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Figure 1. Our approach enables the real-time estimation of the material of general objects (left) from just a single monocular color image.

This enables exciting live mixed-reality applications (right), such as for example cloning a real-world material onto a virtual object.

Abstract

We present the first end-to-end approach for real-time mate-

rial estimation for general object shapes with uniform ma-

terial that only requires a single color image as input. In

addition to Lambertian surface properties, our approach

fully automatically computes the specular albedo, material

shininess, and a foreground segmentation. We tackle this chal-

lenging and ill-posed inverse rendering problem using recent

advances in image-to-image translation techniques based

on deep convolutional encoder–decoder architectures. The

underlying core representations of our approach are specular

shading, diffuse shading and mirror images, which allow to

learn the effective and accurate separation of diffuse and spec-

ular albedo. In addition, we propose a novel highly efficient

perceptual rendering loss that mimics real-world image for-

mation and obtains intermediate results even during run time.

The estimation of material parameters at real-time frame rates

enables exciting mixed-reality applications, such as seamless

illumination-consistent integration of virtual objects into real-

world scenes, and virtual material cloning. We demonstrate

our approach in a live setup, compare it to the state of the art,

and demonstrate its effectiveness through quantitative and

qualitative evaluation.

1. Introduction
The estimation of material properties from a single monocular

color image is a high-dimensional and underconstrained

problem. The blind deconvolution nature of the problem has

attracted usage of complex setups and, more recently, various

natural and handcrafted priors, but has yet remained outside

the scope of real-time implementation due to the resulting

dense optimization problem. Previous real-time approaches

have thus predominantly focused on estimating diffuse

materials [31, 33]. In this work, we tackle a much harder

inverse problem by additionally estimating specular material

properties, such as specular color and material shininess, as

well as segmentation masks for general objects of uniform

material from a single color image or video in real time.

Recent advances in deep learning enable the automatic

learning of underlying natural subspace constraints directly

from large training data, while also reducing the need to

solve the expensive dense non-linear optimization problem

directly. Some recent work has successfully demonstrated

the capability of convolutional neural networks to solve

the inverse rendering problem of separating material from

illumination, particularly in the context of single material

objects. Current approaches estimate material from one

[12, 28] or more images [21, 44]. Georgoulis et al. [12] learn

BRDF parameters and outdoor environment maps from

single images of specular objects from a specific class (cars,

chairs and couches only). Kim et al. [21] estimate BRDF

parameters from multiple RGB input images in 90 ms. Shi

et al. [41] perform intrinsic image decomposition of a single

object image into diffuse and specular layers but do not solve

the denser and more complex material estimation problem.

Most of these methods take a direct approach to parameter

regression without any additional supervision, due to which

the network may not necessarily learn to perform the

physical deconvolution operation that is intrinsic to inverse

rendering, and hence runs the risk of simply overfitting
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to the training data. The exception is the approach of Liu

et al. [28] that took a first important step in this direction

using an expert-designed rendering layer. However, such

a rendering layer requires shape estimation in the form of

surface normals, which are challenging to regress for general

objects. This limits their method to objects of particular shape

classes (cars, chairs and couches), and also requires manual

segmentation of the object in the image.

In contrast, we present the first real-time material esti-

mation method that works for objects of any general shape,

and without manual segmentation, thus making our approach

applicable to live application scenarios. Our approach draws

inspiration from the rendering process. We decompose the

input image into intrinsic image layers and provide fine-

grained intermediate supervision by following the rendering

process closely. We decouple the task of material estimation

from the shape estimation problem by introducing a novel

image-space supervision strategy on the intrinsic layers using

a highly efficient perceptual loss that makes direct use of the

regressed layers. We finally regress each material parameter

from the relevant intrinsic image layers, self-supervised by

the perceptual rendering loss. This mechanism results in

demonstrably more accurate material estimation.

In addition to these core innovations, we distinguish

ourselves from previous work in the following ways:

1. We fully automatically perform object segmentation in

the image, enabling our method to be applied to single

images and videos, also in live scenarios.

2. We train our network for the challenging indoor setting,

and successfully handle complex high-frequency light-

ing as opposed to the natural outdoor illumination used

by other methods [12, 21, 28], since most mixed-reality

applications are used indoors.

