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Abstract

Most of the proposed person re-identification algorithms

conduct supervised training and testing on single labeled

datasets with small size, so directly deploying these trained

models to a large-scale real-world camera network may lead

to poor performance due to underfitting. It is challenging

to incrementally optimize the models by using the abundant

unlabeled data collected from the target domain. To address

this challenge, we propose an unsupervised incremental

learning algorithm, TFusion, which is aided by the transfer

learning of the pedestrians’ spatio-temporal patterns in the

target domain. Specifically, the algorithm firstly transfers the

visual classifier trained from small labeled source dataset

to the unlabeled target dataset so as to learn the pedestri-

ans’ spatial-temporal patterns. Secondly, a Bayesian fusion

model is proposed to combine the learned spatio-temporal

patterns with visual features to achieve a significantly im-

proved classifier. Finally, we propose a learning-to-rank

based mutual promotion procedure to incrementally opti-

mize the classifiers based on the unlabeled data in the target

domain. Comprehensive experiments based on multiple real

surveillance datasets are conducted, and the results show

that our algorithm gains significant improvement compared

with the state-of-art cross-dataset unsupervised person re-

identification algorithms.

1. Introduction

As one of the most challenging and well studied prob-

lem in the field of surveillance video analysis, person re-

identification (Re-ID) aims to match the image frames which

contain the same pedestrian in surveillance videos. The core

of these algorithms is to learn the pedestrian features and

the similarity measurements, which are view invariant and

robust to the change of cameras.
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Figure 1: The TFusion model consists of 4 steps: (1) Train

the visual classifier C in the labeled source dataset (Section

4.2); (2) Using C to learn the pedestrians’ spatio-temporal

patterns in the unlabeled target dataset (Section 4.3); (3) Con-

struct the fusion model F (Section 4.4); (4) Incrementally

optimize C by using the ranking results of F in the unlabeled

target dataset (Section 4.6).

Most of the proposed algorithms [1][3] [30][14] [20] [24]

conduct supervised learning on the labeled datasets with

small size. Directly deploying these trained models to the

real-world environment with large-scale camera networks

can lead to poor performance, because the target domain

may be significantly different from the small training dataset.

Thus the incremental optimization in real-world deployment

is critical to improve the performance of the Re-ID algo-

rithms. However, it is usually expensive and impractical to

label the massive online surveillance videos to support su-

pervised learning. How to leverage the abundant unlabeled

data is a practical and extremely challenging problem.

To address this problem, some unsupervised algorithms

[13] [18] [27] are proposed to extract view invariant features

and to measure the similarity of different images in unlabeled

datasets. Without powerful supervised tuning and optimiza-
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tion, the performance of above unsupervised algorithms is

typically poor. Besides these unsupervised methods applied

in a single dataset, a cross-dataset unsupervised transfer

learning algorithm[21] is proposed recently, which transfers

the view-invariant representation of a person’s appearance

from a source labeled dataset to another unlabeled target

dataset by a dictionary learning mechanism, and gains much

better performance. However, the performance of the above

mentioned algorithms are still much weaker than the super-

vised learning algorithms. For example, in the CUHK01

[28] dataset, the unsupervised transfer learning algorithm

[21] achieves 27.1% rank-1 accuracy, while the accuracy of

the state-of-art supervised algorithm [25] can reach to 67% .

In this paper, we propose a novel unsupervised transfer

learning algorithm, named TFusion, to enable high perfor-

mance Re-ID in unlabeled target datasets. Different from

the above algorithms which are only based on visual fea-

tures, we try to learn and integrate with the pedestrians’

spatio-temporal patterns in the steps shown in Fig. 1. Firstly,

we transfer the visual classifier C, which is trained from a

small labeled source dataset, to learn the pedestrians’ spatio-

temporal patterns in the unlabeled target dataset. Secondly,

a Bayesian fusion model is proposed to combine the learned

spatio-temporal patterns with visual features to achieve a

significantly improved fusion classifier F for Re-ID in the

target dataset. Finally, a learning-to-rank scheme is proposed

to further optimize the classifiers based on the unlabeled data.

During the iterative optimization procedure, both of the vi-

sual classifier C and the fusion classifier F are updated in a

mutual promotion way.

The comprehensive experiments based on real datasets

(VIPeR [6], GRID [2], CUHK01 [28] and Market1501 [36])

show that TFusion outperforms the state-of-art cross-dataset

unsupervised transfer algorithm [21] by a big margin, and

can achieve comparable or even better performance than the

state-of-art supervised algorithms using the same datasets.

