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Abstract

We present a new multi-task learning (MTL) approach that

can be applied to multiple heterogeneous task estimators. Our

motivation is that the best task estimator could change depend-

ing on the task itself. For example, we may have a deep neural

network for the first task and a Gaussian process for the second

task. Classical MTL approaches cannot handle this case, as they

require the same model or even the same parameter types for all

tasks. We tackle this by considering task-specific estimators as

random variables. Then, the task relationships are discovered

by measuring the statistical dependence between each pair of

random variables. By doing so, our model is independent of

the parametric nature of each task, and is even agnostic to the

existence of such parametric formulation. We compare our algo-

rithm with existing MTL approaches on challenging real world

ranking and regression datasets, and show that our approach

achieves comparable or better performance without knowing the

parametric form.

1. Introduction

Many real world visual learning applications involve learning

several tasks. Instead of learning them separately, multi-task

learning (MTL) [6] aims to learn them simultaneously with the

hope of discovering inherent relationships or latent structures

that help improve the overall generalization performance for

each task. When applicable, MTL often outperforms single-task

learning [3], even when the tasks are seemingly unrelated. This

is due to the introduction of regularization techniques that help

discover task relationships while avoiding negative transfer in

an optimal way. These regularization methods are generally

applied to the model parameters, for example, by enforcing a

low rank or group sparsity structure. However, what happens if

the parameters of the estimator are unknown, or if the parametric

form of the estimator is different from one task to another?

Our motivation is that, depending on the task, the best learning

strategy and estimator forms may differ. For example, the best

estimator for the first task might be a Gaussian process (GP)

regression, while for the second task it might be a deep neural

network (DNNs). Classical MTL approaches cannot handle this

situation as they would require the same estimator architecture or

even shared parametric forms for all tasks. Furthermore, once the

estimators are parametrized, the task relationships are measured

only via these parameterizations. Therefore, strengthening

the task relationships in MTL does not directly reflect the

underlying data generating probability distributions. In general,

such distributions are non-uniform and, therefore, MTL could

benefit from selectively emphasizing the task dependence, e.g.

in high-density regions in the data space.

We present a new MTL formulation to tackle these limitations.

Our approach is agnostic to the parametric formulation of each

task; it does not even assume the existence of such a parametric

form. Further, it is inherently adaptive to the underlying data

distributions. We approach this challenging case by considering

the estimator of each task as a random variable and discovering

task relationships via the statistical dependence estimated by

evaluating these estimator random variables on datasets. We use

a recently proposed statistically consistent dependence estimator

to discover such relationships—the finite set independence

criterion (FSIC)—and combine it with a lasso regularizer to

enforce sparsity such that the dependencies are maximized only

for related tasks. Our algorithm is instantiated as an energy

functional that is optimized based on the efficient alternating

direction method of multipliers (ADMM) approach.

We test our algorithm on several challenging visual ranking

and benchmark regression datasets, and against state-of-the-art

MTL techniques. We find that our approach achieves comparable

or better performance than existing approaches.

2. Related work

Most existing MTL algorithms can be regarded as instances

of an energy minimization framework:

O({wi}Li=1)=

L
∑

i=1

Li(wi)+λ1

L
∑

i=1

R1(w
i)+λ2R2({w

i}Li=1),

(1)

where Li is the task-specific training loss, e.g., mean classifica-

tion, regression, or ranking errors on a training dataset, wi is the

parameter of the i-th estimator f i, and R1 and R2 are regular-

izers with the corresponding regularization parameters λ1,λ2≥0.

For instance, for linear estimators, f i is explicitly represented

as f i(x)=x
⊤
w

i and the individual regularizer R1 often takes

the squared L2 parameter norm R1(w
i) = ‖wi‖2. Different

MTL algorithms are specified based on the multi-task regularizer

R2, which characterizes, enforces, and penalizes how different

tasks are related. For instance, Evgeniou and Pontil’s regularized
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multi-task learning algorithm (regMTL) [9] assumes that all tasks

are related in the sense that the corresponding parameters are

similar to each other. This can be instantiated by a regularization

function that measures the pairwise parameter differences:

R2({w
i}Li=1)=

L
∑

i=1

∥

∥w
i−

L
∑

j=1

w
j
∥

∥

2
. (2)

As one of the first MTL approaches, this algorithm has been

successfully applied to the cases when task dependences are

known a priori. However, in many practical applications, such

full dependence among all tasks is not guaranteed: Some tasks

might be related while some others not. In this case, naı̈vely

penalizing all pairwise deviations can deteriorate the performance

of some tasks (called negative transfer).

One approach to address negative transfer is to group multiple

related tasks. For instance, Jayaraman et al. [12] assume such

grouping to be known a priori and enforce attributes from the

same group to have features that uniquely describe this group.

However, this grouping is not always available and often needs

to be discovered. Passos et al. [18] addressed this by assuming

that the model parameters of multiple estimators are generated

from an underlying factor mixture. This leads to a Bayesian

non-parametric approach to discover clusters within tasks.

Gupta et al. [11] extended this to hierarchical factor analysis, a

paradigm that can model the data from multiple groups into a

subspace where some of the discovered bases are shared across

the groups while others are specific to a group.

An alternative to clustering is to automatically identify latent

task dependence and selectively enforce the dependence based

on properly configured regularizers. For example, Argyriou et

al.’s multi-task feature learning (MTFL) approach [1] adopts the

group sparsity norm L1,2 as a regularizer:

R2({w
i}Li=1)=‖A‖1,2, where W=UA (3)

and W = [w1,...,wL]. By enforcing the sparsity on the rows

of A, this regularizer lets only few columns (features) of U
contribute to the computation of W . However, by enforcing

that all parameters are shared across tasks, this approach could

suppress the contribution of some features (in W ) that are

characteristic to a specific single task, and degrade its final

performance. Gong et al. addressed this problem by writing the

parameter matrix W as the sum of two matrices P and Q [10],

where the L1,2 norm is applied to P and QT :

R2({w
i}Li=1)=‖P‖1,2+‖QT‖1,2, W=P+Q. (4)

The first term in the regularizer facilitates discovering a shared low

dimensional space across tasks, while the second term identifies

outlier tasks by enforcing sparsity on the column space of Q.