3. If shape information is available, e.g. from a depth

sensor, our method also extracts separate low- and

high-frequency lighting information, which is crucial

for vivid AR applications.

2. Related Work
The appearance of an object in an image depends on its sur-

face geometry, material and illumination. Estimation of these

components is a fundamental problem in computer vision,

and joint estimation the ultimate quest of inverse render-

ing [36, 46]. Geometry reconstruction has seen major ad-

vances since the release of commodity depth sensors [e.g.

5, 16, 18, 35, 47]. However, estimation of material and illumi-

nation remains relatively more challenging. Approaches for

estimating material and illumination need to make strong as-

sumptions, such as the availability of a depth sensor [13, 39],

lighting conditions corresponding to photometric stereo [15],

a rotating object under static illumination [45], multiple im-

ages of the same object under varying illumination [42], hav-

ing an object of a given class [12], or requiring user input [34].

Material Estimation There are broadly two classes of

material estimation approaches: (1) approaches that assume

known geometry, and (2) approaches for specific object

classes of unknown geometry. Methods that require the

surface geometry of objects to be known can, in principle,

work on any type of surface geometry. Dong et al. [9]

estimate spatially-varying reflectance from the video of

a rotating object of known geometry. Wu and Zhou [43]

perform on-the-fly appearance estimation by exploiting the

infrared emitter–receiver system of a Kinect as an active

reflectometer. Knecht et al. [23] also propose a method for

material estimation at interactive frame rates using a Kinect

sensor. Li et al. [26] learn surface appearance of planar

surfaces from single images using self-augmented CNNs.

There are also several recent off-line methods [21, 38, 44] that

capture a set of RGB images along with aligned depth maps

to estimate an appearance model for the surface geometry.

Recent methods by Rematas et al. [37], Georgoulis et al.

[12] and Liu et al. [28] do not assume known geometry, but

instead rely on implicit priors about the object shape, and

therefore only work on the specific classes of objects – such

as cars or chairs – for which the methods are trained.

In contrast to these methods, our approach neither requires

known surface geometry nor is it restricted to specific

object classes. To the best of our knowledge, the only other

RGB-only method that works on arbitrary objects is by

Lombardi and Nishino [29]. However, it is an offline method.

We believe our real-time method can significantly enhance a

wide variety of applications like material editing [3, 7, 8, 20],

object relighting [27], cloning and insertion.

Illumination Estimation Assuming a diffuse reflectance,

Marschner and Greenberg [32] estimate environment maps

from captured RGB images and scanned geometry. Given

a single input image, methods exist for estimating natural

outdoor illumination [14, 25], indoor illumination [10]

or the location of multiple light sources [30]. Georgoulis

et al. [11] estimate an environment map from the photo

of a multicolored specular object of known shape. Mandl

et al. [31] similarly learn the lighting from a single image

of a known object. Lalonde and Matthews [24] perform

illumination estimation from an image collection used

for structure-from-motion reconstruction. However, note

that the main contribution of this paper lies in material

estimation, and not illumination estimation. Nevertheless,

given geometry, we show in Section 7 how our approach can

be extended to additionally estimate illumination.

3. Overview
Our approach is the first end-to-end approach for real-time es-

timation of an object’s material and segmentation mask from

just a single color image. We start by introducing our image

formation model in Section 4. In Section 5, we discuss how

we tackle the underlying inverse rendering problem using en-
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Figure 2. Our approach enables real-time estimation of material parameters from a single monocular color image (bottom left). The proposed

end-to-end learning approach decomposes the complex inverse rendering problem into sub-parts that are inspired by the physical real-world

image formation process, leading to five specifically tailored subnetworks. Our complete network is trained in an end-to-end fashion.

Environment map used for material visualization (bottom right) courtesy of Debevec [6].

coder–decoder architectures [17, 40]. Our network is inspired

by the image formation process, and thus the quantities in-

volved in the rendering equation [19]. In particular, we use the

Blinn–Phong reflection model [2] that allows for the observed

image radiance to be decomposed linearly into a diffuse and

a specular layer, which can be further decomposed to provide

the corresponding shading layers and albedos. We estimate

such a shading decomposition and albedos, and recombine

them to obtain a rendering loss between the reconstructed

image and the input image, to supervise the network training.