This paper includes the following contributions:

• We present a novel method to learn pedestrians’ spatio-

temporal patterns in unlabeled target datsets by trans-

ferring the visual classifier from the source dataset. The

algorithm does not require any prior knowledge about

the spatial distribution of cameras nor any assumption

about how people move in the target environment.

• We propose a Bayesian fusion model, which combines

the spatio-temporal patterns learned and the visual fea-

tures to achieve high performance of person Re-ID in

the unlabeled target datasets.

• We propose a learning-to-rank based mutual promotion

procedure, which uses the fusion classifier to teach

the weaker visual classifier by the ranking results on

unlabeled dataset. This mutual learning mechanism can

be applied to many domain adaptation problems.

2. Related Work

Supervised Learning: Most existing person Re-ID mod-

els are supervised, and based on either invariant feature

learning [7] [14] [35] [31] , metric learning [11][20] [24]

[15] or deep learning [1] [3] [30] . However, in the practi-

cal deployment of Re-ID algorithms in large-scale camera

networks, it is usually costly and unpractical to label the

massive online surveillance videos to support supervised

learning as mentioned in [21].

Unsupervised Learning: In order to improve the effec-

tiveness of the Re-ID algorithms towards large-scale unla-

beled datasets, some unsupervised Re-ID methods [34][26]

[13] [18] [27] are proposed to learn cross-view identity-

specific information from unlabeled datasets. However, due

to the lack of the knowledge about identity labels, these unsu-

pervised approaches usually yield much weaker performance

compared to supervised learning approaches.

Transfer Learning: Recently, some cross-dataset trans-

fer learning algorithms[17] [16][21][12] are proposed to

leverage the Re-ID models pre-trained in other labeled

datasets to improve the performance on target dataset. This

type of Re-ID algorithms can be classified further into two

categories: supervised transfer learning and unsupervised

transfer learning according to whether the label information

of target dataset is given or not. Specifically, in the super-

vised transfer learning algorithms [12] [17] [16], both of

the source and target datasets are labeled or have weak labels.

[12] is based on a SVM multi-kernel learning transfer strat-

egy, and [16] is based on cross-domain ranking SVMs. [17]

adopts multi-task metric learning models. On the other hand,

the recently proposed cross-dataset unsupervised transfer

learning algorithm for Re-ID, UMDL[21], is totally dif-

ferent from above algorithms, and closer to real-world de-

ployment environment where the target dataset is totally

unlabeled. UMDL[21] transfers the view-invariant repre-

sentation of a person’s appearance from the source labeled

dataset to the unlabeled target dataset by dictionary learning

mechanisms, and gains much better performance. Although

this kind of cross-dataset transfering algorithms are proved

to outperform the purely unsupervised algorithms, they still

have a long way to catch up the performance of the super-

vised algorithms, e.g. in the CUHK01[28] dataset, UMDL

[21] can achieve 27.1% rank-1 accuracy, while the accuracy

of the state-of-art supervised algorithms [25] can reach 67%.

Besides the person Re-ID algorithms only based on vi-

sual features, some recent research works focus on using

the spatio-temporal constraint in camera networks to im-

prove the Re-ID precision. [9] considers the distance of

cameras and filters the candidates with less possibility. [19]

models the connection of any pair of cameras by measuring

the average similarity score of the images from different

cameras, and applies the relationship of cameras to filter the

candidates with low probability. [10] makes statistics about
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the temporal distribution of pedestrians’ transferring among

different cameras. All of these algorithms are designed on

one single labeled dataset, while our model is adaptive to a

cross-dataset transferring learning scenario where the target

dataset is totally unlabeled. On the other hand, in above algo-

rithms, the spatio-temporal patterns are learned independent

of the visual classifier, and keep fixed at the initialization

step. In this paper, we address that the visual classifier and

the spatio-temporal patterns can be linked together to con-

duct an iterative co-train procedure to promote each other.

3. Preliminaries

3.1. Problem Definition of Person Re­ID

Given a surveillance image containing a target pedestrian,

the design goal of a person Re-ID algorithms is to retrieve

the surveillance videos for the image frames which contain

the same person. For clarity of the problem definition, some

notations describing Re-ID are introduced in this section.

Each surveillance image containing a pedestrian is de-

noted as Si, which is cropped from an image frame of a

surveillance video. The time when Si is taken is denoted by

ti, and the ID of the corresponding camera is denoted by ci.
The ID of the pedestrian in Si is denoted as Υ(Si). Given

any surveillance image Si, the person Re-ID problem is to

retrieve the images {Sj |Υ(Sj) = Υ(Si)}, which contain the

same person Υ(Si).

