in fact varies a lot

for different cases. 13 joints including head, shoulders, el-

bows, wrists, hips, knees and ankles are annotated in all the

frames. An additional label indicates whether a joint is vis-

ible or not in a single image. Following previous works,

evaluation will be only conducted on visible joints.

Sub-JHMDB Dataset. JHMDB [14] is another video-

based dataset for pose estimation. For comparison purpose,

we only conduct our experiment on a subset of JHMDB

called sub-JHMDB dataset to maintain consistency with

previous works. This subset contains only complete bod-

ies and no invisible joint is annotated. Sub-JHMDB has 3

different split schemes, so we trained our model separately

and reported the average result over these three splits. This

subset has 316 clips with all 11200 frames in the same size.

Split results in a train/test ratio which is roughly equal to 3.

4.2. Implementation Details

Data Augmentation is randomly performed to increase

variation of input. Since a set of frames will be sent into

the network at the same time, the transformation will be

consistent within a patch. Images will be randomly scaled

by a factor. For Penn this factor is between 0.8 to 1.4 while

for sub-JHMDB it is between 1.2 to 1.8 since the bodies are

originally smaller. Images will then be rotated with degree

[−40◦,40◦] and flipped with randomness. At last, all the

images will be cropped to a fixed size (368 × 368) with

bodies set at center.

Parameter settings. Since we directly revised the archi-

tecture of Convolutional Pose Machines [36], we can easily

initialize the weights based on the pre-trained CPM model.

Instead of directly copying weights from it, we first built a

single image model which used the same structure as our

model trained on video sequences. The difference is that

we set T = 6 for this single image model and the inputs are

identical in all stages. We only copied the weights in the

first two stages of CPM model since weights in our model

are shareable across stages. This model was fine-tuned for

several epochs on the combination of LSP [16] and MPII

[1] datasets, which is the same data source for training the

CPM model from scratch.

Our models for training on Penn and sub-JHMDB started

by copying the weights from our single image models de-

scribed above. During training, length of our recurrent

model is set to be 5 (i.e. T=5), which is large enough to ob-

serve sufficient changes from a video sequence. Stochastic

gradient descent with momentum of 0.9 and weight decay

of 0.0005 is used to optimize the learning process. Batch

size is selected to be 4. The initial learning rate is set to be

8 × 10−5 and it will drop by multiplying a factor of 0.333

every 40k iterations. Gradient clipping is used and set as

100 to prevent gradient explosion. Dropout ratio is 0.5 in

the first stage.

4.3. Evaluation on Pose Estimation Results

Similar to many prior works, beliefs for joints are pro-

duced at the end of each stage. Positions in x,y coordinates

can then be interpolated from finding the maximum confi-

dence. During testing, we first rescaled the input into differ-

ent sizes, and averaged the outputs to produce a more reli-

able belief. In our experiments, we rescaled the images into

7 scales and the scaling factors are within the correspond-

ing regions that we used for augmentation during training.

To evaluate the results, we adopt the PCK metric introduced

in [38]. An estimation is considered correct if it lies within

α · max(h,w) from the true position, where h and w are

the height and width of the bounding box. In order to con-

sistently compare with other methods, α is chosen to be 0.2

for evaluation on both datasets. Penn already annotates the

bounding box within each image, but the bounding boxes

for sub-JHMDB are deduced from the puppet masks used

for segmentation.

Method Head Sho Elb Wri Hip Knee Ank Mean

[25] 62.8 52.0 32.3 23.3 53.3 50.2 43.0 45.3

[24] 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0

[11] 89.1 86.4 73.9 73.0 85.3 79.9 80.3 81.1

[8] 95.6 93.8 90.4 90.7 91.8 90.8 91.5 91.8

[32] 98.0 97.3 95.1 94.7 97.1 97.1 96.9 96.5

CPM [36] 98.6 97.9 95.9 95.8 98.1 97.3 96.6 97.1

RPM 98.5 98.2 95.6 95.1 97.4 97.5 96.8 97.0

LSTM PM 98.9 98.6 96.6 96.6 98.2 98.2 97.5 97.7

Table 1. Comparisons of results on Penn dataset using PCK@0.2.

RPM here simply removes the LSTM module from LSTM PM.

Notice that [25] is N-Best, [8] is Chained Model, and [32] is Thin-

Slicing Net. The best results are highlighted in Bold.

4.4. Analysis of Results

Results on Penn and sub-JHMDB. Table 1 and table 2

show the performance of our models and previous works on

Penn dataset as well as sub-JHMDB dataset. Apart from
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Figure 3. Qualitative results of pose estimations on Penn and sub-JHMDB datasets using our LSTM Pose Machines.