Figure 2 outlines our end-to-end approach and its

five specifically tailored subnetworks: SegmentationNet

estimates a binary object mask. SpecularNet decomposes

the masked input to obtain the specular shading image,

which quantifies the normalized specular reflections from the

object. MirrorNet converts the specular shading into a ‘mirror

image’, a novel representation that quantifies the incoming

high-frequency illumination onto the object’s surface. We

call it ‘mirror image’ because it captures how the object

would look if it were a perfectly reflective mirror-like surface,

see Figure 3. Such a representation maps the environmental

illumination to the image space, allowing for an easier

estimation task for the high-frequency lighting. AlbedoNet

uses the masked input and the estimated specular shading

to regress the linear diffuse and specular albedo values, and

ExponentNet uses the specular shading and the mirror image

to regress the non-linear specular exponent.

Structuring our architecture in this manner gives the

opportunity for intermediate supervision of the involved

physical quantities, which results in higher-quality results

than competing approaches, as we show in our results section.

In addition, our architecture enables the computation of

a perceptual rendering loss, which leads to higher-quality

results. For higher temporal stability, when the method is

applied to video, the reconstructed material parameters are

temporally fused. We show and evaluate our results, and

compare to state-of-the-art techniques in Section 6. Finally,

in Section 7, we demonstrate mixed-reality applications

that benefit from our real-time inverse rendering approach,

such as seamless placement of virtual objects, with real-time

captured materials, in real-world scenes.

4. Image Formation Model
Obtaining diffuse and specular material parameters requires

the inversion of the complex real-world image formation

process. In this section, we thus explain the forward process

of image formation and all employed scene assumptions.

4.1. Appearance and Illumination Model

The appearance of an object in an image depends on its bidirec-

tional reflectance distribution function (BRDF) and the light

transport in the scene. We model light transport based on the

trichromatic approximation of the rendering equation [19]:

Lo(x,ωo)=Le(x,ωo)+Lr(x,ωo)

=Le(x,ωo)+

∫

Ω

f(x,ωi,ωo)Li(x,ωi)(ωi ·n)dωi. (1)

The rendering equation expresses the radiance Lo ∈ R
3

leaving a surface point x ∈ R
3 (with normal n ∈ S

2) in

direction ωo ∈ S
2 as the sum of emitted Le ∈ R

3 and

reflected radiance Lr ∈R
3. The reflected radiance Lr is a

function of the illumination Li ∈R
3 over the hemisphere

Ω of incoming directions ωi∈S
2 and the material’s BRDF

f :R3×S
2×S

2→R at point x.

To make real-time inverse rendering tractable, we make a

few simplifying assumptions, which are widely used, even in

off-line state-of-the-art inverse rendering techniques [12, 28].

First, we assume that the object is not emitting light, i.e., it

is not a light source, and we only model direct illumination.

We model global changes in scene brightness based on an am-

bient illumination term La∈R
3. We further assume distant

lighting and the absence of self-shadowing, which decouples

the incident illumination from the object’s spatial embedding.
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Given these assumptions, the rendering equation simplifies to

L(x,ωo)=La+

∫

Ω

f(x,ωi,ωo)(ωi ·n)︸ ︷︷ ︸
BP(x,n,ωi,ωo)

E(ωi)dωi. (2)

We represent distant illumination using an environment

map E(ωi). Diffuse and specular object appearance is

parameterized using the Blinn–Phong reflection model [2]:

BP(x,n,ωi,ωo)=md(ωi ·n)︸ ︷︷ ︸
diffuse

+ms(h·n)
s

︸ ︷︷ ︸
specular

. (3)

Here, md ∈ R
3 is the diffuse, and ms ∈ R

3 the specular

material color (albedo). Note that we assume a white

specularity, i.e., ms = α · 13, with 13 being a 3-vector of

ones. The halfway vector h = ωi+ωo

‖ωi+ωo‖
depends on the

light direction ωi and the viewing direction ωo. The scalar

exponent s∈R determines the size of the specular lobe, and

thus the shininess of the material.

5. Deep Material Learning
The goal of our approach is the real-time estimation of diffuse

and specular object material from a single color image.

This high-dimensional and non-linear inverse rendering

problem is ill-posed, since each single color measurement

is the integral over the hemisphere of the product between

the BRDF and the incident illumination modulated by the

unknown scene geometry (see Equation 1).