The traditional strategy of person Re-ID is to train a clas-

sifier C based on visual features to judge whether two given

images contain the same person. Given two images Si and

Sj , if C judges that Si and Sj contain a same person, it is

denoted as Si 
C Sj . Otherwise, it is denoted as Si 1C Sj .

The false positive error rate of the classifier C is given by:

Ep = Pr(Υ(Si) 6= Υ(Sj)|Si 
C Sj) (1)

The false negative error rate of Cs is given by:

En = Pr(Υ(Si) = Υ(Sj)|Si 1C Sj) (2)

3.2. Cross­Dataset Person Re­ID

Like most of the traditional person Re-ID algorithms [14]

[35], we can conduct supervised learning on some public

labeled dataset (denoted as Ωs below), which is usually of

small size, to train a classifier C. While directly deploying

the trained C to a real-world unlabeled target dataset Ωt

collected from a large-scale camera network, it tends to have

poor performance, due to the significant difference between

Ωs and Ωt.

How to effectively transfer the classifier trained in a la-

beled source dataset to another unlabeled target datset is the

fundamental challenging problem addressed in this paper.

4. Model

4.1. Model overview

Because most of the time people move with definite pur-

poses, their trajectories usually follow some non-random

patterns, which can be utilized as important clues besides vi-

sual features to discriminate different persons. Motivated by

this observation, we propose a novel algorithm to transfer the

classifier, which is trained in a small source dataset, to learn

the spatio-temporal patterns of pedestrians in the unlabeled

target dataset. Then we combine the patterns with the visual

features to build a more precise fusion classifier. Further-

more, we adopt a learning-to-rank scheme to incrementally

optimize the classifier by using the unlabeled data in the

target dataset. The architecture of the model is illustrated in

Fig. 1, which contains the following main steps:

• step (1): Supervised Learning in the Labeled

Source Dataset. In this warm-up initialization step,

we adopt the supervised learning algorithm such as

[37] to learn a visual classier C from an available small

labeled source dataset. In the following steps, further

optimization is needed for C to be applied in a large

unlabeled target dataset. (Section 4.2)

• step (2): Transfer Learning of the Spatio-temporal

Pattern in the Unlabeled Target Dataset. In this

step, we transfer the classifier C to the unlabeled target

dataset to learn pedestrians’ spatio-temporal patterns in

the target domain. (Section 4.3)

• step (3): Fusion Model for the Target Dataset. A

Bayesian fusion model F is proposed to combine the vi-

sual classifier C and the newly learned spatio-temporal

patterns for precise discrimination of pedestrian images.

(Section 4.4)

• step (4): Learning-to-rank Scheme for Incremental

Optimization of Classifiers. In this step, we leverage

the fusion model F to further optimize the visual clas-

sifier C based on the learning-to-rank scheme. Firstly,

given any surveillance image Si, the fusion model F
is applied to rank the images in the unlabeled target

dataset according to the similarity with Si. Secondly,

the ranking results are fed back to incrementally train

the visual classifier C. (Section 4.6)

The model can be iteratively updated by repeating step

(2) ∼ (4) until the number of iterations reaches a given

threshold or the performance of the classifier converges. In

this way, all of the visual classifier C, the fusion model F ,

and the spatio-temporal patterns can achieve collaborative

optimization.

In the following sections, we will propose the detailed

design and analysis of each key component of the model.
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Figure 2: Visual classifier based on CNN.

4.2. Supervised Learning in Labeled Source Dataset

As shown in step (1) of Fig. 1, the supervised learning is

conducted on the labeled source dataset to train the visual

classifier C, which measures the matching probability of the

given two input images.

We select the recently proposed convolutional siamese

network [37] as C, which makes better use of the label in-

formation and has good performance in large-scale datasets

such as Market1501[36]. The network architecture of C is

shown in Fig. 2. The network adopts a siamese scheme

including two ImageNet pre-trained CNN modules, which

share same weight parameters and extract visual features

from the input images Si and Sj . The CNN module is

achieved from the ResNet-50 network [8] by removing its

final fully-connected (FC) layer. The outputs of the two

CNN modules are flattened into two one-dimensional vec-

tors: ~vi and ~vj , which act as the embedding visual feature

vectors of the input images. Finally, the model predicts the

identities (P̂ (i) and P̂ (j)) of the input images, and their sim-

ilarity score q̂. The cross entropy based verification loss and

identification loss are adopted for training. Readers can refer

to [37] or our appendix for the detail of the network.

