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Abstract

Visual question answering requires high-order reason-

ing about an image, which is a fundamental capability

needed by machine systems to follow complex directives.

Recently, modular networks have been shown to be an ef-

fective framework for performing visual reasoning tasks.

While modular networks were initially designed with a de-

gree of model transparency, their performance on complex

visual reasoning benchmarks was lacking. Current state-

of-the-art approaches do not provide an effective mecha-

nism for understanding the reasoning process. In this paper,

we close the performance gap between interpretable models

and state-of-the-art visual reasoning methods. We propose

a set of visual-reasoning primitives which, when composed,

manifest as a model capable of performing complex reason-

ing tasks in an explicitly-interpretable manner. The fidelity

and interpretability of the primitives’ outputs enable an un-

paralleled ability to diagnose the strengths and weaknesses

of the resulting model. Critically, we show that these prim-

itives are highly performant, achieving state-of-the-art ac-

curacy of 99.1% on the CLEVR dataset. We also show that

our model is able to effectively learn generalized represen-

tations when provided a small amount of data containing

novel object attributes. Using the CoGenT generalization

task, we show more than a 20 percentage point improve-

ment over the current state of the art.

1. Introduction

A visual question answering (VQA) model must be ca-

pable of complex spatial reasoning over an image. For ex-
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Figure 1. A diagram of a visual question answering task, in which

our proposed Transparency by Design network (TbD-net) com-

poses a series of attention masks that allow it to correctly count

two large metal cylinders in the image.

ample, in order to answer the question “What color is the

cube to the right of the large metal sphere?”, a model must

identify which sphere is the large metal one, understand

what it means for an object to be to the right of another, and

apply this concept spatially to the attended sphere. Within

this new region of interest, the model must find the cube and

determine its color. This behavior should be compositional

to allow for arbitrarily long reasoning chains.

While a wide variety of models have recently been pro-

posed for the VQA task [6, 10, 19, 21, 28, 30], neural mod-

ule networks [2, 3, 10, 14] are among the most intuitive.

Introduced by Andreas et al. [2], neural module networks

compose a question-specific neural network, drawing from

a set of modules that each perform an individual opera-

tion. This design closely models the compositional nature

of visual reasoning tasks. In the original work, modules

were designed with an attention mechanism, which allowed

for insight into the model’s operation. However, the ap-

proach did not perform well on complex visual reasoning

tasks such as CLEVR [13]. Modifications by Johnson et

al. [14] address the performance issue at the cost of losing

model transparency. This is problematic, because the abil-

ity to inspect each step of the reasoning process is crucial
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for real-world applications, in order to ensure proper model

behavior, build user trust, and diagnose errors in reasoning.

Our work closes the gap between performant and inter-

pretable models by designing a module network explicitly

built around a visual attention mechanism. We refer to this

approach as Transparency by Design (TbD), illustrated in

Figure 1. As Lipton [16] notes, transparency and inter-

pretability are often spoken of but rarely defined. Here,

transparency refers to the ability to examine the interme-

diate outputs of each module and understand their behavior

at a high level. That is, the module outputs are interpretable

if they visually highlight the correct regions of the input im-

age. This ensures the reasoning process can be interpreted.

We concretely define this notion in Section 4.1, and provide

a quantitative analysis. In this paper, we:

1. Propose a set of composable visual reasoning primi-

tives that incorporate an attention mechanism, which

allows for model transparency.

2. Demonstrate state-of-the-art performance on the

CLEVR [13] dataset.

3. Show that compositional visual attention provides

powerful insight into model behavior.

4. Propose a method to quantitatively evaluate the inter-

pretability of visual attention mechanisms.

5. Improve upon the current state-of-the-art performance

on the CoGenT generalization task [13] by 20 percent-

age points.

The structure of this paper is as follows. In Section 2, we

discuss related work in visual question answering and visual

reasoning, which motivates the incorporation of an explicit

attention mechanism in our model. Section 3 presents the

Transparency by Design networks. In Section 4, we present

our VQA experiments and results. A discussion of our con-

tributions is presented in Section 5. The code for replicating

our experiments is available at https://github.com/

davidmascharka/tbd-nets.