We propose a novel discriminative approach to tackle

this challenging problem using deep convolutional en-

coder–decoder architectures. Our network is inspired by

the quantities involved in the physical image formation

process. Structuring the CNN architecture in this way gives

the opportunity for intermediate supervision of the physical

quantities and leads to higher-quality results than other

competing approaches, as shown in Section 6. In addition,

this architecture facilitates the computation of a perceptual

rendering loss, which further improves regression results.

In the following, we describe our synthetic ground-truth

training corpus, our physically motivated inverse rendering

network, a novel perceptual per-pixel rendering loss, and

show how our entire network can be trained end-to-end.

5.1. Synthetic Ground­Truth Training Corpus

Since the annotation of real-world images with ground-truth

BRDF parameters is practically infeasible, we train our

deep networks on fully synthetically generated imagery with

readily available ground truth. Our training corpus

T ={Ii,Bi,Di,Si,Mi,BPi}
N
i=1

consists of N = 100,000 realistically rendered images Ii,

their corresponding binary segmentation masks Bi, diffuse

shading images Di, specular shading images Si, mirror

images Mi, and the ground-truth Blinn–Phong parameters

BPi. See Figure 3 for examples from our corpus, and our

supplemental document for more examples.

Each of the N training frames shows a single randomly

RGB Image Mask Diffuse Shading Specular Shading Mirror Environment Map

Figure 3. Two examples from our synthetic ground-truth training

corpus (from left to right): color image I, segmentation mask B,

diffuse D and specular S shading image, mirror image M, and

environment mapE. Contrast ofE increased for better visualization.

sampled object from a set of 55 synthetic 3D models1,2

(50 models for training and 5 for testing). We render the

object with random pose, orientation, size and Blinn–Phong

parameters BPi using perspective projection to obtain

our training corpus T . The albedo parameters are sampled

uniformly in the YUV color space and then converted to RGB.

The object is lit with a spherical environment map Ei,

which we randomly sample from a set of 45 indoor maps

that we captured with an LG 360 Cam with manual exposure

control, see Figure 3 (right). The environment maps were

captured in varied indoor settings, in rooms of different sizes

and different lighting arrangement, such as homes, offices,

classrooms and auditoriums. For data augmentation, we

randomly rotate environment maps while ensuring there is

a strong light source in the frontal hemisphere. This ensures

that highlights will be visible if the object is specular.

We render objects under different perspective views

and obtain crops around the objects at different resolutions

with varying amounts of translation and scaling. We add a

background based on random textures to the rendered object

image to provide sufficient variety for the segmentation

network to learn foreground segmentation. Our training

corpus will be made publicly available.3

5.2. Physically Motivated Network Architecture
The proposed network architecture is inspired by the physical

image formation process (Section 4), and thus the quantities

involved in the rendering equation, as illustrated in Figure 2.

We partition the task of material estimation into five CNNs

tailored to perform specific sub-tasks. We start with the estima-

tion of a binary segmentation mask (SegmentationNet) to iden-

tify the pixels that belong to the dominant object in the scene.

Afterwards, we decompose the masked input image to obtain

the specular shading image (SpecularNet). The mirror estima-

tion subnetwork (MirrorNet) converts the specular shading

image into a mirror image by removing the specular rough-

ness. Finally, the albedo estimation network (AlbedoNet) uses

the masked input image and the specular shading image to

estimate the diffuse and specular albedo parameters. The

exponent estimation network (ExponentNet) combines the

1http://rll.berkeley.edu/bigbird/
2https://www.shapenet.org/about
3http://gvv.mpi-inf.mpg.de/projects/LIME/
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specular shading image and the mirror image to produce the

specular exponent, which ranges from diffuse to shiny.

Our proposed architecture provides the opportunity for

intermediate supervision using the known ground-truth

quantities from our corpus, which leads to higher-quality

regression results than direct estimation with a single CNN.

Our approach also enables the implementation of a novel per-

ceptual rendering loss, which we discuss in Section 5.3. While

our network is based on five sub-tasks, we do train it end-to-

end, which typically results in better performance than using

individually designed components. As shown in the results

section, our core representation, which is based on specular

and mirror images, is better suited for the image-to-image

translation task than the direct regression of reflectance maps

in previous work [12]. The main reason is that the correspond-

ing image-to-image translation task is easier, in the sense that

the CNN has only to learn a per-pixel color function, instead

of a color transform in combination with a spatial reordering

of the pixel, as is the case for reflectance and environment

maps. This is because the pixel locations in reflectance and

environment maps inherently depend on the underlying

unknown scene geometry of the real-world object. The esti-

mated mirror image, in combination with the specular image,

enables the regression of material shininess with higher

accuracy, since it provides a baseline for exponent estimation.