While deploying this classifier to perform Re-ID, given

two images Si and Sj as input, the CNN modules extract

their visual feature vectors ~vi and ~vj as shown in Fig. 2. The

matching probability of Si and Sj is measured as the cosine

similarity of the two feature vectors:

Pr(Si 
C Sj |~vi, ~vj) =
~vi · ~vj

‖ ~vi ‖2‖ ~vj ‖2
(3)

If Pr(Si 
C Sj |~vi, ~vj) is larger than a predefined threshold

constant, Si and Sj are judged to contain the same person.

That is Si 
C Sj . Otherwise, they are judged as Si 1C Sj .

4.3. Spatio­temporal Pattern Learning

As reported in [10], due to the camera network topology,

the time interval of pedestrians’ transferring among different

cameras usually follows specific patterns. These spatio-

temporal patterns can provide non-visual clues for Re-ID.

Formally, the spatio-temporal pattern of pedestrians’

transferring among different cameras can be defined as:

Pr(△ij , ci, cj |Υ(Si) = Υ(Sj)). (4)

Here Si is a surveillance image taken at the camera ci at

the time ti, and Sj is another one at the camera cj at the

time tj . △ij = tj − ti. Eq.(4) indicates the probability

distribution of the time interval △ij and camera IDs (ci, cj)
of any pair of image frames Si and Sj containing the same

person (Υ(Si) = Υ(Sj)).
To calculate the precise value of Eq.(4), it is needed to

judge whether two images contain the same person firstly.

However, this is impossible in unlabeled target datasets

where person IDs are unknown. As shown in the step (2) of

Fig. 1, we propose an approximation solution by transfer-

ring the visual classifier C, which is trained in the labeled

source dataset, to the unlabeled target dataset. With C, we

can make a rough judgment of any pair of images Si and Sj

to achieve the identification result Si 
C Sj or Si 1C Sj .

After applying C to every pair of images in the target dataset,

we can obtain the statistics Pr(△ij , ci, cj |Si 
C Sj), which

indicates the probability distribution of the time interval and

camera IDs of any pair of images which seem to contain

the same person (Si 
C Sj). On the other hand, we can

apply C to every pair of images in the target dataset to ob-

tain the statistics Pr(△ij , ci, cj |Si 1C Sj), which indicates

the probability distribution of the time interval and camera

IDs of any pair of images which seem to contain different

persons. We can infer that:

Pr(△ij , ci, cj |Υ(Si) = Υ(Sj))

=(1− En − Ep)
−1((1− En) ∗ Pr(△ij , ci, cj |Si 
C Sj)

− Ep ∗ Pr(△ij , ci, cj |Si 1C Sj)) (5)

Thus, the spatio-temporal pattern Pr(△ij , ci, cj |Υ(Si) =
Υ(Sj)) can be expressed as a function of

Pr(△ij , ci, cj |Si 
C Sj) and Pr(△ij , ci, cj |Si 1C Sj),
both of which can be measured by the classier C in the

following steps. We first calculate n, the number of the

image pairs, which satisfy the conditions: 1) they are judged

by C to contain the same person; 2) they are captured at the

camera ci and cj , and 3) the time interval between them is in

[△ij − t,△ij + t]. Here t is a small threshold. Then we can

use n/N to estimate Pr(△ij , ci, cj |Si 
C Sj), where N is

the total number of testing image pairs. In a similar way, we

can estimate Pr(△ij , ci, cj |Si 1C Sj) through counting.

From Eq.(5), we can infer that while the error rates (Ep

and En) are approaching 0, the estimated spatio-temporal

pattern Pr(△ij , ci, cj |Si 
C Sj) is approaching the ground-

truth pattern Pr(△ij , ci, cj |Υ(Si) = Υ(Sj)).

4.4. Bayesian Fusion model

As represented in the last section, the spatio-temporal

pattern Pr(△ij , ci, cj |Υ(Si) = Υ(Sj)), which is estimated

from the visual classifier C, provides a new perspective to

discriminate surveillance images besides the visual features

used in C. This motivates us to propose a fusion model,

which combines the visual features with the spatio-temporal
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Figure 3: Incremental optimization by the learning-to-rank scheme.

pattern to achieve a composite similarity score of given pair

of images, as shown in the step (3) of Fig. 1. Formally, the

fusion model is based on the conditional probability:

Pr(Υ(Si) = Υ(Sj)|~vi, ~vj ,△ij , ci, cj). (6)

Here Si and Sj are any pair of surveillance images from

the target dataset. Si is taken at the camera ci at the time ti,
and Sj is taken at the camera cj at the time tj . Their visual

feature vectors are denoted as ~vi and ~vj . The timing interval

between them is △ij = tj − ti. Eq.(6) measures the proba-

bility of that Si and Sj contain the same person conditional

on their visual features and spatio-temporal information.