More recently, Lee et al.’s asymmetric MTL (AMTL) [16]

addressed the negative transfer problem by penalizing a weighted

pairwise parameter difference:

R2({w
i}Li=1)=

L
∑

i=1

∥

∥w
i−

L
∑

j=1

[B]jiw
j
∥

∥

2
, (5)

where the weight matrix B is trained to represent each estimator

parameter based on a sparse combination of other estimator

parameters. This automatically identifies relevant task groups

and disregards outlier tasks.

A similar approach to enforcing the linear combination

structure between parameter vectors is to penalize the rank of the

parameter matrix W . Argyriou et al. [1] proposed minimizing

the nuclear norm R2({w
i}Li=1) = ‖W‖∗, which constitutes a

tight convex envelop of the rank of W . Again, since not all tasks

are related, uniformly penalizing the rank of W can degrade the

performance in the presence of outlier tasks. To limit the negative

transfer, matrix decomposition tricks similar to Eq. 4 have been

applied [8, 7]: Chen et al. introduced a low rank structure and

a group sparse structure on P and Q respectively [7], while

Chen et al. applied a lasso penalty to Q [8].

While most existing MTL algorithms focus on the regu-

larization based on the parameter matrix W , there are few

non-parametric Gaussian Process (GP)-based algorithms that

enables MTL without having to share parametric forms [25, 4].

These algorithms build upon the assumption that all tasks

are instantiated based on GPs with shared kernels or a single

latent kernel, which make those approaches difficult to apply

to heterogeneous estimators (e.g., DNNs and GPs). In our

experiments, we demonstrate that our algorithm is a competitive

alternative to these non-parametric methods.

Our algorithm bypasses the limitations of existing parametric

and non-parametric methods by casting individual estimators as

random variables and measuring statistical dependence among

them. One strongly-related work in this respect is Quadrianto et

al.’s algorithm [21], from which our approach is motivated.

Quadrianto et al. proposed to estimate the dependence present

in multi-task labels based on mutual information. Unfortunately,

estimating mutual information directly from continuous data is

challenging (see Sec. 3 for details). Therefore, Quadrianto et al.’s

algorithm focused on discrete classification problems where the

underlying probability distributions are approximated based on dis-

crete histograms. Furthermore, their algorithm assumes full depen-

dence between multiple tasks, and therefore it is vulnerable to neg-

ative transfer which we explicitly tackle by introducing sparsity on

the dependence estimates. Our use of FSIC does not require the es-

timation of any probability density, and no prior needs to be intro-

duced. This makes our algorithm applicable to ranking and regres-

sion problems where the target variables take continuous values.

3. MTL by dependence maximization

Suppose we are given L different learning tasks T ={T i}Li=1,

where the i-th task T i is provided with l(i) training data

points {(xi
k,y

i
k)}

l(i)
k=1 ⊂ X i×Yi ⊂ R

m(i)×R sampled from

an underlying probability distribution PX iYi . Our goal is to

learn a task estimator set F ={f i}Li=1 where the i-th member

f i : X i → Yi specializes on T i. Since the best form of the

estimator depends on the specific task at hand, we do not

assume that all estimators in F share the same parametric form.

Therefore, it is possible that f1 is a deep neural network (DNN)

while f2 is a Gaussian process (GP) estimator.
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Since the parameter vectors of {f i} are not shared, or that

finite-dimensional parameter vectors may not even exist (i.e.,

each member f i is non-parametric), the classical MTL approach

of penalizing the pairwise parameter deviations [9] or sharing

a low-dimensional latent parameter vector space [1, 24] is

infeasible. Instead, we propose to exploit the potential statistical

dependence present in {f i}: By evaluating f i on the domain

X i equipped with the probability distribution PX i , we can cast

f i into a random variable whose distribution PYi (defined on

Yi) is induced from PX i .1

Measuring estimator dependence. The fundamental

assumption of our approach is that some random variables in

the class F (as estimators of T ) exhibit statistical dependence.

We propose to exploit this to boost the performance of individual

estimators. For instance, if we assume that the pair f i and

fj have strong dependence, then we would expect that the

underlying joint distribution PYiYj is significantly different from

the marginal products PYiPYj . A well-established measure of

such a discrepancy is the mutual information:

I(f i,fj)=

∫

Yi×Yj

pYiYj(f i,fj)·

log

(

pYiYj(f i,fj)

pYi(f i)pYj(fj)

)

dyidyj, (6)

where pYiYj denotes the joint probability density. The mutual

information adopts the Kullback-Leibler divergence as the

measure of deviation between the joint distribution pYiYj and

the product of marginals pYipYj .

This measure has been previously explored for multi-task

learning (MTL). Quadrianto et al. [21] proposed a concave

convex procedure that successively approximates the lower

bounds on the mutual information constructed as the negation

of the joint entropy H(f i,fj). Unfortunately, estimating the

joint entropy is a challenging problem in general, as it requires

calculating the joint density pX iXj . For the case of Quadrianto et

al.’s approach, the challenge of estimating the joint density is

avoided by 1) assuming the conditional independence of the

target output variables yi and yj given the input variable x, and 2)

approximating the resulting factorized distributions p(yi|x) and

p(yj|x) using the empirical histograms. This histogram-based

approach is applicable only when the outputs variables represent

discrete class indices. Therefore, extending it to regression or

ranking problems is not straightforward. Furthermore, often even

for classification problems, the estimators F generate continuous

class estimates, which provides richer information than the

predicted classification indices. For instance, the magnitude of

f i(x) can be considered as confidence of the estimate made at x.