2. Related Work

Visual question answering (VQA) requires reasoning

over both visual and textual information. A natural-

language component must be used to understand the ques-

tion that is asked, and a visual component must reason over

the provided image in order to answer that question. The

two main methods to address this problem are (1) to parse

the question into a series of logical operations, then perform

each operation over the image features or (2) to embed both

the image and question into a feature space, and then reason

over the features jointly.

Neural Module Networks (NMNs) follow the first ap-

proach. NMNs were introduced by Andreas et al. [2], and

later extended by Andreas et al. [3], Johnson et al. [14], and

Hu et al. [10]. A natural-language component parses the

given question and determines the series of logical steps that

should be carried out to answer the question. A module is a

small neural network used to perform a given logical step.

By composing the appropriate modules, the logical program

produced by the natural language component is carried out

and an answer is produced. For example, to answer “What

color is the large metal cube?”, the output of a module that

locates large objects can be composed with a module that

finds things made of metal, then with a module that local-

izes cubes. A module that determines the color of objects

can then be given the cube module’s output to produce an

answer.

The original work by Andreas et al. [2] provided an at-

tention mechanism, which allowed for a degree of model

transparency. However, their model struggled with long

chains of reasoning and global context. The later work of

Andreas et al. [3] focused on improving the flexibility of the

natural-language component and on learning to compose

modules rather than dictate how they should be composed.

The modifications by Hu et al. [10] built off this work, fo-

cusing on incorporating question features into the network

modules and improving the natural-language parser that de-

termines how modules should be composed. While achiev-

ing higher accuracy than its predecessors, this model also

struggles with long chains of reasoning and does not per-

form as well as other methods on visual reasoning bench-

marks such as CLEVR [13].

Johnson et al. [14] built on the NMN approach by modi-

fying the natural language component of their network to

allow for more flexibility and developing a set of mod-

ules whose generic design is shared across several opera-

tions. These modifications led to an impressive increase in

performance on the CLEVR dataset. However, their mod-

ules are not easily interpretable, because they process high-

dimensional features throughout their entire network. The

gradient-based mechanism through which they, along with

several others [20, 22], visualize attention can be limiting.

Gradient-based methods can provide reasonable visual-

izations at the penultimate layer [14] of a neural module

network. However, as depicted in Figure 2, the regions of

attention produced for an intermediate module are unreli-

able, and because gradient-based methods flow backward

through a network, these visualizations inappropriately de-

pend on downstream modules in the network.

Attention. Some approaches [1, 4, 18, 26, 27, 28] pro-

pose an attention mechanism whereby each word corre-

sponds to some feature of an image. One major difficulty

with this type of approach is that some words have no clear

semantic content in image-space. For example, the word

‘sitting’ does not have a clear region of focus in the ques-

tion “What object is the man sitting on?”, and seems to rely
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Figure 2. Gradient-based visualizations of an intermediate output

(attention on the brown cylinder) of a neural module network pro-

duce unreliable attention masks. Furthermore, changing a down-

stream module from query color (middle) to query size (right) al-

ters the visualization of the attention.

on further analysis of the semantics of the question. The

key components of this question are ‘man’ and ‘object be-

ing [sat] on.’ This is a problem for the natural language

processing pipeline rather than the visual component of a

system.

Several authors [7, 10, 25] have proposed attention

mechanisms that a network can use, optionally. In the con-

text of providing transparent models, this can be problem-

atic as a network can learn not to use an attended region

at all. By explicitly forcing the attention mechanism to be

used, we ensure our network uses attended regions in an

intuitive way.

Many authors [1, 4, 6, 12, 17, 18, 26, 27, 23, 28, 33] use

a spatial softmax to compute attention weights. This en-

forces a global normalization across an image, which results

in scene-dependent attention magnitudes. For example, in

an image with a single car, a model asked to attend to the

cars would ideally put zero attention on every region that

does not contain a car and full (unity) attention on the re-

gion containing the car. In an image with two cars, a spatial

softmax will force each car region to have an attention mag-

nitude of one-half. This issue is noted by Zhang et al. [31]

in the context of counting, but we note a more general prob-

lem. To addres this, we utilize an elementwise sigmoid to

ensure that the activation at each pixel lies between zero and

one, and do not introduce any form of global normalization.

Further details on our network architecture and motivation

are supplied in the following section.