According to the Bayesian rule, we have:

Pr(Υ(Si) = Υ(Sj)|~vi, ~vj ,△ij , ci, cj)

=
Pr(Υ(Si) = Υ(Sj)|~vi, ~vj) ∗ Pr(△ij , ci, cj |Υ(Si) = Υ(Sj))

Pr(△ij , ci, cj)

(7)

Here Pr(Υ(Si) = Υ(Sj)|~vi, ~vj) indicates the probability

of that Si and Sj contain the same person given their visual

features. It can be derived from Pr(Si 
C Sj |~vi, ~vj), which

is the matching probability judged by the visual classifier C:

Pr(Υ(Si) = Υ(Sj)|~vi, ~vj)

= Pr(Υ(Si) = Υ(Sj)|Si 
C Sj) ∗ Pr(Si 
C Sj |~vi, ~vj) +

Pr(Υ(Si) = Υ(Sj)|Si 1C Sj) ∗ Pr(Si 1C Sj |~vi, ~vj)

= (1− Ep − En) ∗ Pr(Si 
C Sj |~vi, ~vj) + En (8)

On the other hand Pr(△ij , ci, cj |Υ(Si) = Υ(Sj)) in

Eq. (7) indicates the spatio-temporal pattern of pedestrains,

and it can be calculated according to Eq.(5). By substituting

Eq.(5) and (8) into Eq.(7), we have:

Pr(Υ(Si) = Υ(Sj)|~vi, ~vj ,△ij , ci, cj)

=
(M1 + En

1−En−Ep
)((1− En)M2 − EpM3)

Pr(△ij , ci, cj)
(9)

Here, M1,M2, and M3 are defined as follows:

M1 = Pr(Si 
C Sj |~vi, ~vj)

M2 = Pr(△ij , ci, cj |Si 
C Sj)

M3 = Pr(△ij , ci, cj |Si 1C Sj) (10)

M1 indicates the judgement of the classifier C based on the

visual features, and it can be measured by C according to

Eq. (3)). M2 and M3 represent the spatio-temporal patterns

of the pedestrians moving in the camera network, and they

can be calculated according to the steps mentioned in section

4.3. Based on Eq.(9), we can construct a fusion classifier

F , which takes the visual features and spatio-temporal infor-

mation of two images as input, and outputs their matching

probability. As Eq and En are unknown in the unlabeled

target dataset, Eq.(9) can not be directly deployed. Thus

we substitute Eq and En in Eq. (9) with two configurable

parameters α and β to achieve a more general matching

probability function of F :

Pr(Si 
F Sj |vi, vj ,△ij , ci, cj) (11)

=
(M1 +

α
1−α−β

)((1− α) ∗M2 − β ∗M3)

Pr(△ij , ci, cj)
(0 ≤ α, β ≤ 1)

Here Si 
F Sj means that the classifier F judges that Si

and Sj contain the same person.

In the person re-ID scenario, given any query image Si,

we can rank all the images {Sj} in the database according

to the matching probability Pr(Si 
F Sj |vi, vj ,△ij , ci, cj)
defined in Eq.(11), and select out the images which have

largest probability to contain the same person with Si.

4.5. Precision Analysis of the Fusion Model

In this section, we will analyze the precision of the fusion

model F . Similar with Eq.(1) and (2), we define the false

positive error rate E′
p of F as Pr(Υ(Si) 6= Υ(Sj)|Si 
F

Sj) and the false negative error rate E′
n of F as Pr(Υ(Si) =
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Υ(Sj)|Si 1F Sj). The following Theorem 1 shows the

performance of the fusion model:

Theorem 1 : If Ep + En < 1 and α + β < 1, we have

E′
p + E′

n < Ep + En.

Theorem 1 means that the error rate of the fusion model

F may be lower than the original visual classifier C under the

conditions of Ep + En < 1 and α+ β < 1. It theoretically

shows the effectiveness to fuse the spatio-temporal patterns

with visual features. Due to the page limit, we put the proof

of the theorem 1 in the appendix.

4.6. Incremental Optimization by Learning­to­rank

As shown in Fig. 1, the fusion model F is derived from

the visual classifier C by integrating with spatio-temporal

patterns. According to Theorem 1, F may perform better

than C in the target dataset. That means, given a query

image, when using the classifiers to rank the other images

according to the matching probability, the ranking results of

F may be more accurate than that of C. Motivated by this,

we propose a novel learning-to-rank based scheme to utilize

F to optimize C by teaching it with the ranking results in the

unlabeled target dataset. Subsequently, the improvement of

C may also derive a better fusion model F . In this mutual

promotion procedure, both of the classifiers C and F can get

incremental optimization in the unlabeled target dataset.