Instead, we use the finite set independence criterion (FSIC):

a kernel-based measure of statistical dependence that can be

applied directly to continuous random variables and does not

require us to estimate the joint density pX iXj [13]. To our

knowledge, we are the first to apply FSIC for MTL.

1For exposition simplicity, we assume that each F member is deterministic.

Suppose that we have a pair of random variablesQ∈Q⊂R
d(q)

and R∈R⊂R
d(r) equipped with the respective marginal distri-

butions PQ and PR, as well as their joint distribution PQR. Also,

assume that we have positive definite kernels k :Q×Q→R and

l :R×R→R associated with the reproducing kernel Hilbert

spaces of functions HQ and HR defined on Q and R, respec-

tively. Given this structure, the mean embeddings of PQ and PR

into HQ and HR are respectively defined as the means of the

kernel functions with respect to the corresponding distributions:

µQ :=EQ[k(·,q)] =
∫

Q
k(q,·)dPQ(q) and µR :=ER[l(·,r)] =

∫

R
l(r,·)dPR(r). When the kernels k and l are characteristic on

their respective domains, such as Gaussian kernels:

k(q,q′)=exp

(

−
‖q−q′‖2

σ2
k

)

, l(r,r′)=exp

(

−
‖r−r′‖2

σ2
r

)

,

(7)

the mean embeddings µQ and µR are injective in their respective

domains [22]. Therefore, each distribution can be uniquely

characterized in the corresponding RKHS embeddings. The

mean embedding of the joint distribution PQR is defined based

on the tensor-product k⊗l of k and l:

µQR=

∫

Q×R

k(·,q)⊗l(·,r)dPQR(q,r). (8)

Similarly to mutual information, FSIC measures the statistical

dependence of random variables Q and R by quantifying the devi-

ation between their joint distributions and the product of marginals.

Exploiting the injectivity of the mean embeddings µQ, µR, and

µQR, these deviations can be measured based on their mean em-

beddings. An important advantage of this approach over mutual

information is that it does not involve explicitly estimating the

respective probability densities as an intermediate step. Therefore,

it can be applied to any type of random variable, which facilitates

MTL applications to ranking and regression. Specifically, FSIC

quantifies these deviations based on an empirical measure ν
evaluated over J test locations S = {(qi, ri)}

J
i=1 ⊂ Q×R:

ν= 1
J

∑J
i=1δ(qi,ri) with δ(q,r) being the Dirac measure centered

on (q,r): The (squared) FSIC φ(Q,R) of Q and R is defined

as the L2(ν) distance of the mean embeddings [22]:

φ(Q,R)=

∫

Q

∫

R

(µQ(q)µR(r)−µQR(qr))
2dν(q,r)

=
1

J
‖u‖2, (9)

where [u]i=µQ(qi)µR(ri)−µQR(qiri). The rationale behind

using the test locations S is that 1) even when S is finite, the

statistical consistency of FSIC is guaranteed: Jitkrittum et al. [13]

has shown that when the kernels k(·,·) and l(·,·) are characteristic,

and k(·,q) and l(·,r) constitute analytic functions on Q and R,

respectively for any values of q∈Q and r∈R, φ(Q,R)=0 if

and only if Q and R are independent. Therefore, for such kernels,

FSIC provides a proper measure of independence. 2) as shown

shortly, using the limited number J of test locations leads to a

linear-time sample-based independence estimate (in the number
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of data points N). Since Gaussian kernels satisfy the consistency

requirements, henceforth we will use Gaussian kernels k and

l with the respective width parameters σ2
k and σ2

l (Eq. 7). For the

kernel parameters {σ2
k}, we use the standard deviation heuristic:

σk =4 mean({‖qi−qj‖,1≤ i< j,≤N}) for N sampled data

points {qi}
N
i=1.

FSIC-based MTL. Applying FSIC to our estimators

F={f i}Li=1, we define the FSIC matrix Φ(F) containing the

pairwise FSIC evaluations [Φ(F)]i,j = φ(f i,fj). In practice,

since the distributions {PX i} are unknown, we cannot explicitly

construct random variables {f i}. Instead, we evaluate them on a

sample X=X1×···×XL={(x1
k,...,x

L
k )}

N
k=1⊂X 1×···×XL

generated from PX1×...×XL .2 In this case, a statistically

consistent sample based estimate is obtained as [13]:

φ̂(f i,fj)=
1

J
‖ûij‖2,

û
ij=

(Ki◦Kj)1

N−1
−
(Ki

1)◦(Kj
1)

N(N−1)
, (10)

where ◦ denotes element-wise product, 1 = [1, ... ,1]⊤, and

[Ki](j,k)=ki(qij,f
i(xk)) for the test locations {qij}

J
j=1 of i-th

task.

FSIC and its sample-based estimates are bounded for bounded

kernels. For instance, for Gaussian kernels which have an upper

bound 1 (Eq. 7), FSIC evaluations are also upper bounded by

1. However, even when bounded kernels are used, the scaling

behavior of FSIC varies per random variable pair depending on

the choice of kernel parameters (e.g. σ2
k in Eq. 7). Therefore,

FSICs evaluated over different pairs of random variables will not

be directly comparable. This is crucial in our MTL applications,

as we will simultaneously evaluate and strengthen FSIC values for

all possible estimator pairs. Therefore, we normalize all pairwise

FSIC values based on FSIC evaluated on marginal distributions,

which suppresses the influence of such scaling variations:

[Φ(F)]i,j=
φ̂(f i,fj)

√

φ̂(f i,f i)

√

φ̂(fj,fj)
. (11)

The accuracy of FSIC as a measure of (in)dependence relies

on the selection of the test locations S. Ideally, these locations

should be spread evenly over the joint space Q×R with respect

to the underlying distribution PQR. Identifying these data points

involves a high-dimensional (dq+dr) non-linear optimization

problem [13], which is computationally infeasible to incorporate

into our MTL framework. Fortunately, for our MTL problem, all

random variables {f i} are one-dimensional and, in this special

case, a reasonably good set of test locations can be generated by

first scaling each f i into a unit interval, and then sampling points

regularly within this interval. Throughout the entire experiments,

we decide the test locations in this way with J=100.