The input to our novel inverse rendering network are

256×256 images that contain the full object at the center.

The architectures of SegmentationNet, SpecularNet and

MirrorNet follow U-Net [40]. The skip connections allow

for high-quality image-to-image translation. AlbedoNet is an

encoder with 5 convolution layers, each followed by ReLU

and max-pooling, and 3 fully-connected layers. ExponentNet

is a classification network that uses a one-hot encoding of

the eight possible classes of object shininess. We use binned

shininess classes to represent just-noticeably different shini-

ness levels, as regression of scalar (log) shininess exhibited

bias towards shiny materials (see Section 6 for discussion).

For full details of the used subnetworks, please refer to the

supplemental document. During training, we apply an ℓ2-loss

with respect to the ground truth on all intermediate physical

quantities and the output material parameters, except for

SpecularNet and MirrorNet, for which we use an ℓ1-loss to

achieve high-frequency results, and a cross-entropy loss for

classification of shininess using ExponentNet. In addition,

to further improve decomposition results, we apply a novel

perceptual rendering loss, which we describe next.

5.3. Perceptual Rendering Loss

Since we train our approach on a synthetic training corpus (see

Figure 3), we have ground-truth annotations for all involved

physical quantities readily available, also for the ground-truth

Blinn–Phong parameters BPi. One straightforward way of

defining a loss function for the material parameters is directly

in parameter space, e.g., using an ℓ2-loss. We show that this

alone is not sufficient, since it is unclear how to optimally dis-

tribute the error between the different parameter dimensions,

such that the parameter error matches the perceptual per-pixel

distance between the ground truth and the corresponding

re-rendering of the object. Another substantial drawback

of independent parameter space loss functions is that the

regression results are not necessarily consistent, i.e., the

re-rendering of the object based on the regressed parameters

perceptually may not match the input image, since errors in

the independent components accumulate. To alleviate these

two substantial problems, which are caused by independent

parameter loss functions, we propose an additional perceptual

rendering loss that leads to results of higher quality. We show

the effectiveness of this additional constraint in Section 6.

Our novel perceptual loss is based on rewriting the

rendering equation (Equation 1) in terms of the diffuse

shading D and the specular shading S:

L(x,ωo)=ma+md

∫

Ω

(ωi ·n)E(ωi)dωi

︸ ︷︷ ︸
D

+ms

∫

Ω

(h·n)sE(ωi)dωi

︸ ︷︷ ︸
S

=ma+mdD+msS. (4)

For high efficiency during training, we pre-compute the

diffuse and specular shading integrals per pixel in our

ground-truth training corpus (see Figure 3), and store them

in the form of diffuse shading and specular shading maps D

and S, respectively.

Our perceptual rendering loss R directly measures the dis-

tance between the rendered prediction and the input image I:

R(m̂d,m̂s,Ŝ)=

∥∥∥∥B·
[
I−(A+m̂dD+m̂sŜ)︸ ︷︷ ︸

rendered prediction

]∥∥∥∥. (5)

Here, B is the binary foreground mask, and the rendered

prediction is based on the ambient color A =ma13, the

predicted diffuse albedo m̂d, the ground-truth diffuse shading

D, the predicted specular albedo m̂s and specular shading

Ŝ. We directly predict the specular shading Ŝ instead of

the shininess s to alleviate the costly integration step over

the environment map. Since we pre-computed all physical

quantities in our training corpus, the rendering step is a

simple per-pixel operation that is highly efficient and can be

implemented using off-the-shelf operations such as per-pixel

addition and multiplication, which are already provided by

deep-learning libraries, without the need for a hand-crafted

differentiable rendering engine [28].

5.4. End­to­End Training
We train all our networks using TensorFlow [1] with Keras [4].

For fast convergence, we train our novel inverse rendering

network in two stages: First, we train all subnetworks

separately based on the synthetic ground-truth training
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Figure 4. Real-world material estimation results based on a single

color image. Our approach produces high-quality results for a large

variety of objects and materials, without manual interaction.
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Figure 5. Material estimates on the dataset of Rematas et al. [37].

corpus. Then we train SpecularNet and MirrorNet together.