The detailed incremental optimization procedure is shown

in the Fig. 3. In the first step, given any query image Si, the

fusion classifier F is applied to rank the other images in the

unlabeled target dataset according to the matching probabil-

ity defined in Eq.(11). Then we randomly select one image

from the top n(n > 0) results, and another one from the

results, the rankings of which are in (n, 2n]. One of these

two images is selected and denoted as Sj , and the other

one is denoted as Sk. The matching probability between Si

and Sj measured by F is denoted as ϕi,j , and the matching

probability between Si and Sk is denoted as ϕi,k. The nor-

malized ranking difference between Sj and Sk is defined as:

Pj,k = e
ϕi,j−ϕi,k

1+e
ϕi,j−ϕi,k

.

In order to force C to learn the ranking difference judged

by F , we propose a triplets network based on C to predict

the ranking difference. As shown in the Fig. 3, the triplets

network takes the three images, Si,Sj ,and Sk as input, and

shares the CNN modules with C to extract visual features.

The following square layer and convolutional layer, which

are also shared with C, are used to calculate the similarity

scores of the image pairs (Si, Sj) and (Si, Sk). Their cor-

responding similarity scores are ϕ̂i,j and ϕ̂i,k. In the final

score layer, the predicted ranking difference is calculated as

P̂j,k = e
ϕ̂i,j−ϕ̂i,k

1+e
ϕ̂i,j−ϕ̂i,k

.

When training the triplets network, the loss function is

defined as the cross entropy of the predicted score P̂j,k and

the ranking difference Pj,k calculated by F : LOSSr =

−P̂j,k ∗ log(Pj,k)− (1− P̂j,k) ∗ log(1− Pj,k).
After training the triplets network, the CNN modules

which are shared with the classifier C get incrementally op-

timized. In this way, by using the ranking results of the

classifier F , we can achieve a upgraded C. Subsequently, the

value of M1,M2 and M3 can be updated based on the new C
(Eq. (10)). With the new M1,M2 and M3, we can update F ,

the probability function of which is calculated according to

Eq.(11). The mutual promotion of C and F can be conducted

in multiple iterations to achieve persistent evolving in the

unlabeled target dataset, until the change of the loss LOSSr

among different iterations is less than a threshold.

5. Experiment

5.1. Dataset Setting

Four widely used benchmark datasets are chosen in

our Experiments1, including GRID [2], Market1501 [36],

CUHK01 [28], and VIPeR [6]. As shown in Table. 1, we

select one of above datsets as the source dataset and an-

other one as the target dataset to test the performance of

cross-dataset person Re-ID. As mentioned in section 4.4, the

capturing time of each image frame is required to build the

fusion model. Thus we choose ‘Market1501’ and ‘GRID’ as

target datasets, for they provide the detailed frame numbers

in the video sequences, which can be used as timestamps

of image frames. The source dataset is chosen without any

constraint, because only the image content is used to train

the visual classifier C in the initial step of the model as Fig. 1.

In this way, there are totally 6 cross-dataset pairs for experi-

ments as Table. 1. In each source dataset, all labeled images

are used for the pre-training of the visual classifier C. On

the other hand, the configurations of the target datasets ‘Mar-

ket1501’ and ‘Grid’ follow the instructions of these datasets

[2][36] to divide the training and testing set. Specifically, in

the ‘GRID’ dataset, a 10-fold cross validation is conducted.

In the ‘Market1501’ dataset, 12,936 ‘bounding-box-train’

images are chosen for training and incremental optimization,

while 3,368 query images and 19,732 ‘bounding-box-test’

images for single query evaluation.

When adopting Eq. (11) in the fusion model, α and β
are two tunable parameters. By default, we set α = 0 and

β = 0. The performance of different combinations of the

parameters are also tested in the following Section 5.4.

5.2. Learned Spatio­temporal Patterns

As shown in Fig. 1, learning the spatio-temporal patterns

in the unlabeled target dataset is a key step of our fusion

model. As shown in Section 4.3, the learned spatio-temporal

pattern is represented as the spatio-temporal distribution

Pr(△ij , ci, cj |Υ(Si) 
C Υ(Sj)). Here Si and Sj are any

pair of images captured from the cameras Ci and Cj , and

1Source Code: https://github.com/ahangchen/TFusion
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Table 1: Unsupervised transfer learning results.

