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Figure 1: Representative results generated using our interactive structure-guided texture transfer framework. The stylized

images are synthesized with the guidance of corresponding user-specified semantic maps. The proposed common framework

is capable of multiple challenging user-controlled texture transfer tasks: (a) turning doodles into artworks, (b) editing deco-

rative patterns, (c) generating texts in special effect, (d) controlling effect distribution in text images, (e) swapping textures.

Source image credits: (a) Van Gogh; (b,c,d) Zcool [1]; (e) Luan et al. [35]

Abstract

In this paper, we present a general-purpose solution to

interactive texture transfer problems that better preserves

both local structure and visual richness. It is challenging

due to the diversity of tasks and the simplicity of required

user guidance. The core idea of our common framework is

to use multiple custom channels to dynamically guide the

synthesis process. For interactivity, users can control the s-

patial distribution of stylized textures via semantic channel-

s. The structure guidance, acquired by two stages of auto-

matic extraction and propagation of structure information,

provides a prior for initialization and preserves the salien-

t structure by searching the nearest neighbor fields (NN-

F) with structure coherence. Meanwhile, texture coherence

is also exploited to maintain similar style with the source

image. In addition, we leverage an improved PatchMatch

with extended NNF and matrix operations to obtain trans-
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formable source patches with richer geometric information

at high speed. We demonstrate the effectiveness and superi-

ority of our method on a variety of scenes through extensive

comparisons with state-of-the-art algorithms.

1. Introduction

Texture transfer is a classic problem in areas of Comput-

er Vision and Computer Graphics. With this technique, we

can automatically transfer the stylized texture from a given

sample to the target image. A number of algorithms capable

of creating impressive stylization effects have been reported

over these years. Champandard et al. [8] proposed Neural

Doodle, a technique turning doodles painted by users into

fine artworks with provided samples. DecoBrush [33], an

extension of Realbrush [32] and Helpinghand [34] allows

designers to draw structured decorative patterns simply with

selected styles. More recently, Yang et al. [43] achieved tex-

t effect transfer which enables to migrate the effect from a
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stylized text image to a plain text image. However, exist-

ing approaches seem to be isolated from each other due to

specific usage scenarios. In fact, they share a common no-

tion of transferring textures under user guidance, namely,

users should be able to transfer the texture from source to

anywhere in target as they want.

The aim of this paper is to establish a general framework

of user-guided texture transfer for multiple tasks, including

turning doodles into artworks, editing decorative patterns,

generating texts in special effect as well as controlling ef-

fect distribution in text images, and swapping textures (see

Figure 1).

Due to the diversity of tasks and the simplicity of user

guidance, it is challenging to achieve the goal mentioned

above using existing methods. Some approaches [33, 43]

perform well but they are tailored to specific domains.

Hertzmann et al. [21] proposed a more general solution

called Image Analogy. However, due to the lack of enough

guidance of structural distribution, it suffers inner texture

dislocation and fails to preserve local high-frequency struc-

tures. Painting by Feature [36] allows users to utilize the

line and contour to guide texture transfer. It presents an

improvement by treating line feature and area feature us-

ing brush tool and fill tool separately. Yet, the method is

more suitable for filling nearly-stationary textures, since it

does not provide the directional control for internal texture

generation. The neural doodle reported in [8] using convo-

lutional neural networks fails to reproduce clear and high-

quality images with low-level texture details. The recently

proposed Deep Image Analogy [31] produces particularly

compelling results via a combination of image analogy [21]

and neural networks [27, 41]. While when we feed a doodle

image to the network, since the semantic labels have very

low neural activation it is difficult to establish correspon-

dence in textureless regions and thus unable to generate sat-

isfactory synthesis results.

In this paper, we propose a common framework for user-

guided texture transfer that is able to handle various chal-

lenging tasks. Interactive structure-based image synthesis

is guided by both semantic map and structure information.

Semantic channels are annotated by the user who can con-

trol the spatial distribution of stylized textures in the tar-

get image. The structure channels are then extracted au-

tomatically by content-aware saliency detection and prop-

agated from the source style image to the target as a prior.