Afterwards, we add ExponentNet, and finally AlbedoNet to

the end-to-end training. The gradients for back-propagation

are obtained using Adam [22] with default parameters. We

first train for 100,000 iterations with a batch size of 32, and

then fine-tune end-to-end for 45,000 iterations, with a base

learning rate of 0.0001 and δ=10−6.

5.5. Temporal Fusion

Our single-shot inverse rendering approach estimates

plausible material parameters from a single image. However,

when applied to video streams independently per video frame,

our estimation may have some temporal instability due to

changing lighting conditions, camera parameters or imaging

noise. To improve the accuracy and temporal stability of our

approach, we therefore propose to temporally fuse all our

estimated parameters. This leads to results of higher quality

and higher temporal stability. We use a sliding window

median filter with a window size of 5 frames. This helps to

filter out occasional outliers. From the median-filtered output,

we then perform decaying exponential averaging:

P
t=αP̂+(1−α)Pt−1. (6)

Here, P̂ is the current parameter estimate, Pt is the final

estimate for the current time step t, and P
t−1 is the fused

result of the previous frame. We use a decaying blending

factor α = (1/t) for all our experiments. This temporal

filtering and fusion approach is particularly useful for our

environment map estimation strategy (see Section 7), since

it helps in integrating novel lighting directions sampled by

the object as the camera pans during the video capture.

Input Specular

Estimate

Diffuse Material EnvMap GT EnvMap

Figure 6. Our approach estimates the specular decomposition layer

from a single color image. The diffuse layer can be obtained by

subtracting it from the input. With the available ground-truth nor-

mals, we also reconstruct the environment map using our technique

described in Section 7. Images from Lombardi and Nishino [29].

6. Results
We now show qualitative and quantitative results of our

real-time single-shot material estimation approach, compare

to state-of-the-art approaches, and finally evaluate our design

decisions to show the benefits of our novel perceptual loss

and physically-motivated network architecture.

Qualitative Results Figure 4 shows real-time material

estimation results for a wide range of different materials

and general objects. As can be seen, our approach estimates

material parameters at high quality for many challenging

real-world objects that have uniform material, without the

need for manual interaction.

We also applied our approach to the photos of painted

toy cars by Rematas et al. [37], shown in Figure 5, and obtain

high-quality material estimates. In addition, our approach can

estimate the specular shading layer from a single color image,

which enables us to compute the diffuse shading layer by sub-

traction, as shown in Figure 6. Note that our approach works

for general objects, and does not require manual segmentation.

In contrast, previous techniques either work only for a specific

object class or require known segmentation [12, 28, 29].

Run-time Performance On an Nvidia Titan Xp, a forward

pass of our complete inverse rendering network takes

13.72 ms, which enables various live applications discussed

in Section 7. Individual run times are: SegmentationNet

(2.83 ms), SpecularNet (3.30 ms), MirrorNet (2.99 ms),

AlbedoNet (2.68 ms) and ExponentNet (1.92 ms).

6.1. Quantitative Evaluation and Ablation Study

We quantitatively analyze our method’s performance to

validate our design choices. We compare average estimation

errors for groups of material parameters on an unseen test

set of 4,990 synthetic images in Table 1. We compare our
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Table 1. Quantitative evaluation on a test set of 4,990 synthetic images. The column ‘Shininess Exponent’ shows the accuracy of exponent

classification, reported as percentage classified in the correct bin and the adjacent bins. The last three columns show the direct parameter

estimation errors. Please note that the error on shininess is evaluated in log-space to compensate for the exponential bias.