Figure 4. attention from different memory channels. The first three focus on trunks or edges while the other three focus on a particular

joint.

LSTM Pose Machines (LSTM PM) stated in Eq. (3), we

also present a simplified Recurrent Pose Machine model

(RPM) as described in Eq. (2). It simply takes off the LSTM

modules and it was trained using the same parameters in

order to study the contribution of LSTM component. By

considering long-term temporal information in our models,

we achieved improved results in both benchmarks. Compar-

ing our state-of-the-art LSTM Pose Machines with previous

video-based pose estimation methods such as Thin-Slicing

Net [32], we observe an overall improvement of 1.2% which

is evenly distributed in all body parts in the case of Penn

benchmark. Among all those parts, we find that the great-

Method Head Sho Elb Wri Hip Knee Ank Mean

[25] 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5

[24] 80.3 63.5 32.5 21.6 76.3 62.7 53.1 55.7

[11] 90.3 76.9 59.3 55.0 85.9 76.4 73.0 73.8

[32] 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1

CPM [36] 98.4 94.7 85.5 81.7 97.9 94.9 90.3 91.9

RPM 98.0 95.5 86.9 82.9 97.9 94.9 89.7 92.2

LSTM PM 98.2 96.5 89.6 86.0 98.7 95.6 90.9 93.6

Table 2. Comparisons of results on sub-JHMDB dataset using

PCK@0.2. RPM here simply removes the LSTM module from

LSTM PM. Notice that [25] is N-Best and [32] is Thin-Slicing

Ne. The best results are highlighted in Bold.

est boost of 1.9% increase comes from the wrist. Similarly,

for sub-JHMDB dataset, we achieved improvements in al-

most all the joints. It is worth noticing that the biggest in-

creases come from elbow and wrist. This is a significant

result since we have robustly improved the predictive accu-

racy of the joints that are subject to drastic movements and

occlusion. In our experiments, we trained a CPM model

[36] on these two datasets with the same training scheme

as well. We can see that it has already surpassed all exist-

ing methods on both benchmarks but it still can not compete

with us. Qualitative results are presented in figure 3. We can

see that our method is especially suitable to cope with big

changes across frames through its strong predictive power.

Even though the body is in motion or it suffers from an oc-

clusion in the middle of the video, positions can be inferred

from their past trajectories smoothly.

Contribution of LSTM Module. From table 1 and table

2, we can see that our recurrent models without LSTM mod-

ule (RPM) also provided improved results comparing to all

previous video-based methods. CPM is a strong baseline on

image-based pose estimation and it uses multi-stage refine-

ments to get inference of joint locations. RPM utilizes tem-

poral information which is found essential in video-based

tasks while it uses a shorter structure. Experiments show

5212



that RPM does not strictly beat CPM since RPM does not

utilize temporal correlations in an optimal way. Our mem-

ory augmented recurrent model better captures temporal in-

formation and surpasses both of them. Comparing with

RPM, our LSTM model achieves an average increment of

0.7% in PENN and 1.4% in sub-JHMDB. For those easy

parts such as head, shoulder and hip, RPM is already able

to perform well. But for those joints that are easily subject

to occlusion or motion, the memory cells help to robustly

promote the estimation accuracy of them by better utilizing

their historical locations. With the help of our LSTM mod-

ule, we can conclude that our approach increased overall

stability in predicting joints from moving frames.

T Head Sho Elb Wri Hip Knee Ank Mean

1 97.0 95.0 85.9 81.8 98.4 92.6 87.0 91.1

2 98.1 96.2 88.6 84.4 98.7 95.5 90.7 93.2

5 98.2 96.5 89.6 86.0 98.7 95.6 90.9 93.6

10 98.5 96.5 89.7 86.0 98.5 94.9 90.1 93.5

Table 3. Comparisons the results of different iterations of LSTM

on sub-JHMDB dataset using PCK@0.2. The best results are high-

lighted in Bold.

Analysis of increasing the iterations of LSTM In this

part, we explore the effect of using different iterations T.

We train our model with different number of stages, i.e.,

T=1, 2, 5, 10, on the sub-JHMDB dataset, and report the

experimental results in Table 3. When there is just one iter-

ation in the LSTM, the performance drops a lot, even worse

than CPM, since there is no temporal information or refine

operations like CPM model. When iterations increase to

2, the performance has a notable improvement, since cur-

rent frame would keep information about the joints which

are nearly static compared to the last frame from the last

stage, and just learn the joints which move a litter faster.

It makes the preference more stable among video frames.