2Often in MTL problems, the input spaces {X i} are assumed to be identical,
i.e., X i :=X . While our algorithm does not require this setting, we adopt this
in all of our experiments to facilitate a fair comparison with other algorithms.

Our MTL algorithm strengthens pairwise dependence in F
based on the empirical dependence estimate Φ(F): Constructing

an N × T -sized variable estimator matrix F where the i-th
column F(∗,i) stores the sample X-based observation of the

random variable f i, our initial algorithm minimizes the energy:

O′(F)=‖F−S‖2F−λ1‖Φ(F)‖2F , (12)

where the matrix S stores the initial estimate constructed by

independently solving the tasks T .3

In general, not all tasks are related. Therefore, naı̈vely max-

imizing all pairwise FSIC (and tuning the hyper-parameter λ1 ac-

cordingly) will not enable us to fully exploit the potential of MTL

(Fig. 1). To automatically identify relevant tasks and selectively

strengthen the dependence, we enforce the sparsity of Φ(F):

O(F)=‖F−S‖2F−λ1‖Φ(F)‖2F+λ2‖Φ(F)‖1, (13)

where λ1, λ2 > 0 are the hyper-parameters, and ‖A‖F and

‖A‖1 denote the Frobenius norm and the vectorized L1-norm

(‖A‖1 :=‖vec(A)‖1), respectively. It should be noted that the

second term is the classicalL1-regularizer applied element-wise to

the matrixΦ(F) instead of the nuclear norm ‖·‖∗ commonly used

in MTL: The nuclear norm, as a convex envelop of the rank norm,

is typically used to selectively enforce the linear (algebraic) depen-

dence of the (shared) parameter vectors of estimators {f i} (Sec. 2)

while our goal is to enforce selectively the statistical dependence.

Note that the combined objective of maximizing L2 and

minimizing L1 has been previously used in different problems,

e.g., in sparse principal component analysis the variance is

maximized along each axis on which data are projected and, at

the same time, sparsity is enforced to reduce the dimensionality

of the relevant latent data space.

Since O includes a non-differentiable term ‖Φ(F)‖1, it cannot

be straightforwardly optimized based on the standard smooth

(gradient-based) optimization methods. We minimize O by

adopting the alternating direction method of multipliers (ADMM).

First, we define the augmented Lagrangian of O that decouples

‖Φ(F)‖1 from the other terms in O:

Lρ(F,H,Y )=‖F−S‖2F−λ1‖Φ(F)‖2F+λ2‖H‖1

+
ρ

2
‖Φ(F)−H‖2F+〈Y,Φ(F)−H〉F , (14)

where 〈A,B〉F =tr[A⊤B] with tr[A] being the trace of A. Here,

we introduce a constraint Φ(F)=H connecting Φ(F) and H,

which is instantiated via the penalty term ‖Φ(F)−H‖2F and the

Lagrangian term 〈Y,Φ(F)−H〉F .

3Note that our goal is to construct the evaluation matrix F . An alternative
to this approach is to explicitly reconstruct the estimators F = {fi}L

i=1
,

e.g., by replacing ‖F − S‖2
F

in Eq. 12 by the individual training error
∑

L

i=1

∑
N

k=1
l(fi(xi

k
),yi

k
) (Eqs. 24-25). This typically requires employing

an additional regularizer per task (see Eq. 1). Given that our algorithm has two
hyper-parameters (see Eq. 13), tuning additional regularization hyper-parameters
is challenging. As a design choice, we construct the initial estimates S by tuning
these individual hyper-parameters independently, and penalize the deviation of
F from S. When F needs to be explicitly constructed, it can be trained using
(X,F) as a regression training data.
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Based on Lρ(F, H, Y ), each ADMM iteration can be

constructed as updating the estimator variable F and two sets

of auxiliary variables H and Y :

Fk+1 :=argmin
F

Lρ(F,H
k,Y k), (15)

Hk+1 :=argmin
H

Lρ(F
k+1,H,Y k), (16)

Y k+1 :=Y k+ρ(Φ(Fk+1)−Hk+1). (17)

The first update step (Eq. 15) minimizes an auxiliary energy

functional:

C(F)=‖F−S‖2F−λ1‖Φ(F)‖2F+
ρ

2
‖Φ(F)−Hk‖2F

+〈Y,Φ(F)−Hk〉F , (18)

which is a differentiable function of F , and therefore, can be

minimized by the gradient descent

∂C(F)

∂[F ]m,n

=

〈

Y −2λ1Φ(F)+ρ(Φ(F)−Hk),
∂Φ(F)

∂[F ]m,n

〉

F

+2[F−S]m,n. (19)

Calculating
∂Φ(F)
∂[F ]m,n

requires evaluating the derivative of ûij as

an intermediate step (see Eqs. 10-11):

∂[ûij]p
∂[F ](m,n)

=























0 if i,j 6=n
(

∂[Ki](p,∗)
∂[F ](m,n)

◦[Kj](p,∗)

)

1

N−1

−

(

∂[Ki](p,∗)
∂[F ](m,n)

1

)

([Kj](p,∗)1)

N(N−1) , if i=n,

(20)

where for Gaussian kernels, the kernel matrix derivatives are

given as:

∂[Ki](j,k)

∂[F ](m,n)
=

{

0 if k 6=m
2
σ2
i

(qj−f i(xk))k
i(qj,f

i(xk)) otherwise.

(21)

When j=n, the roles of i and j are interchanged in Eq. 20.