Shininess Exponent Average Error

(correct bin + adjacent bins) Diffuse Albedo Specular Albedo Shininess (log10)

Our full approach 45.07% + 40.12% 0.0674 0.2158 0.3073

without perceptual loss (Section 5.3) 45.15% + 40.96% 0.1406 0.2368 0.3038

without MirrorNet 36.29% + 40.28% 0.0759 0.2449 0.3913

with exponent regression (log10) 44.09% + 41.28% 0.0683 0.2723 0.2974

Reflectance Map Based Estimation 13.57% + 25.29% 0.0408 0.1758 0.7243

1 2 3 4 5 6 7 8

1 56% 30% 6% 3% 5% 0% 0% 0%

2 19% 51% 23% 5% 2% 0% 0% 0%

3 9% 24% 42% 20% 4% 1% 1% 0%

4 8% 11% 28% 29% 21% 3% 1% 0%

5 7% 2% 8% 23% 44% 12% 4% 0%

6 2% 1% 2% 7% 37% 35% 15% 1%

7 1% 0% 2% 3% 8% 25% 49% 12%

8 0% 0% 0% 0% 4% 5% 34% 55%

Predicted

A
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l

1 2 3 4 5 6 7 8

1 48% 32% 10% 5% 3% 1% 1% 0%

2 21% 47% 25% 6% 1% 0% 0% 0%

3 6% 25% 41% 21% 5% 1% 0% 0%

4 6% 9% 25% 36% 19% 4% 1% 0%

5 3% 4% 8% 24% 43% 11% 6% 0%

6 1% 1% 2% 9% 36% 25% 24% 2%

7 0% 0% 1% 2% 8% 15% 49% 23%

8 0% 0% 0% 0% 2% 4% 30% 62%

Predicted

A
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Figure 7. Confusion matrix of shininess prediction for classification

(left) and regression of log-shininess (right).

full approach to three alternative versions by modifying one

aspect of the network in each instance, plus one alternative:

1. Our network as-is, but without the novel perceptual

loss (Section 5.3). Exclusion of the perceptual loss leads to

reduced accuracy in the albedo estimates.

2. Our network without the MirrorNet, so that the

ExponentNet only depends on the output of SpecularNet.

The exclusion of MirrorNet leads to reduced exponent

classification accuracy, thus proving the efficacy of our

mirror-representation-based design on the challenging task

of estimating the non-linear material shininess.

3. Our network with the ExponentNet modified to regress

shininess directly instead of as a classification task. The

regression is performed in log space (base 10). The average

errors show similar performance in both our original classifi-

cation and this regression case. Yet, we chose classification as

the final design of our method. We make this choice because

the regression network exhibits a bias towards specular

materials, i.e., it performs well for specular materials, but

quite poorly on diffuse materials. This becomes more evident

when we look at the distribution of the estimation accuracy for

shininess over the classification bins in the confusion matrix

in Figure 7. The confusion matrix for the classification task

(left) is symmetric at the diffuse and specular ends, whereas

for the regression (right) it is more asymmetric and biased

towards specular predictions. This bias is also visible on real-

world data, in which case the regression network performs

poorly for diffuse objects. This bias appears to result from

the different losses employed in the training4. Please see the

supplementary document for examples of this phenomenon.

4The classification task uses a binary cross-entropy loss which treats

each bin as equal, whereas the regression task uses the mean absolute error,

which may have greater error for larger exponent values, hence biasing.

Target Source Lombardi et al.Ours Liu et al.

Our Estimates

Material Mirror Illumination

Material Transfer

Figure 8. Material estimation and transfer comparison. From left

to right: Image of the target object, source material to copy, our

estimates of material, mirror image and environment map, and the

transfer results of our approach, Liu et al. [28] and Lombardi and

Nishino [29]. Our method obtains better material estimates (top two

rows) and illumination (third row). For fairness and comparability

of the results, we use the normal map estimated by Liu et al. [28]

for our environment map estimation in this case.

4. This method uses the encoder–decoder structure of

Georgoulis et al. [12] to take a segmented input (from our Seg-

mentationNet), and estimates a spherical reflectance map of

size 256×256. This reflectance map is then fed to a second net-

work that estimates the material parameters. Both networks

are first trained independently, and then tuned by training

end-to-end for a fair comparison. This approach attains

slightly lower albedo errors, but performs poorly on shininess

estimation. We suspect this might be due to the non-linear

re-ordering required to convert an image of an object into a

reflectance map, which results in the loss of high-frequency

information that is essential to exponent estimation.

We train all networks on our full training data, until conver-

gence. We also report the accuracy of our SegmentationNet on

this test set as 99.83% (Intersection over Union). For more seg-

mentation results, we refer to the supplementary document.

6.2. Comparison to the State of the Art
We compare to the state of the art in learning-based material

estimation. First, we compare our material transfer results

to Liu et al. [28] and Lombardi and Nishino [29] in Figure 8.