3. Transparency by Design

Breaking a complex chain of reasoning into a series of

smaller subproblems, each of which can be solved inde-

pendently and composed, is a powerful and intuitive means

for reasoning. This type of modular structure also per-

mits inspection of the the network output at each step in

the reasoning process, contingent on module designs that

produce interpretable outputs. Motivated by this, we in-

troduce a neural module network that explicitly models

an attention mechanism in image space, which we call a

Transparency by Design network (TbD-net), following the

fact that transparency is a motivating factor in our design

decisions. Meant to achieve performance at the level of

the model from Johnson et al. [14] while providing trans-

parency similar to Andreas et al. [2] and Hu et al. [10], our

model incorporates design decisions from all three archi-

tectures. The program generator from Johnson et al. [14]

allows for impressive flexibility and performs exceptionally

well, so we reuse this component in our network. We thus

use their set of primitive operations, listed in Table 1, but

redesign each module according to its intended function.

The resulting modules are similar in spirit to the approaches

taken by Andreas et al. [2] and Hu et al. [10].

To motivate this design decision, consider that some

modules need only focus on local features in an image, as in

the case of an Attention module which focuses on dis-

tinct objects or properties. Other modules need global con-

text in order to carry out their operation, as in the case of

Relate modules, which must be capable of shifting atten-

tion across an entire image. We combine our prior knowl-

edge about each module’s task with empirical experimenta-

tion, resulting in a set of novel module architectures opti-

mized for each operation.

In the visual question answering task, most steps in the

reasoning chain require localizing objects that have some

distinguishing visible property (e.g. color, material, etc.).

We ensure that each TbD module performing this type of

filtering outputs a one-dimensional attention mask, which

explicitly demarcates the relevant spatial regions. Thus,

rather than refine high-dimensional feature maps through-

out the network, a TbD-net passes only attention masks be-

tween its modules. By intentionally forcing this behavior,

we produce a strikingly interpretable and intuitive model.

This marks a step away from complex neural networks as

black boxes. Figure 3 shows an example of how a TbD-

net’s attention shifts appropriately throughout its reasoning

chain as it solves a complex VQA problem, and that this

process is easily interpretable via direct visualization of the

attention masks it produces. Note that our modules’ use of

attention is not a learnable option, as it is in the work of

Hu et al. [10]. Rather, our modules must utilize the atten-

tion that is passed into them, and thus must produce precise

attention maps. All the attention masks we display were

generated using a perceptually-uniform color map [11].

3.1. Architecture Details

We now describe the architecture of each of our modules.

Table 1 provides an overview of each module type. Several

modules share input and output types (e.g. Attention

and Relate) but differ in implementation, which is suited

to their particular task. Additional details on the implemen-

tation and operation of each module can be found in the

supplementary material.

We use image features extracted from ResNet-101 [8]

4944



Table 1. A summary of the modules used in our Transparency by Design network. ‘Attention’ and ‘Encoding’ refer to single- and high-

dimensional outputs, respectively, from a preceding module. ‘Stem’ refers to image features produced by a trained neural network. The

variables x and y refer to distinct objects in the scene, while [property] refers to one of color, shape, size, or material.

Module Type Operation Language Analogue

Attention Attention × Stem → Attention Which things are [property]?

Query Attention × Stem → Encoding What [property] is x?

Relate Attention × Stem → Attention Left of, right of, in front, behind

Same Attention × Stem → Attention Which things are the same [property] as x?

Comparison Encoding × Encoding → Encoding Are x and y the same [property]?

And Attention × Attention → Attention Left of x and right of y

Or Attention × Attention → Attention Left of x or right of y

and feed these through a simple convolutional block called

the ‘stem,’ following the work of Johnson et al. [14]. Simi-

lar to Hu et al. [10], and a point of departure from Johnson

et al. [14] and Andreas et al. [2], we provide stem features

to most of our modules. This ensures image features are

readily accessible to each module and no information is lost

in long compositions. The stem translates high-dimensional

feature input from ResNet into lower-dimensional features

suitable for our task.

Attention modules attend to the regions of the image

that contain an object with a specified property. For exam-

ple, this type of module would be used to locate the red

objects in a scene. The Attention module takes as input

image features from the stem and a previous attention to re-

fine (or an all-one tensor if it is the first Attention in the

network) and outputs a heatmap of dimension 1 ×H ×W

corresponding to the objects of interest, which we refer to as

an attention mask. This is done by multiplying the input im-

age features by the input attention mask elementwise, then

processing those attended features with a series of convolu-

tions.