The second update step (Eq. 16) can be rewritten as:

Hk+1 :=argmin
H

λ2‖H‖1+
ρ

2

∥

∥H−Φ(Fk+1)
∥

∥

2

F

−〈Y k,H〉 (22)

=argmin
H

λ2‖H‖1+
ρ

2

∥

∥

∥

∥

H−Φ(Fk+1)−
1

ρ
Y k

∥

∥

∥

∥

2

F

.

This is a typical least squares minimization with L1 penalty. The

minimum Hk+1 in Eq. 22 can be obtained in a closed form

based on the L1-shrinkage operator [2]:

[Hk+1]i,j=max
(

[Φ(Fk+1)+1/ρY k−λ2/ρ]i,j,0
)

. (23)
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Figure 1. Results of our algorithm for Pubfig dataset (see Sec. 4 for details)

with (λ1,λ2>0) and without (λ1>0,λ2=0) the sparsity regularizer

‖Φ(F)‖1 (Eq. 13). (top) x-axis: target attributes; y-axis: mean accuracy

improvements from the baseline independent estimators (see Table 1 for

full results). (bottom) FSIC evaluation matrices Φ: (left) the initial FSIC

matrix calculated from the baseline independent estimators S, (center)

and (right) optimized FSIC matrices with and without the sparsity regular-

izer. FSIC values increases as the color varies from dark blue to bright red.

The diagonal components (originally 1) are set to zero for better visibility.

Discussion. In our objective O, the first regularizer

−‖Φ(F)‖2F tends to uniformly strengthen the pairwise depen-

dence. This is useful when all estimators in F are equally

statistically dependent. The second regularizer—the sparsity regu-

larizer ‖Φ(F)‖1—helps to selectively strengthen the dependence

addressing the case when not all F estimators are dependent.

Since practical applications exhibit both cases (as well as the

case when no dependence is observed), both regularizers are

important. Figure 1 demonstrates the influence of the second

regularizer on the MTL performance based on the PubFig dataset

(see Sec. 4 for details): Bottom left panel shows the pairwise

FSIC values calculated from the initial independent estimators

S demonstrating that the task dependence is indeed clustered,

as Tasks {3,4,5,10,11} show strong mutual dependence forming

a cluster. Similarly, Tasks {1,7} constitute another cluster. These

two clusters are weakly connected via Task 1 and 3 dependence

((1,3)-th entry of the FSIC matrix). Tasks 6, 8 and 9 display

no noticeable dependence with any other tasks. Uniformly

strengthening dependence (bottom center: λ2 = 0) somewhat

improves the overall performance.

However, since strengthening the statistical dependence for

tasks {6,8,9} tends to degrade the performance, optimizing

its regularization hyper-parameter λ1 leads to only a moderate

level of FSIC strengthening. Enforcing sparsity in FSIC

enabled selectively strengthening only the relevant dependences

and disregards the outlier tasks, thereby further significantly

improving performance (Fig. 1 top).

The run-time of our algorithm depends on the number of total

ADMM iterations and the cost of the gradient-based optimization

step for F (Eqs. 15,18-19). The complexity of calculating the

gradient ∂C(F) for F -update (Eq. 19) is linear in the numbers

of data points N and test locations J, and quadratic in the
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number T of tasks: O(JNT2). We observed in preliminary

experiments that the ADMM converges quickly, typically within

the first 20 iterations. Therefore, we set the maximum number

K of ADMM iterations at 50 throughout the entire experiments:

The iteration terminates when K > 50 or the reduction of the

objective function values is smaller than the tolerance parameter

ǫ= 10−5. For the OSR dataset with N=2,688 T=6, a single

step of the ADMM optimization process took around 1 sec.

Algorithm 1 summarizes the training process.

The convergence analysis of non-linear ADMM is an area of ac-

tive research. A straightforward way to guarantee the convergence

(to a local minimum) is to schedule ρ→∞. The price for this the-

oretical guarantee is numerical instability typically observed in the

dual decomposition-type optimization methods [5]. Throughout

the entire experiments, we fixed ρ at 10 which leaded to a steady

decrease of the objective O values in preliminary experiments.

Algorithm 1 MTL by dependence maximization

Input: Initial estimate S; tolerance threshold ǫ; maximum

iteration number K; regularization parameters λ1,λ2≥0.

1: while O(Fk)−O(Fk−1)≤ǫ (Eq. 13) and k<K do

2: Update Fk+1 (Eq. 18).

3: Update Hk+1 (Eq. 23).

4: Update Y k+1 (Eq. 17).

5: k=k+1.

6: end while

Output: Optimized estimate F∗.

4. Experiments

Setup. We evaluate the performance of our algorithm on

five ranking datasets and two regression datasets. For each

dataset, we prepared two baseline estimator classes. The first

baseline (Base1) is constructed from homogeneous support vector

machines (SVMs) while for the second baseline (Base2), deep

neural networks (DNNs), Gaussian process (GP) estimators,4

and SVMs are evaluated and the best estimator was chosen

per dataset and per target attribute (based on validation error,

discussed shortly) as the baselines.

The Outdoor Scene Recognition dataset (OSR) contains

2,688 images of 6 visual target attributes computed from 8 image

categories [17]. The Public Figure Face dataset (PubFig)

contains 800 face images of 11 target attributes computed from

8 individuals [17, 15]. The Shoes dataset contains 14,658 images

of 10 attributes extracted from 10 shoe categories [14]. We use

512-dimensional GIST descriptors, 542-dimensional features

that combine GIST descriptors and color histograms, and 990-

dimensional GIST and color histogram combinations for OSR,

PubFig, and Shoes, respectively as shared by the authors of [17]

and [14]. The SUN attribute dataset contains 16,656 scene images

with 102 attributes calculated from 707 scene categories [19].

Here, the ground-truth rankings are calculated based on Mechani-

cal Turk voting on the existence of attributes of interest per image.