Specifically, the propagation step acquires inner structure

correspondences via the registration of key contour points

between the source and target images. Combining seman-

tic and structure information for dynamic guidance enables

the transfer process to produce high-quality textures with

content-awareness and low-level details. In addition, an

improved PatchMatch algorithm with the extended nearest

neighbor fields and matrix operations is adopted to provide

richer source patches without speed reduction. Major con-

tributions of this paper can be summarized as follows:

• We design a general framework to handle interactive

texture transfer issues with the challenge of task diver-

sity and guided-map simplicity, and show the effec-

tiveness of our framework in multiple tasks.

• We propose a method that extracts salient structure re-

gions and conveys structure information in the source

image to the target. The structure information is then

utilized as a prior to guide better synthesis procedure.

• We present some novel scenarios of user-controlled

texture transfer in which, by incorporating the im-

proved texture synthesis method, finer detailed synthe-

sis images can be generated with higher speed.

2. Related Work

Up to now, a number of texture transfer methods have

been proposed, which can be roughly categorized as classic

texture transfer or neural-based techniques. Here, we briefly

review some representative works.

2.1. Classic Texture Transfer

Classic texture transfer method is a variant of texture

synthesis with given texture examples. For instance, most

early transfer algorithms as pioneered by Efros and Free-

man [13] are based on example-based texture synthesis

methods [14, 2]. They utilized a correspondence map with

some corresponding quantities such as intensity to constrain

the synthesis process. A later work by Criminisi et al. [10]

used patch priorities for region-filling to preserve the struc-

ture. Komodakis et al. [26] adopted Belief Propagation as

the optimization scheme to avoid greedy patch assignments.

Optimization-based texture transfer technique, firstly

proposed by Kwatra et al. [28], is also a follow-up work

of example-based method. This technique develops to a

successful texture synthesis method due to its high visual

quality outcome and wide application in different scenes.

Kwatra et al. [28] regarded texture synthesis problem as a

global optimization task and used Expectation Maximiza-

tion (EM)-like algorithm to iteratively minimize the energy

function. Wexler et al. [42] alleviated the completion is-

sue with multi-level synthesis to avoid being stuck in local

minima. Barnes et al. [3, 4] introduced a PatchMatch al-

gorithm to accelerate the nearest-neighbor search process

leveraging random search and the natural coherence in the

image. The optimization-based method was extended to

image melding [11], stylized 3D renderings [15], and tex-

t effects transfer [43] using adaptive patch partitions [16].

However, these methods fail to synthesize the texture with

salient structure and are prone to wash-out effect caused by
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overusing low-frequency texture [38]. Our method shares

the common baseline with these techniques and overcomes

the challenges using multi-channel dynamic guidance.

Analogy-based method is another alternative for texture

transfer. Image Analogy, originally proposed in [21], uti-

lizes the availability of the input exemplar pair (source im-

age A and stylized result A′) to acquire the stylized image

B′ of target image B. The method finds the best correspon-

dence in source image for each pixel in target image. Cheng

et al. [9] improved this method with semi-supervised learn-

ing and image quilting model, which aims to ensure both lo-

cal and global consistency. This approach has also been ex-

tended to solve animation stylization problems [20, 6] and

construct efficient queries for large datasets [5]. Unfortu-

nately, it does not provide a directional control and easily

results in inner texture dislocation, which leads to the lost

of structure information.

2.2. Neural­based Style Transfer

Gatys et al. [17] proposed a neural style transfer method

leveraging pre-trained deep convolutional networks such as

VGG-19 [41]. Their method is effective for stylizing the

context image with a given style image, due to the abili-

ty of decomposing and recombining the content and style

of images. Johnson et al. [25] later utilized perceptual loss

functions to train feed-forward networks for real-time tex-

ture transfer tasks. Li and Wand [29] combined the Markov

Random Fields model with deep neural networks, which

was later extended to semantic style transfer [8]. Despite

the great success of neural-based method, it is not suitable

for our scenarios where source images are not limited to

artistic works, photographs and photorealism images are al-

so included. For those kinds of data, results of neural-based

methods often contain many low-level noises. Moreover,

no intuitive way is provided to control the synthesis process

and thus results become unpredictable.

The recently-proposed Generative Adversarial Networks

(GANs) [19, 12, 39] provided a potential alternative to gen-

erate texture via an adversarial process. GANs train a dis-

criminator to distinguish whether the output is real or fake

and a generator is trained simultaneously to fool the dis-

criminator. More recently, image-to-image translation [24]

was proposed using ‘U-Net’-based architecture [40] for

generator and convolutional ‘PatchGAN’ classifier [30] for

discriminator. It is a general framework for translating an

input image into the corresponding output image, such as

turning semantic labels, edges, or segments into realistic

images. Although this technique produces impressive re-

sults, it requires collecting thousands of related images to

train a model for a specific category. On the contrary, our

method only needs one exemplar for generating the target

stylized image from a corresponding semantic map.