Logical And and Or modules combine two attention

masks in a set intersection and union, respectively. These

operations need not be learned, since they are already well-

defined and can be implemented by hand. The And mod-

ule takes the elementwise minimum of two attention masks,

spatially, while the Or module takes the elementwise max-

imum.

A Relate module attends to a region that has some

spatial relation to another region. For example, in the

question “What color is the cube to the right of the small

sphere?”, the network should determine the position of the

small sphere using a series of Attention modules, then

use a Relate module to attend to the region that is spa-

tially to the right. This module needs global context in its

operation, so that regions to the far right can be influenced

by an object on the far left, for instance. Zhu et al. [32]

aptly note that common VQA architectures have receptive

fields that are too small for this global information propa-

gation. They propose a structured solution using a condi-

tional random field. Our solution is to use a series of dilated

convolutions [29] in order to expand the receptive field to

the entire image, providing the global context needed by

Relate. These modules take as input image features from

the stem and the attention mask from the previous module

and output an attention mask.

A Same module attends to a region, extracts a relevant

property from that region, and attends to every other region

in the image that shares that property. As an example, when

answering the question “Is anything the same color as the

small cube?”, the network should localize the small cube

via Attention modules, then use a Same module to de-

termine its color and output an attention mask localizing all

other objects sharing that color. As with the Relate mod-

ule, a Same module must take into account context from

distant spatial regions. However, the Same operation dif-

fers in its execution, since it must perform a more complex

function. We perform a cross-correlation between the object

of interest and every other object in the scene to determine

which objects share the same property as the object of in-

terest, then send this output through a convolutional layer to

produce an attention mask. Hence, the Same modules take

as input stem features and an attention mask and produce an

attention mask.

Query modules extract a feature from an attended re-

gion of an image. For example, these modules would deter-

mine the color of an object of interest. Each Query takes

as input stem features and an attention mask and produces

a feature map encoding the relevant property. The image

features are multiplied by the input attention elementwise,

then processed by a series of convolutions. A Query mod-

ule is also used for determining whether a given description

matches any object (existence questions) and for counting.

A Compare module compares the properties output by

two Query modules and produces a feature map which en-

codes whether the properties are the same. This module

would be used to answer the question “Are the cube and

the metal sphere the same size?”, for example. Two feature

maps from Query modules are provided as input, concate-

nated, then processed by a series of convolutions. A feature
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Figure 3. Read from top to bottom, a Transparency by Design

network (TbD-net) composes visual attention masks to answer a

question about objects in a scene. The tree diagram (left) indi-

cates the modules used by the TbD-net, and their corresponding

attention masks are depicted on the right.

map is output, encoding the relevant information.

The final piece of our module network is a classifier

that takes as input the feature map from either a Query

or Compare module and produces a distribution over an-

swers. We again follow the work of Johnson et al. [14], us-

ing a series of convolutions, followed by max-pooling and

fully-connected layers.

4. Experiments

We evaluate our model using the CLEVR dataset [13]

and CLEVR-CoGenT. CLEVR is a VQA dataset consisting

of a training set of 70k images and 700k questions, as well

as test and validation sets of 15k images and 150k ques-

tions about objects in a rendered three-dimensional scene

designed to test compositional reasoning. For more details

about the task, we refer the reader to Johnson et al. [13].

In our model, all convolutional filters are initialized as

described by He et al. [9]. Note that our architectural

changes do not affect the natural language processing com-

ponent from Johnson et al. [14], which determines the com-

position of a modular network. For simplicity, we use

ground truth programs to train our network, because we

do not modify the program generator. We find that train-

ing on ground truth programs does not affect the accuracy

of the model from Johnson et al. [14], compared to train-

ing with generated programs. Our training procedure thus

takes triplets (x, z, a) of image, program, and answer for

training. We use the Adam optimization method [15] with

learning rate set to 10−4 and our module network is trained

end-to-end with early stopping. The training procedures for

CLEVR and for CoGenT are the same. Ground truth pro-

grams are not provided with the CLEVR and CoGenT test

sets, so we use the program generator from Johnson et al.

[14] to compute programs from questions. The testing pro-

cedure thus takes image and question pairs (x, q), produces

a program π(q) to arrange modules, then produces an an-

swer â = Mπ(q)(x) where Mπ(q) is the arrangement of

modules produced by the program generator.