Source Target

Transfer Learning Step Incremental Optimization Step

Visual Classifier C Fusion Model F Visual Classifier C Fusion Model F

rank-1 rank-5 rank-10 rank-1 rank-5 rank-10 rank-1 rank-5 rank-10 rank-1 rank-5 rank-10

CUHK01 GRID 10.70 20.20 23.80 30.90 63.70 79.10 17.40 33.90 41.10 50.90 78.60 88.30

VIPeR GRID 9.70 17.40 21.50 28.40 65.60 80.40 18.50 31.40 40.50 52.70 81.70 89.20

Market1501 GRID 17.80 31.20 36.80 49.60 81.40 88.70 22.30 38.10 47.20 60.40 87.30 93.40

GRID Market1501 20.72 35.39 42.99 51.16 65.08 70.04 22.38 39.25 48.07 58.22 72.33 76.84

VIPeR Market1501 24.70 40.91 49.52 56.18 71.50 76.48 25.23 41.98 50.33 59.17 73.49 78.62

CUHK01 Market1501 29.39 45.46 52.55 56.53 70.22 74.64 30.58 47.09 54.60 60.75 74.44 79.25

(a) (b)

Figure 4: (a)Spatio-temporal pattern in the ‘GRID’ dataset.

(b)Spatio-temporal pattern in the ‘Market1501’ dataset.

they are judged by the visual classifier C to contain the same

person. △ij is defined as : △ij = ti − tj , where ti and

tj are the timestamps (frame number) of Si and Sj . Fig. 4

shows the spatio-temporal distribution in the ‘GRID’ and

‘Market1501’ dataset. Due to the limit of pages, Fig. 4

only shows the distribution related to the first camera in the

dataset. The full distribution is attached in the appendix.

Fig. 4 shows clearly that the time interval of images from

different pairs of cameras follows different non-random dis-

tribution, which indicates pedestrians’ distinctive temporal

patterns to transfer among different locations. This confirms

that these spatio-temporal patterns can be used to filter out

the matching results with less transferring probability to

improve the precision of the person Re-ID system.

5.3. Re­ID Results

Table. 1 shows the performance of our model in each

training step. Firstly, in the ‘Transferring Learning Step’, the

‘Visual Classifier C’ column means to directly transfer the vi-

sual classifier C trained in the source dataset to the unlabeled

target dataset without optimization. Not surprisingly, this

kind of simple transferring method causes poor performance,

due to the variation of data distribution in different datasets.

The following ‘Fusion Model F ’ column shows that the per-

formance of the fusion model, which integrates with the

spatio-temporal patterns, gains significant improvement

compared with the original visual classifier C.

The ‘Incremental Optimization step’ in Table. 1 means the

procedure to use the learning-to-rank scheme to further opti-

mize the model as mentioned in Section 4.6. Table. 1 shows

that, with this incremental learning procedure, the visual

classifier C achieves obvious improvement. This proves

the effectiveness of the learning-to-rank scheme to transfer

knowledge from the fusion model F to the visual classifier C

in the unlabeled target dataset. Table. 1 also shows that the

performance of the fusion model F achieves significant

improvement after the incremental learning. This is due

to the mutual promotion of F and C as depicted in Fig. 1: a

better C can derive a better F , and a better F can train the C
into a better one by the learning-to-rank procedure.

Table 2: Compare the precision of TFusion with the state-of-

art unsupervised transfer learning methods.

Method Source Target
Performance

rank-1 rank-5 rank-10

UMDL[21]

Market1501 GRID 3.77 7.76 9.71

CUHK01 GRID 3.58 7.56 9.50

VIPeR GRID 3.97 8.14 10.73

GRID Market1501 30.46 45.07 52.38

CUHK01 Market1501 29.69 44.33 51.40

VIPeR Market1501 30.34 44.92 52.14

TFusion-uns

Market1501 GRID 60.40 87.30 93.40

CUHK01 GRID 50.90 78.60 88.30

VIPeR GRID 52.70 81.70 89.20

GRID Market1501 58.22 72.33 76.84

VIPeR Market1501 59.17 73.49 78.62

CUHK01 Market1501 60.75 74.44 79.25

Table 3: Compare the precision of TFusion with the super-

vised methods on GRID.

Method
Performance

rank-1 rank-5 rank-10

GOG + XQDA[25] 24.80 - 58.40

HIPHOP+LOMO+CRAFT[33] 26.00 50.60 62.50

SSM[23] 27.20 - 61.12

JLML[29] 37.5 61.4 69.4

TFusion-uns (Market1501->GRID) 60.40 87.30 93.40

TFusion-sup 64.10 91.90 96.50

Table 4: Compare the precision of TFusion with the super-

vised algorithms on Market1501.