4For ranking problems, we obtained the maximum a posteriori solutions using
the rank loss (Eq. 24) as the (inverse) likelihood.

For each image in this dataset, a 4,096-dimensional feature vector

is extracted based on VGG19 DNN feature extractor trained on

ImageNet datasets. We selected 10 target attributes out of 102 that

exhibit high pairwise correlations: We evaluated the outputs of

individual baseline estimators per attribute and measured the pair-

wise Pearson correlations. The Caltech-UCSD Birds (Birds)

dataset provides 11,788 bird images of 200 bird species provided

with 312 binary attribute annotations. Each input image is repre-

sented based on 1000-dimensional VGG19 features. We selected

10 target attributes as elements of a single cluster formed via spec-

tral task clustering using the FSIC as the similarity measure. Our

supplemental provides details of task clustering (and visualization)

on this dataset (see Sec. 5 for additional information).

To facilitate a comparison with existing non-parametric GP-

based MTL algorithms (originally designed for regression prob-

lems), we also use two benchmark regression datasets: The river

flow dataset (RF1) contains 9,005 instances of 64-dimensional

input features that represent the flows in river networks observed

in time intervals. The 8 target attributes correspond to the

predictions of the flows for 48 hours in the future at specific test

locations [23]. The Energy Building dataset (ENB) contains

768 instances of 8 measured building parameters as input and

the corresponding target heating load and cooling load attributes.

For comparison in ranking problems, we adopt four existing

MTL algorithms. Evgeniou and Pontil’s regularized MTL

algorithm (regMTL) [9], Lee et al.’s Asymmetric MTL

algorithm (AMTL) [16], Argyriou et al.’s multi-task feature

learning algorithm (MTFL), and Chen et al.’s Low-Rank MTL

algorithm (LRMTL). Some of these algorithms were originally

developed for classification but adapting them to ranking and re-

gression is straightforward using rank loss: In training, an ordered

training pair (i,j) implies that the ranking of xi is higher than xj

lrank(xi,xj;f)=max(0,1−(f(xi)−f(xj)))
2. (24)

or the squared L2 regression loss:

lregr(xi,yi;f)=(f(xi)−yj)
2. (25)

In the supplemental, we also compare with an adaptation of

Pentina et al.’s curriculum learning MTL algorithm [20]. Unlike

other MTL algorithms in comparison, applying this algorithm to

ranking and regression is not straightforward as it builds upon the

estimated bounds for the classification error. Our adaptation is ob-

tained as an algorithmic extension (see supplemental for details).

For regression datasets, we also compare with the non-

parametric Gaussian process-based approaches of Bonilla et

al. [4] (GPMTL) and Titsias and Lázaro-Gredilla [25] (Spike

and slab variational inference: SNS). Both algorithms

adopt fully Bayesian inference and therefore, the underlying

hyper-parameters are automatically tuned. We tune only the

latent dimensionality of the multiple task kernel functions based

on a separate validation set.

The regMTL requires tuning two hyper-parameters: The

regularization hyper-parameter for individual baseline estimators

and the hyper-parameter for the multi-task regularizer that controls

the strength of the task dependence. The LRMTL also has two
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Table 1. Ranking performances of different MTL algorithms. Kendall’s Tau correlations×100 ± std.×100 are presented (higher is better). The three

best results are highlighted with boldface blue, italic green, and plain orange fonts, respectively.