4.1. CLEVR

Our initial model achieves 98.7% test accuracy on the

CLEVR dataset, far outperforming other neural module

network-based approaches. As we will describe, we uti-

lize the attention masks produced by our model to re-

fine this initial model, resulting in state-of-the-art perfor-

mance of 99.1% accuracy. Given the large number of high-

performing models on CLEVR [14, 24, 5, 19], we train

our model 5 times for a statistical measure of performance,

achieving mean validation accuracy of 99.1% with standard

deviation 0.07. Further, we note that none of these other

models are amenable to having their reasoning processes in-

spected in an intuitive way. As we will show, our model pro-

vides straightforward, interpretable outputs at every stage of

the visual reasoning process.

4.1.1 Attention as a Diagnostic Tool

Regularization. Examining the attention masks produced

by our initial model, we noticed noise in the background.

While not detrimental to our model’s performance, these
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spurious regions of attention may be confusing to users at-

tempting to garner an understanding of the model outputs.

Our intuition behind this behavior is that the model is not

penalized for producing small amounts of attention on back-

ground regions because the later Querymodules are able to

effectively ignore them, since they contain no objects. As a

result, no error signal propagates back through the model to

push these to zero. To address this, we apply weighted L1

regularization to the intermediate attention mask outputs,

providing an explicit signal to minimize unnecessary activa-

tions. Experimentally, we find a factor of 2.5 × 10−7 to be

effective in reducing spurious attention while maintaining

strong attentions in true regions of interest. A comparison of

an Attention module output with and without this regu-

larization can be seen in Figure 4. Without regularization,

the module produces a small amount of attention on back-

ground regions, high attention on objects of interest, and

zero attention on all other objects. When we add this reg-

ularization term, the spurious background activations fade,

leaving a much more precise attention mask.

Figure 4. An input image (left) and the attention mask produced by

the Attention[large] module overlaid atop the input image.

Without penalizing attention mask outputs (middle) the attention

mask is noisy and produces responses on background regions. Pe-

nalizing the attention outputs (right) provides a signal to reduce

extraneous attention.

Spatial resolution. Examining the attention masks from

our initial model indicated the resolution of the input feature

maps is crucial for performance. Originally, our model took

14 × 14 feature maps as input to each module. However,

this was insufficient for resolving closely-spaced objects.

Increasing the resolution of the input feature maps to 28×28
alleviates these issues, which we do by extracting features

from an earlier layer of ResNet. Figure 5 shows our model

operating over 14×14 and 28×28 feature maps when asked

to attend to an object in a narrow spatial region. Operating

on 14 × 14 feature maps, our model coarsely defines the

region and incorrectly guesses that the object is a sphere.

Using 28 × 28 feature maps refines the region and allows

the model to correctly identify the cylinder.

Performance improvements. By adding regularization

and increasing spatial resolution, two strategies developed

by examining our model attentions, we improve the accu-

racy of our model on CLEVR from 98.7% to 99.1%, a new

state of the art. A full table of results including compar-

isons with several other approaches can be seen in Table 2.

While conceptually similar to prior work in modular net-

works [2, 10, 14], our model differs drastically in module

design. In addition to achieving superior performance, our

paradigm allows for the verification of module behavior and

informs network design.

4.1.2 Transparency

We examine the attention masks produced by the interme-

diate modules of our TbD model. We show that our model

explicitly composes visual attention masks to arrive at an

answer, leading to an unprecedented level of transparency

in the neural network. Figure 3 shows the composition of

visual attentions through an entire question. In this sec-

tion, we provide a quantitative analysis of transparency. We

further examine the outputs of several modules, displayed

without any smoothing, showing that each step of any com-

position is straightforwardly interpretable.

Quantitative Analysis of Attention. Here we propose

a quantitative analysis of the interpretability of visual at-

tention, which will allow for direct comparison with subse-

quent work in this area. In this context, a module’s attention

is interpretable if it visually highlights the correct objects in

a scene, without ambiguity. Specifically, we measure how

often the center-of-mass of an attended region overlaps with

the appropriate regions of the ground truth segmentation.

We perform this analysis for each of our Attentionmod-

ules within a given chain of reasoning. The CLEVR dataset

generator [13] was used to produce 1k images and 10k ques-

tions for evaluation. This analysis produces precision and

recall metrics to summarize the interpretable quality of a

model’s attention.