The approach of Liu et al. [28] requires optimization as a

post-process to obtain results of the shown quality, while our

approach requires just a single forward pass of our network.

Here, we also compute the environment map of the target

object using the intermediate intrinsic layers regressed by our

network (see Section 7). Our approach obtains more realistic

material estimation and therefore better transfer results.
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Figure 9. Comparison to the approach of Georgoulis et al. [12]. Note

that their approach is specifically trained for the outdoor estima-

tion scenario, while our approach is trained for the indoor setting.

Nonetheless, our approach obtains results of similar or higher quality.

We also compare our approach to the material estimation

results of Georgoulis et al. [12] in Figure 9. Please note that

the shown images are taken outdoors, and their approach

was trained for this specific scenario, while ours was trained

for an indoor estimation setting. Nonetheless, our approach

obtains results of similar or even higher quality.

6.3. Limitations
Our approach works well for many everyday objects, but does

not handle more complex BRDFs well. Particularly difficult

are scenarios that violate the assumptions that our model

makes. Our approach may fail in the presence of global il-

lumination effects such as strong shadows or inter-reflections.

While most commonplace dielectric materials exhibit white

specularity, some metallic objects have colored specularity,

which our approach does not support. This could be addressed

with more expressive BRDF and global illumination models.

The quality of our material and environment map estimates

depends on the quality of the input data. Modern cameras pro-

vide good white balancing, and our white illumination model

hence fits well for many indoor scenarios, yet some special

lighting arrangements, such as decorative lighting, require

handling of color illumination. Working with low-dynamic-

range images also implies dealing with camera non-linearities,

which may lead to saturation artifacts, e.g., in the teddy bear

in Figure 6. In our experience, the quality of surface normals

derived from depth sensors is not adequate for accurate

high-frequency illumination estimation. Future AR and VR

devices with more advanced depth sensing capabilities may

help to improve the quality of estimated environment maps.

7. Live Applications
Real-time material estimation from a single image or video

can provide the foundation for the following exciting mixed-

and augmented-reality applications:

Single-Shot Live Material Estimation Our approach can

estimate material parameters in a live setting, so that material

properties of real-world objects can be reproduced in virtual

environments from just a single image, for instance in a video

game or in a VR application. For an example of such a live

transfer, please see our supplementary video.

Live Material Cloning When surface geometry is avail-

able, e.g., when using a depth sensor, we can extend our

Estimated Material and EnvMap Estimated Material with GT EnvMap

Figure 10. Cloning of real-world materials on virtual objects in an

illumination-consistent fashion. Left: Estimated material rendered

with the estimated environment map. Right: Estimated material

rendered with the ground-truth environment map.

approach to compute an environment map alongside material

parameters. This essentially converts an arbitrary real-world

object into a light probe. We use the normals available from a

depth sensor to map the estimated mirror image to a spherical

environment map; this provides the high-frequency lighting

information of the scene. We also obtain the diffuse shading

image of the object and compute a low-frequency spherical

harmonics lighting estimate for the scene using the available

normals. The full environment map lighting is obtained by

adding the two. This process is followed for single image

when normals are available, for example for the target image

in Figure 8. In case of a video as input, we integrate the low-

and high-frequency lighting estimates of multiple time steps

into the same environment map using the filtering and fusion

technique described in Section 5.5. We also track the camera

using the real-time volumetric VoxelHashing framework

[35], so that we can integrate environment maps consistently

in scene space rather than relative to the camera. We then

transfer the estimate to the virtual object of our choice, and

render it seamlessly into the real-world scene, as shown in

Figure 10. See our supplementary video for a demonstration.

8. Conclusion
We presented the first real-time approach for estimation of

diffuse and specular material appearance from a single color

image. We tackle the highly complex and ill-posed inverse

rendering problem using a discriminative approach based

on image-to-image translation using deep encoder–decoder

architectures. Our approach obtains high-quality material

estimates at real-time frame rates, which enables exciting

mixed-reality applications, such as illumination-consistent

insertion of virtual objects and live material cloning.

We believe our approach is a first step towards real-time

inverse rendering of more general materials that go beyond

the commonly used Lambertian reflectance assumption and

will inspire follow-up work in this exciting field.
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