Figure 2: Overview of the interactive texture transfer prob-

lem. With three input images Ssem (semantic map of source

image), Ssty (stylized source image aligned to Ssem) and

Tsem (semantic map of target image), stylized target image

Tsty with the style in Ssty can be generated.

3. Method Description

Interactive texture transfer aims to generate the stylized

target image from a given source image with user guidance.

Users can control the shape, scale and spatial distribution of

the objects to be synthesized in the target image via seman-

tic maps. With three input images Ssem (semantic map of

source image), Ssty (stylized source image aligned to Ssem)

and Tsem (semantic map of target image), the stylized tar-

get image Tsty could be automatically synthesized such that

Ssem : Ssty :: Tsem : Tsty (see Figure 2 for an overview).

Reproducing a structural image with stylized textures by

using a semantic map that contains little information is a

challenging task. In our method, we search the best corre-

spondences between the source and target in a patch-wise

manner. From the semantic map shown in Figure 2 we

can see that patches in the boundary of color labels contain

more abundant features than those located in internal posi-

tions. For patches in Tsem, patch a can find its best corre-

spondence (patch c) more easily than patch b that is hard to

choose its best-suited partner among internal source patch-

es, such as patch d and e, which are completely identical

(both full-blue) in the semantic map. Thus, it is difficult for

internal patches with salient structure to be correctly syn-

thesized by only relying on semantics. To solve the prob-

lem, we introduce a structure guidance based on the shape

similarity of semantic labels.

The basic idea is that boundary patches are forward to

be synthesized roughly correctly with more characteristics

in the semantic map, then we find the best correspondences

of inner patches mainly based on the structure guidance and

coherence with the source stylization. Actually, once the

boundary patches have been correctly synthesized, this in-

teractive texture transfer problem could almost be degener-

ated into an image completion task [42, 23, 22] with a large

hole to be filled via boundary propagation. We have tried

many state-of-the-art inpainting methods [11, 23] but our

experimental results (see supplementary materials) show

that all of them fail to synthesize structural textures with

such a large hole. One major reason is that a patch in the in-
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Figure 3: The pipeline of our framework.

Figure 4: Illustration of structure information extraction.

The structure mask (i) or (j) is acquired by the computation

of saliency maps (c), (d) or (g), (h).

ternal region receives conflict information propagated from

four directions due to the difference in shapes. We alleviate

this issue by using structure information to provide a prior

in the initialization stage and guide the synthesis process.

As shown in Figure 3, three main steps constitute

our pipeline including salient internal structure extraction,

structure propagation and guided texture transfer.

3.1. Internal Salient Structure Extraction

Some salient texture details in the internal region of a

source semantic map are prone to being lost or suffering

disorder in the synthesized target image. This step aims to

extract detailed structure information within the semantic

map for the following propagation and synthesis.

Saliency Detection. Saliency detection is performed to

mark the salient regions of the source stylized image, which

contain complex textural structure or curvilinear structure

such as an edge or contour in an image. Goferman et al. [18]

proposed a saliency detection with content-awareness. Fol-

lowing their method, we compute a saliency map for the

source semantic map as Msem and the other one for the

source stylized image as Msty .

Structure Definition. There exist some structural textures

which are easily lost in the target because they contain

salient structure information in the source stylized image

but are not marked in the semantic map. These structural

patches mainly locate in the internal region of the semantic

map, such as the cloth region below the neck in Figure 4

(b) and leaves in Figure 4 (f). In this paper, we define these

salient internal textures as structure and the structure mask

Figure 5: Overview of our structure propagation process.

Structure information in a target image is obtained by find-

ing a planar transformation, which enables to project the

structural pixels in Sstruct to Tstruct. The transformation

is computed with the TPS algorithm based on contour key

point matching and the correspondence of contour points

established via the CPD method.

as a binary image which can be computed by

Mstruct(p) =

{
1, Msty(p) - ℓMsem(p)>δ

0, otherwise
, (1)

where p is the pixel in saliency map Msty and Msem, we

set ℓ as 10 for a sharp saliency decrease of boundary pixels.