Method
Performance

rank-1 rank-5 rank-10

SLSC[4] 51.90 - -

LDEHL[5] 59.47 80.73 86.94

S-CNN[22] 65.88 - -

DLCE[37] 79.51 90.91 94.09

SVDNet[32] 82.3 - -

JLML[29] 88.8 - -

TFusion-uns (CUHK01->Market1501) 60.75 74.44 79.25

TFusion-sup 73.13 86.43 90.46

We also compare our model, named TFusion, with the

state-of-art unsupervised cross-dataset person Re-ID algo-

rithm, UMDL [21]. UMDL addresses the similar problem

with us, and aims to transfer the visual feature representation
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from a labeled source dataset to another unlabeled target

dataset. UMDL is based on the dictionary learning method

and outperforms the state-of-art unsupervised learning algo-

rithms as reported in [21]. We compare TFusion and UMDL

under the same dataset configuration and show the results in

Table. 2. In all test cases, TFusion outperforms UMDL

by a large margin. Especially, for the cases where the target

dataset is ‘GRID’, TFusion performs extremely well. This

may be attributed to the distinct human motion pattern in

the ‘GRID’ dataset, which is collected from a metro station.

The fusion with pedestrians’ spatio-temporal pattern can

significantly improve the Re-ID performance.

To observe more clearly the strength of our algorithm to

utilize the unlabeled data, we also compare its performance

with the state-of-art supervised algorithms deployed on the

labeled target datasets. Table. 3 shows the experimental

results in the ‘GRID’ dataset. It is surprising to find that

the TFusion model, which conducts unsupervised transfer-

ring from ‘Market1501’ to ‘GRID’ and does not use the

label information of ‘GRID’, outperforms the state-of-art

supervised algorithms on ‘GRID’. This proves again the

effectiveness of the fusion with spatio-temporal information.

On the other hand, our model can be also run in a supervised

mode (denoted as ‘TFusion-sup’ in Table. 3), where both

the source dataset and the target dataset are the same. The

performance of TFusion-sup is much better than the state-

of-art supervised algorithms. It is also interesting to find

that the performance of the unsupervised TFusion is very

close to the supervised version TFusion-sup. This shows

that the unlabeled data in the target dataset is utilized suffi-

ciently by TFusion to achieve good performance. Similarly,

Table. 4 compares TFusion with the state-of-art supervised

algorithms on ‘Market1501’. It also shows that our un-

supervised transferring model, TFusion, can achieve a

comparable performance close to the supervised learn-

ing models.

5.4. Parameter sensitivity

As mentioned in Eq. (11), α and β are two tunable pa-

rameters in the fusion model. Theorem 1 proves that when

α+ β < 1, the fusion model F may have chance to perform

better than the original visual classifier C. Thus, we try differ-

ent combinations of α and β, which satisfy α+ β < 1, and

test the performance of the fusion model. Fig. 5(a) shows the

rank-1 precision of the models with different α and β when

transferring from ‘Market1501’ to ‘GRID’, and Fig. 5(b)

shows the case from ‘GRID’ to ‘Market1501’. It shows that

the model with smaller α and β tends to have better perfor-

mance. The combination that α = 0.25 and β = 0 achieves

a relatively good performance in both test cases.

As shown in Fig. 3, the incremental learning procedure

consists of iterative learning-to-rank steps. In each iteration,

the fusion model F is used to train the visual classifier C, and

subsequently a more accurate C can derive a better F . Fig. 6

shows how the number of learning-to-rank iterations affects

the rank-1 precision of F . It shows that the performance

achieves big improvement in the first three iterations, and

the precision tends to converge since then. This suggests

us that the number of the learning-to-rank iterations can be

configured as 3 in the real deployment of TFusion.
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Figure 5: Performance under different setting of α and β (a)

in the ‘Grid’ dataset; (b) in the ‘Market1501’ dataset.
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Figure 6: Performance vs. the number of iterations of the

learning-to-rank optimization. (a) Performance in the ‘Grid’

dataset. (b) Performance in the ‘Market1501’ dataset.

6. Conclusions

In this paper, we have presented TFusion as a high-

performance unsupervised cross-dataset person Re-ID al-

gorithm. In particular, TFusion transfers the visual classifier

trained in a small labeled source dataset to an unlabeled tar-

get dataset by integrating with the spatio-temporal patterns

of pedestrians learned in an unsupervised way. Furthermore,

an iterative learning-to-rank scheme is proposed to incre-

mentally optimize the model based on the unlabeled data.

Experiments show that TFusion outperforms the state-of-art

unsupervised cross-dataset transferring algorithm by a big

margin, and it also achieves a comparable or even better per-

formance compared with the state-or-art supervised learning

algorithms in multiple real datasets.
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