Dataset Target Base1 Base2 regMTL [9] MTFL [1] LRMTL [7] AMTL [16] Ours

OSR

1 88.26±0.83 90.26±0.55 89.93±0.63 89.09±1.24 90.67±1.06 88.34±0.73 91.95±0.74

2 81.30±0.62 86.01±0.84 85.84±1.02 84.15±1.13 81.28±1.15 81.47±0.58 86.33±0.92

3 71.00±1.04 75.01±1.42 74.52±2.28 73.89±2.62 73.03±1.31 72.42±1.08 76.30±1.03

4 72.39±1.77 77.66±1.23 77.41±0.99 75.10±2.08 73.74±2.05 73.35±1.54 79.01±1.27

5 75.52±1.19 79.30±1.08 79.42±1.20 79.02±1.71 78.08±0.89 77.44±0.83 82.52±1.13

6 76.12±1.27 80.04±1.73 80.12±1.59 78.23±1.30 76.97±1.74 77.15±1.02 80.55±1.34

PubFig

1 64.50±2.53 66.40±3.08 60.55±2.59 62.88±2.51 71.60±1.28 64.47±2.56 71.98±2.89

2 57.10±3.08 60.07±3.53 53.12±3.39 54.12±4.07 62.14±4.80 57.10±3.08 64.71±3.58

3 64.22±2.06 66.53±2.77 63.97±3.00 65.23±4.05 72.52±1.43 68.31±1.50 72.06±2.70

4 61.91±1.37 64.33±2.44 63.01±2.00 60.69±2.99 70.34±2.37 69.16±2.04 69.15±4.53

5 55.82±3.33 58.48±2.97 54.22±3.64 55.36±3.37 65.08±1.28 62.09±3.12 68.65±2.26

6 75.12±1.54 77.34±2.54 74.65±1.53 72.86±3.40 77.43±2.18 75.13±1.55 78.18±3.31

7 58.79±3.03 62.66±3.54 57.66±3.74 59.36±3.99 66.53±1.54 58.79±3.03 65.34±4.76

8 60.05±1.69 61.91±2.68 60.13±1.31 58.08±2.65 62.63±2.01 60.05±1.68 62.54±2.89

9 52.44±2.72 57.09±3.43 53.74±3.54 53.78±3.25 56.65±4.92 52.55±2.87 57.53±3.80

10 58.27±3.86 61.51±2.77 59.15±2.18 58.25±3.36 66.88±1.78 64.21±3.45 66.47±3.53

11 63.21±1.82 66.81±2.39 64.15±1.36 63.91±3.60 74.05±1.25 70.07±1.58 74.99±1.15

Shoes

1 68.09±1.47 67.87±0.70 69.08±1.76 68.43±1.06 69.72±1.31 68.84±1.90 71.93±0.91

2 56.39±1.84 60.27±2.71 59.04±1.72 57.81±2.08 58.02±3.00 57.71±1.88 60.37±2.52

3 30.50±3.65 34.43±2.66 32.39±3.60 32.55±3.39 30.55±2.60 31.09±3.47 34.42±2.61

4 46.18±1.63 48.41±2.31 46.85±2.11 46.04±2.72 46.24±1.83 45.81±2.10 48.47±2.26

5 61.44±1.99 61.64±1.98 63.92±1.51 62.21±2.09 62.77±1.81 63.06±1.40 64.79±0.99

6 61.87±2.30 60.80±3.56 64.40±2.36 62.79±2.31 62.62±1.81 62.46±1.92 62.06±2.14

7 52.58±1.51 56.43±2.02 53.64±1.65 52.40±2.54 52.58±2.85 52.95±1.28 57.15±2.45

8 49.56±1.73 48.89±0.86 50.34±2.12 51.98±1.92 49.68±1.66 50.24±1.30 50.78±1.50

9 61.57±1.97 62.78±2.59 62.07±2.44 63.34±2.33 62.89±1.81 61.63±1.90 67.11±1.12

10 66.91±1.16 66.83±2.33 69.16±1.02 68.10±1.56 69.34±1.43 68.86±1.91 72.09±1.08

SUN

1 66.18±3.15 68.24±4.32 66.52±4.41 68.39±4.39 72.01±5.65 65.21±7.56 70.62±3.35

2 71.24±3.11 75.31±4.06 75.04±3.08 73.78±5.97 75.89±1.08 72.60±4.50 73.74±4.53

3 76.84±1.16 76.77±1.87 75.74±2.15 75.87±1.90 77.73±2.07 77.62±1.37 78.78±1.82

4 79.03±1.21 80.40±1.32 79.19±3.37 79.58±1.52 84.20±0.40 79.75±3.30 82.49±0.87

5 79.66±1.42 78.67±2.41 78.43±1.68 78.42±1.04 80.64±1.63 80.59±1.62 80.66±1.55

6 80.75±0.81 79.76±1.79 78.78±3.35 79.47±0.95 82.71±0.90 81.44±0.79 82.14±1.04

7 79.76±0.65 79.41±1.00 79.62±0.88 78.17±1.16 78.76±1.36 79.65±0.90 80.03±0.81

8 83.91±0.53 84.12±0.67 84.21±0.60 84.13±0.60 83.39±1.46 84.08±0.77 83.83±0.72

9 63.34±1.10 63.13±1.01 61.91±2.30 62.53±0.73 62.67±0.30 63.23±1.22 63.14±0.90

10 82.23±3.50 80.85±5.77 78.79±6.76 77.30±7.76 84.64±2.42 80.60±5.41 81.31±2.91

Birds

1 56.78±3.06 56.76±3.04 60.43±3.24 52.51±5.00 55.07±2.48 59.38±4.26 58.70±3.69

2 42.18±3.24 41.23±4.18 54.15±4.33 52.66±3.51 47.88±5.18 53.43±3.09 53.88±2.46

3 57.74±1.84 57.56±2.48 61.67±2.69 59.30±2.15 55.45±2.89 60.07±4.44 60.08±1.53

4 46.69±2.74 46.97±2.02 54.21±4.17 51.29±1.60 52.74±5.55 56.48±1.76 54.36±1.29

5 49.94±3.95 48.56±6.42 54.95±3.55 53.40±4.39 51.41±6.44 51.86±6.61 53.16±2.09

6 41.78±0.91 43.91±3.11 54.00±3.51 48.17±5.16 46.14±4.86 55.75±1.09 52.31±1.95

7 46.46±5.68 45.70±5.90 48.99±10.49 49.19±1.43 51.44±3.38 50.82±5.46 51.50±1.03

8 56.46±0.84 56.53±2.43 62.96±2.32 58.79±3.03 58.56±4.55 62.99±1.02 60.66±1.91

9 49.89±2.23 49.66±2.16 53.92±5.16 53.26±1.64 49.61±3.99 55.61±2.66 55.68±1.15

10 54.71±6.15 54.08±6.83 60.27±4.21 58.73±2.86 58.46±4.70 59.50±6.81 60.99±1.70

hyper-parameters: One for multi-task regularization and the other

for outlier elimination. Similarly, AMTL has two parameters. The

first parameter controls the overall strength of task dependence

(equivalently the amount of transfer between tasks) while the other

parameter controls the relative distribution of transfer strength

across multiple tasks. MTFL on the other hand has one parameter

that controls the number of shared features between tasks. Finally,

our algorithm requires tuning two regularization hyper-parameters

λ1 and λ2, which we show from Fig. 2 to be easily achievable

as the performance varies smoothly with respect to changes in

hyper-parameter values. For all datasets, we use 200 training and

validation data points. All hyper-parameters were tuned based

on validation sets. For ranking, pair-wise labels were induced

from the labels of training data points. For evaluating the ranking

performance, we measured the Kendall’s Tau rank correlation

coefficient bounded in [−1,1] that counts the number of correct

(and incorrect) rank predictions with respect to the number of total

rank pairs. For the regression, we measured the mean squared

error. All experiments were performed 10 times with different

training and validation configurations and the results are averaged.
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Table 2. Regression performances of different MTL algorithms. Mean squared error ± std. are presented (lower is better).