δ is a threshold to discriminate the structure information.

Figure 4 shows two examples of extracted structure regions.

The structure map of source image is acquired by the

multiplication of colocated elements in matrix

Sstruct = Ssty ◦Mstruct. (2)

3.2. Structure Propagation

After extracting internal structure of source labels, as

shown in Figure 5, the structure information is propagated

from source to target to guide the texture transfer process.

Matching Contour Key Points. With only the semantic

map given for a target image, we want to propagate the

structure from source to target via a planar transformation

ψ : R2 → R
2, by which each structural pixel in Sstruct is

projected to Tstruct. We compute the planar transformation

ψ by using key points on the contour, which are more reli-

able to represent the shape features. To establish correspon-

dence between two sets of points, we use the coherent point

drift (CPD) [37], a powerful point set registration algorith-

m to match each target contour point ĉp ∈ Ω′

con to source

contour point cp ∈ Ωcon. We choose this algorithm mainly

due to the fact that it is capable of both rigid and nonrigid

spatial transformation and is more robust to assign contour

correspondences as a queue. Then, the contour points with

top nc curvature values are picked up as key points.

Structure Correspondence. Once the matching of contour

key points is completed, we compute the planar transfor-

mation ψ using thin plate splines (TPS) [7], which is often

used to build elastic coordinate transformation. The dense
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correspondences for structural pixels are acquired by

Ω′

struct(ŝp) = ψ · Ωstruct(sp), (3)

where Ωstruct is the point set of structural pixels (sp) in

Sstruct and Ω′

struct is the point set of transformed points

in Tstruct. Afterwards, the structure map of target image is

computed by

Tstruct(q) =

{
Sstruct(sp), q ∈ Ω′

struct and q = ŝp

0, q /∈ Ω′

struct

.

(4)

Tstruct provides a prior for predicting positions of struc-

tural pixels in the target image. We introduce the struc-

ture correspondences < sp, ŝp > and target structure map

Tstruct for guided initialization and guided search.

3.3. Guided Texture Transfer

In this section, we describe how the extracted struc-

ture information and user-specified semantic annotations

are used to guide the texture transfer process. Our structure-

guided texture transfer approach is designed based on an

optimization-based texture synthesis [42] and utilizes an

improved PatchMatch to search the nearest neighbor fields.

More specifically, we incorporate customized guidance

by modifying the original energy function (Section 3.3.1)

and three guiding channels (semantics, structure and coher-

ence) are introduced for dynamical guidance using change-

able weights (Section 3.3.2-3.3.4). Finally, after initial-

ization with structure information, we optimize the energy

function by performing guided search and vote iteratively

(Section 3.3.5).

3.3.1 Energy Function

Our goal is to synthesize the target stylized image using

stylized textures in source. We pose this problem as a patch-

based optimization task with the following energy function

E =
∑

q∈T

min
p∈S

(λ1Esem(p, q)+λ2Estruct(q)+Ecoh(p, q)),

(5)

where p denotes the center coordinate of the source patch

in Ssem and Ssty , and q is the center coordinate of the tar-

get patch in Tsem, Tsty and Tstruct. λ1 and λ2 are the t-

wo weight parameters of semantic and structure guidance

terms, respectively. We define λ1 as a linear variable de-

creasing with iteration times and λ2 as a constant based on

the shape similarity between source and target:

λ1 =
te − t

te − ts
β, ts 6 t 6 te, (6)

λ2 = exp{−
1

|Ω′
con|

∑

ĉp∈Ω′

con

d(ĉp, cp)}, (7)

where ts and te denote the starting and ending times of

iteration, respectively. λ1 will be changeable from β to

0. d(ĉp, cp) is the Euclidean distance between the contour

point in target and its aligned correspondence. During ini-

tial iterations, with β set to a large value, semantic guidance

is in dominant position leading boundary patches to find

reliable correspondences first. The influence of semantic

guide is gradually weakened with reduction in λ1. Structure

and textural coherence terms weighted by λ2 guide synthe-

sis together in the later stage.