What’s more, the performance still increases when we add

iterations from 2 to 5, which means long-term temporal in-

formation is good for video pose estimation. However, it

doesn’t mean the more iterations, the higher performance.

The experiment in T=10 tells us that the information of the

frames which are very long before current frame is helpless.

In order to balance the performance and training computa-

tion consumption, we set T=5.

4.5. Inference Speed

Inference time is critical for real-time applications. Pre-

vious methods are relatively time-consuming in producing

the results because they need to go through many stages for

a single frame. Our method only needs to go through a sin-

gle stage for every video frame thus performs significantly

faster than the previous multi-stage CNN based methods.

Note that for the first frame, our method needs to go through

a longer stage to get started. For fair comparison, we ran-

domly pick a video clip with 100 frames and send them into

the CPM model and our model for testing separately. The

experiment result shows that the CPM model needs 48.4ms

per-frame, but we only need 25.6ms per-frame which means

that our model runs about 2x faster than the CPM model.

Comparing to the flow based methods such as Thin-Slicing

Net [32], which is based on CPM and needs to generate

flow map, our model has greater advantages in speed. Thus

our model is especially preferable for real-time video-based

pose estimation applications.

4.6. Exploring and Visualizing LSTM

In order to better understand the mechanism behind

LSTM, exploring the content of memory supplies substan-

tial cues. Sharma et al. [30] and Li et al. [18] have made an

attempt on relevant issues recently. In their works, they fo-

cused more on the static attention in each stage, but we are

going to address the transition of memory content resulted

from the changing positions.

Figure 4 displays the results of our exploration. We first

up-sampled the channels in memory and mapped them back

to original image space. Following our setup, there are 48

channels in each memory cell and we only selected some

representative ones here for visualization. From the figure,

we can see that memories in different channels are the at-

tention on distinct parts. Some of them are the global views

on trunks or edges (the first three samples), and some just

focus on a particular joint (the other three show the mem-

ory attention on elbow, hip and head). Remember that those

memories will be selectively outputted and processed by a

network for estimation. Therefore, the memory cell con-

taining both global and local information helps the predic-

tion of spatially correlated joints on a single frame.

A more important property of LSTM is that it maintains

its memory by using both useful prior information and new

knowledge. As described in Eq. (4), LSTM goes through

the process of forgetting and remembering during each it-

eration. In each row of Figure 5 illustrates different phases

of the memory cell within one iteration. It captures the evo-

lution of our LSTM inside the iteration (only represented

by one selected channel). Each column represents a single

phase according to the figure’s description. We can observe

from the first sample that the forget operation selectively

retains useful information for the prediction in next stage,

such as wrists and head, which are nearly static in the three

consecutive frames (col. 3), while new input of this stage

brings more emphasis on the regions containing latest ap-

pearance of joints, such as knees, which have movement in

the three consecutive frames (col. 4). These two parts are

combined to be a new memory and the new memory pro-

duces the predictions on a new frame with high confidence

(col. 5). That is why our model can capture temporal ge-

ometric consistency and prevent the mistakes in videos as

illustrated in Figure 1. For the second sample, in the first
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Figure 5. Exploration of LSTM’s Memory. a)memory from last stage (i.e. Ct−1) on last frame Xt−1, b)memory from last stage (i.e. Ct−1)

on new frame Xt, c)memory after forget operation (i.e. ft ⊙ Ct−1) on new frame Xt , d)newly selected input(i.e. it ⊙ gt) on new frame

Xt, e)newly formed memory (i.e. Ct) on new frame Xt, which is the element-wise sum of c) and d), and f)the predicted results on new

frame Xt. For each samples we pick three consecutive frames.

frames, the left wrist still can be seen, but it is occluded in

the next two frames. In our model, since the left wrist has

been recognized in the first frame, the following frames can

infer the location of it by the memory cell of the last stage

though it has been occluded. What’s more, the movement

of elbows in the third sample is flicking, but our model can

keep the static joints (e.g. hip and keen), and quickly track

the new information of rapidly moving joints (e.g. elbows)

by memory cells and new inputs.

In conclusion, those mechanisms can help to make the

predictions more accurate and robust for pose estimation on

video.

5. Conclusions

In this paper, we presented a novel recurrent CNN model

with LSTM for video pose estimation. We achieved signifi-

cant improvement in terms of both accuracy and efficiency.

We did observe some erroneous predictions when the joint

is not visible for a long time, but we still found that the

LSTM module indeed contributed to the better utilization of

temporal information and it made stable and accurate pre-

dictions across the video. In the end, we explored and visu-

alized the memory cells inside the LSTM and explained the

underlying dynamics of the memory during pose estimation

on changing frames.
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