Our original TbD-net model has a recall of 0.86 and a

precision of 0.41. This low precision is largely due to atten-

tion placed on the background (analyzing the performance

on foreground objects alone yields a precision of 0.95). The

modifications to our model detailed in Section 4.1.1 dramat-

ically improve the interpretability metrics as evaluated on

the full image (foreground and background). Adding regu-

larization improves the recall and precision values to 0.92

Figure 5. An input image (left) and the attention mask produced

by the model when asked to attend to the region behind the blue

rubber object and in front of the large cyan rubber cylinder with

14× 14 (middle) and 28× 28 (right) input features.
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Table 2. Performance comparison of state-of-the-art models on the CLEVR dataset. Our model performs well while maintaining model

transparency. We achieve state of the art performance on Query questions, while remaining competitive in all other categories. Our TbD

model is trained without regularizing the output attention masks, while ‘+ reg’ indicates the use of the regularization scheme described in

the text. The ‘+ hres’ indicator shows a model was trained using higher-resolution 28× 28 feature maps rather than 14× 14 feature maps.

Model Overall Count
Compare

Exist
Query Compare

Numbers Attribute Attribute

NMN [2] 72.1 52.5 72.7 79.3 79.0 78.0

N2NMN [10] 88.8 68.5 84.9 85.7 90.0 88.8

Human [13] 92.6 86.7 86.4 96.6 95.0 96.0

CNN + LSTM + RN [21] 95.5 90.1 93.6 97.8 97.1 97.9

PG + EE (700k) [14] 96.9 92.7 98.7 97.1 98.1 98.9

CNN + GRU + CBN [19] 97.6 94.5 93.8 99.2 99.2 99.0

DDRprog [24] 98.3 96.5 98.4 98.8 99.1 99.0

MAC [5] 98.9 97.2 99.4 99.5 99.3 99.5

TbD-net (Ours) 98.7 96.8 99.1 98.9 99.4 99.2

TbD + reg (Ours) 98.5 96.5 99.0 98.9 99.3 99.1

TbD + reg + hres (Ours) 99.1 97.6 99.4 99.2 99.5 99.6

Figure 6. An input image (left) and the attention mask produced

by the Attention[metal] module (right). When the attention

mask is overlaid atop the input image (middle), it is apparent that

the attention is appropriately focused on the metal objects.

and 0.90, respectively, and increasing the spatial resolution

further improves the values to 0.99 and 0.98, respectively.

Qualitative Analysis of Attention. Figure 6 shows the

output of an Attention module that focuses on metal ob-

jects. The output is sensible and matches our intuition of

where attention should be placed in the image. Maximal at-

tention is given to the metal objects and minimal attention

to the rubber objects and to the background region.

The Attention modules are the simplest of the vi-

sual primitives. However, more complex operations, such as

Same and Relate, still produce intuitive attention masks.

We show in Figures 7 and 8 that these modules are just as

transparent and easy to understand. The Relate module

is given an attention mask highlighting the purple cylinder

and shifts attention to the right. We see it highlights the

entire region of the image, which it is able to do due to its

expanded receptive field. The Same module is given an at-

tention mask focusing on the blue sphere, then is asked to

shift its focus to the objects of the same color. It gives max-

imal attention to the other three blue objects, minimal atten-

tion to all other objects, and a small amount of attention to

the background.

Our logical And and Or modules perform set intersec-

tion and union operations, respectively. Their behaviors

are as intuitive as those set operations. Since Query and

Compare modules output feature maps rather than atten-

tion masks, their outputs cannot be easily visualized. This

is not problematic, as their corresponding operations do not

have clear visual anchors. That is, it is not sensible to high-

light image regions based on concepts such as ‘what shape’

or ‘are the same number,’ which have no referent without

additional textual context.