3.3.2 Semantic Guide

The semantic map specified by users introduces manual

control to the texture transfer process. Same color labels in

Ssem and Tsem manifest the similar objects with identical

stylized texture. We manually produced labels via the brush

and quick selection tool of photoshop in about 30 seconds

for each image. A semantic label should cover an object to

naked eyes to avoid textures in one label being synthesized

in another. We define the semantic guidance term using L2-

norm of two sampled patches in RGB space

Esem(p, q) = ‖Tsem(Nq)− Ssem(f(Np))‖
2, (8)

where Tsem(Nq) is a ω×ω patch sampled around the center

position q in target semantic map Tsem, and Ssem(f(Np))
is a ω × ω patch centered at source pixel p with geometric

transformation f applied. The transformation f encompass-

es transform, rotation and reflection. The i-th pixel in Np is

transformed as

f(N i
p) = γH∆N i

p + p, (9)

where H =

∣∣∣∣
cos θ − sin θ
sin θ cos θ

∣∣∣∣ denotes the rotation matrix,

γ ∈ {1,−1} represents the reflection parameter, and ∆N i
p

is the coordinate of pixel i related to p.

3.3.3 Structure Guide

The salient structure in Ssty ignored by semantic map is

pre-projected as Tstruct. With this prior we describeEstruct

as the similarity of the target structural patch and temporary

stylized patch. Structural pixels are constrained with the

following equation

Estruct(q) =
∑

i=0...ω2−1

(Tstruct(N
i
q)− Tsty(N

i
q))

2κ(N i
q)

τ(Nq)
,

(10)

where κ(N i
q) denotes whether the i-th pixel inNq is a struc-

tural pixel or not, defined by

κ(N i
q) =

{
1, N i

q ∈ Ω′

struct

0, N i
q /∈ Ω′

struct

, (11)
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(a) no structure guide (b) struct init (c) struct init+search

Figure 6: The effects of structure guide. (a) Results without

structure guide. (b) Results obtained by initialization with

structure prior. (c) Results obtained by both initialization

and search with structure guide.

and τ(Nq) =
∑

i=0...ω2−1
κ(N i

q) denotes the number of

structural pixels in patch Nq . The structure guidance ter-

m affects the synthesis of Tsty by leveraging EM iterations

since the weighted average based on energy is used in the

vote step and thus results in the search step can also be im-

proved iteratively.

3.3.4 Coherence Guide

The coherence term aims to synthesize the target image us-

ing the consistent stylized textures in source. We define this

term similar to semantic term using distance in RGB space

Ecoh(p, q) = ‖Tsty(Nq)− Ssty(f(Np))‖
2, (12)

where Tsty is the temporarily-generated image, which will

be iteratively improved.

3.3.5 Function Optimization

Our optimization approach is modified from the one orig-

inally proposed by Wexler et al. [42] with the main dif-

ference for the customized guidance and improved Patch-

Match. To be specific, the energy function is optimized by

EM-like iterations with two steps (guided search and vote)

performed alternatively. Here, we mainly describe the dif-

ference of our method against the original one, whose more

details can be found in [42].

Guided Initialization. In the coarsest level, structure corre-

spondences acquired in section 3.2 are utilized to initialize

the NNF that assigns the source patch to each target patch.

Then the initialization of Tsty is synthesized via the vote

step. Projecting structural patches to roughly correct posi-

tions in the initial stage is beneficial for strengthening the

structure information, which will be propagated to neigh-

bors later. In the finer level, the NNF and Tsty are both

upsampled from coarser one as the initialization of curren-

t level. Meanwhile, we construct the image pyramid for

target structure map T l
struct with l ∈ [1, L] and L is the

number of pyramid levels.

Guided Search. In the search step, we mainly leverage E-

quation (5) to search better correspondences between source

and target with the given Tsty . Specially, the structure guid-

ance uses multi-scale T l
struct in coarse-to-fine resolution.

Low-frequency structure map TL
struct provides a rough-

ly correct projection guide while the details are missing,

and high-frequency structure map T 1
struct contains clearer

detailed textures but suffers from severe corruption with

cracks. Multi-scale texture synthesis integrates them to-

gether for better synthesis. The effects of initialization and

search with structure guide are shown in Figure 6.

Moreover, inspired by [23] we use the PatchMatch (P-

M) algorithm [3] with extended NNF and matrix opera-

tions. The NNF is extended to [x, y, θ, γ] containing po-

sition (x, y), rotation θ and reflection γ. With matrix op-

erations, target patches are not processed in scanning order

and the neighbor information is propagated in target patches

simultaneously. Thus, we do not need to search geometric

transformation space explicitly. Instead, the four direction-

al propagations are performed alternately until no patch is

updated. Geometric transformable patches are provided in

the random search step. In this manner, we accelerate the

retrieval of nearest neighbors while obtaining more abun-

dant source patch for synthesis. This improved PM method

also reduces the mistake accumulation in one-by-one fash-

ion and encourages the correct correspondences scattered in

multi-places to be better preserved and propagated.