Dataset Target Base1 Base2 regMTL [9] MTFL [1] LRMTL [7] AMTL [16] GPMTL [4] SNS [25] Ours

RF1

1 21.93±17.51 11.30±2.06 12.73±0.69 11.71±0.82 11.67±0.64 13.46±4.68 26.28±9.75 15.26±4.68 11.20±2.13

2 0.98±0.36 0.80±0.20 0.83±0.14 0.85±0.14 1.05±0.12 1.03±0.30 0.84±0.19 0.81±0.18 0.80±0.20

3 23.21±25.28 15.82±1.89 15.82±0.67 15.19±1.19 15.38±0.56 16.43±3.52 25.72±8.56 17.09±4.05 14.63±1.47

4 14.98±4.71 13.41±2.28 12.80±0.68 12.63±1.13 12.58±0.37 13.06±1.90 16.89±3.97 13.26±2.69 12.51±1.37

5 7.80±0.26 7.58±0.68 8.40±0.97 7.80±0.53 7.75±0.25 7.77±0.25 10.47±3.97 8.24±1.16 7.45±0.66

6 2.46±0.09 2.35±0.21 2.53±0.16 2.56±0.14 2.57±0.07 2.54±0.26 2.28±0.70 2.48±0.13 2.32±0.18

7 5.88±0.62 4.85±1.18 4.90±0.74 4.98±0.81 5.46±0.15 6.05±1.14 7.25±3.35 5.13±1.25 4.69±1.05

8 7.94±8.92 4.79±0.44 5.45±0.46 5.27±0.23 5.43±0.12 5.24±0.23 6.52±2.69 5.40±0.59 4.67±0.33

ENB
1 3.01±0.13 0.92±0.04 2.22±0.20 1.24±0.10 6.07±0.15 3.01±0.12 0.96±0.12 1.07±0.09 0.92±0.04

2 3.26±0.15 1.85±0.15 2.44±0.12 1.95±0.20 6.19±0.18 3.26±0.13 1.76±0.12 2.01±0.28 1.82±0.14
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Figure 2. Mean accuracy (Kendall’s

Tau×100) of our algorithm on

attribute 3 of PubFig dataset with

hyper-parameters λ1 and λ2 varying

in multiplicative intervals with

factor 2.

Results. Overall, we improve upon the baseline independent es-

timator (Base1) by adopting MTL approaches (Tables 1-2). While

not all datasets and attributes show significant improvement, MTL

approaches are on par with or outperform independent estimators.

Since not all tasks are equally related (as suggested in Fig. 1),

regMTL—which uniformly enforces pairwise task similarity—

is further improved by allowing sparsity in task dependence

(MTFL,AMTL) and/or task outliers (LRMTL). The performance

variations of different MTL algorithms are significant (OSR, Pub-

Fig, Shoes, RF1, and ENB), while for SUN and Birds datasets the

variation is less significant but noticeable. Among the three recent

parametric MTL algorithms (MTFL, LRMTL, AMTL), LRMTL

turned out to be the best followed by AMTL, but there was no clear

winner indicating the complementary nature of different similarity-

enforcing strategies. Also, for Birds dataset where by construction,

all tasks are strongly related, the classical regMTL is competitive.

All four existing algorithms use shared parametric forms and ex-

tending them for the multiple heterogeneous estimator case is not

straightforward. The importance of breaking this limitation can be

clearly seen by comparing the results with the heterogeneous base-

lines (Base2): Especially, for the OSR and RF1 datasets, by simply

adopting heterogeneous estimators including DNNs, GPs and

SVMs, even independent training already significantly improved

performance. Being able to apply the MTL to these heterogeneous

baselines, our algorithm further improves the performance and is

consistently ranked as the best three. In particular, our algorithm

constantly improves upon the initial Base2. Bonilla et al.’s non-

parametric Gaussian process-based MTL approach (GPMTL) [4]

produced the best results for the second target attribute of the

ENB dataset, improving the baseline with a large margin. How-

ever, their results on RF1 indicates that the performance varies

significantly across different target attributes. The Spike and slab

variational inference (SNS) demonstrated a similar behavior.

5. Conclusions

The best selection of task estimators depends on the problem of

interest and the nature of the target attributes. However, existing

MTL algorithms do not provide the ability to combine multiple

heterogeneous estimator combinations. We demonstrated that het-

erogeneous combinations leads to improved learning performance.

We build upon the idea of casting individual estimators into

random variables and measuring their statistical dependence on

the recently proposed kernel-based dependence measure (FSIC).

Our approach is agnostic to the architecture of estimators and so

enables us to discover and (selectively) enforce task dependence

independently of the specific forms of individual estimators.

Evaluated on seven ranking and regression datasets, our

algorithm is on par with or improves upon the baseline

independent learning algorithms, Evgeniou and Pontil’s classical

uniform MTL algorithm, non-parametric GP-based algorithms,

and four state-of-the-art parametric MTL algorithms.

One limitation of our approach is that it relies on the existence

of the dataset X. While this is a moderate assumption, when X is

not available or it does not fairly reflect the underlying probability

distribution PX , the performance of our algorithm will degrade.

Also, since our algorithm relies on the initial estimators S (see

Eq. 13), the final performance will depend on their performance.

One way to remove this dependence is to replace the first term

in O (Eq. 13) by the task-dependent training loss.

The normalized FSIC criteria (Eq. 11) can be considered as a

measure of similarity between estimators fi and f
j as data points:

Inspecting Eq. 10 reveals that, evaluated at columns of F , the

empirical FSIC estimate φ̂ constitutes a positive definite kernel

and, therefore, it induces a distance measure on R
N (N : the

number of data points). This facilitates embedding individual esti-

mations into a graph where the graph Laplacian L is constructed

based on the kernel matrix Φ(F). Using the graph Laplacian, one

could embed all tasks into a low-dimensional visualization space.

Visualizing task dependence not only helps us to understand the

nature of the problem, but also gives an insight into identifying

potential subsets of tasks that can benefit from MTL. In the

accompanying supplemental, we provide such a visualization

and details of task clustering on the Birds dataset [26].
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