4.2. CLEVR-CoGenT

The CLEVR-CoGenT dataset provides an excellent test

for generalization. It is identical in form to the CLEVR

dataset with the exception that it has two different condi-

tions. In Condition A all cubes are colored one of gray,

blue, brown, or yellow, and all cylinders are one of red,

green, purple, or cyan; in Condition B the color palettes

are swapped. This provides a check that the model does

Figure 7. An input image (left) and the attention mask produced by

the Relate[right] module (right) when it receives an atten-

tion on the purple cylinder. When the attention mask is overlaid

atop the input image (middle), it is apparent that the attention is

focused on the region to the right of the purple cylinder.
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Figure 8. An input image (left) and the attention mask produced by

the Same[color] module (right) when it receives an attention

on the blue sphere. The attention mask overlaid atop the input im-

age (middle) demonstrates that the module successfully performs

the complex operation of (1) determining the color of the sphere

(2) determining the color of all the other objects in the scene and

(3) attending to the objects with the same color.

Table 3. Performance comparison against the current state-of-the-

art model on the CoGenT dataset having trained only on Condition

A data (middle column) and after fine-tuning on a small amount

of data with novel attributes (right column).

Train A Fine-tune B
A B A B

PG + EE [14] 96.6 73.7 76.1 92.7

TbD + reg (Ours) 98.8 75.4 96.9 96.3

not tie together the notions of shape and color. In this sec-

tion, we report only our best-performing model. Like pre-

vious work [14], our performance is worse on Condition

B than Condition A after training only using Condition A

data. As Table 3 shows, our model achieves 98.8% accu-

racy on Condition A, but only 75.4% on Condition B. Fol-

lowing Johnson et al. [14], we then fine-tune our model us-

ing 3k images and 30k questions from the Condition B data.

Whereas other models see a significant drop in performance

on the Condition A data after fine-tuning, our model main-

tains high performance. As Table 3 shows, our model can

effectively learn from a small amount of Condition B data.

We achieve 96.9% accuracy on Condition A and 96.3% ac-

curacy on Condition B after fine-tuning, far surpassing the

highest-reported 76.1% Condition A and 92.7% Condition

B accuracy.

We perform an analysis of conditional probabilities

based on shape/color dependencies to determine the cause

of our model’s poor performance on Condition B before

fine-tuning. Using the dataset from Section 4.1.2, we

demonstrate that the model’s ability to identify shape, in

particular, depends heavily on the co-occurrence of shape

and color. Table 4 shows that the model is only able to

effectively identify shapes in colors it has seen before fine-

tuning, while it can identify color regardless of shape. Fine-

tuning on Condition B rectifies the entanglement.

Figure 9 shows this entanglement visually. When asked

to attend to cubes before fine-tuning, our model correctly

focuses on the gray and blue cubes in that image, but ig-

Table 4. Our model’s ability to determine the shape of an object

depends heavily on the co-occurrence of shape and color before

fine-tuning, while its ability to determine the color of an object

does not. P (X) indicates the probability of correctly identifying

an object. A and B correspond to the CoGenT color/shape splits.

Predict Shape Predict Color

P (X|A) P (X|B) P (X|A) P (X|B)

Train A 0.90 0.22 0.91 0.84

Fine-tune B 0.77 0.81 0.90 0.86

Figure 9. An input image (left) and the overlaid atten-

tion masks produced by Attention[cube] (middle) and

Attention[brown] (right). Having never seen a cyan cube,

Attention[cube] misses that object. Having never seen a

brown cylinder, the model mistakenly places some attention on the

brown cylinder in the scene. Conversely, Attention[brown]

generalizes correctly, regardless of shape.

nores the cyan cube and incorrectly places some attention

on the brown cylinder. What is particularly noteworthy is

the fact that our model’s representations of color are com-

plete (with respect to CLEVR). When the network is asked

to attend to the brown objects, it correctly identifies both

the sphere and cylinder, even though it has only seen cubes

and spheres in brown. Thus, our model has entangled its

representation of shape with color, but has not entangled its

representation of color with shape.

5. Discussion

We have presented Transparency by Design networks,

which compose visual primitives that leverage an explicit

attention mechanism to perform reasoning operations. Un-

like their predecessors, the resulting neural module net-

works are both highly performant and readily interpretable.

This is a key advantage to utilizing TbD models—the abil-

ity to directly evaluate the model’s learning process via the

produced attention masks is a powerful diagnostic tool. One

can leverage this capability to inspect the semantics of a vi-

sual operation, such as ‘same color,’ and redesign modules

to address apparent aberrations in reasoning. Using these

attentions as a means to improve performance, we achieve

state-of-the-art accuracy on the challenging CLEVR dataset

and the CoGenT generalization task. Such insight into a

neural network’s operation may also help build user trust in

visual reasoning systems.
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