Vote. In the vote step, we reconstruct the target stylized

image Tsty with given NNF. Tsty is produced by computing

the weighted average color of co-located pixels in neighbor

patches as mentioned in [22].

4. Implementation Details

We use a fixed patch size 5× 5. Parameter ℓ and δ in E-

quation (1) control the salient degree of structural pixels. ℓ
is set to a higher value to decrease boundary saliency since

boundary patches mainly depend on semantic annotation-

s rather than structure guidance. δ is a saliency threshold

between 0 and 1. Parameters nc controls the number of

key contour points. Parameters λ2 and λ1 determined by

β control the balance among global semantic consistency,

structure completeness and local texture coherence. In this

paper, we set the values of ℓ, δ, β and nc as 10, 0.2, 10

and 20, respectively. The rotation angle θ ranges from −π
2

to π
2

and γ takes value from {−1, 1}. In synthesis process,

we use ten levels of the image pyramid with ϕ optimization

iterations on each level, where ϕ linearly decreases when

synthesizing from coarse to fine.
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(a) Input (source) (b) Input (semactics) (c) Output (target)

Figure 7: Doodles-to-artworks. Image courtesy of Cham-

pandard [8] and Liao et al. [31]

(a) Input (source) (b) Input (semactics) (c) Output (target)

Figure 8: Decorative Pattern Editing. Image courtesy of Lu

et al. [33]

5. Experimental Results

We implemented our method in Matlab with a 4 GHz

quad-core CPU. It takes around 2 minutes to synthesis a

target stylized image with 500 × 400 pixels. To validate

the performance of our general framework, we applied the

proposed technique to a wide variety of interactive texture

transfer applications and illustrated that it performs better

than other state-of-the-art methods.

5.1. Applications

Our approach can be effectively used for multiple tasks

of interactive texture transfer such as turning doodles in-

to artworks, editing decorative patterns with user guidance,

generating special effect texts and swapping textures.

Doodles-to-artworks In this scenario, two-bit doodles an-

notated by users can be turned into fine paintings with sim-

ilar styles as corresponding exemplars. When users force

fine-grained guidance into semantic map, this task is more

like an image morphing problem with object deformation.

While with multiple objects in the picture, this task becomes

an image retargeting process. Results are shown in Figure 7

and more can be found in supplemental materials.

Decorative Pattern Editing. As depicted in Figure 8, given

an exemplar, the decorative patterns can be synthesized nat-

urally along with the user-specified path. To be specific, our

method first automatically cuts the stroke into several sec-

tions based on the curvature and then performs the structure

(a) Input (source) (b) Input (plain text) (c) Output (target)

Figure 9: Special Effect Text Generation. Image courtesy

of Zcool [1]

(a) Input (source) (b) Output (target)

Figure 10: Texture Swap. Image courtesy of Yang et al. [43]

projection for each section to ensure the accuracy of propa-

gated structure information.

Special Effect Text Generation. As shown in Figure 9,

our method is also effective for generating texts with var-

ious textures such as the skin of object and the stylization

designed by artists. We can also control the effect distribu-

tion in complex texts and complete text effect transfer with

fragile decorative textures. The proposed method performs

better when the shapes are more similar between source and

target, but the structure can still be well preserved even with

large shape difference.

Texture Swap. From Figure 10 we can see that our method

is also capable of texture swap. For instance, apples can

swap the skin with each other (see Figure 1 (e)) and special

effect texts can swap the effects among them.

5.2. Comparison

We compared our algorithm with state-of-the-art inter-

active texture transfer methods in different scenarios men-

tioned in Section 5.1. See Figure 11 for the results and more

can be found in supplemental materials.

Image analogy [21], a pioneering approach, fails to

maintain local structures in the target stylized image, such

as incomplete leaves in the second row and missing vine in

the bottom row. It is also unable to preserve high-frequency

details for the nose and collar in the top row.

Text effect transfer [43], tailored to special effect tex-

t generation, uses a spatial distribution model based on the
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(a) (Ssem, Ssty) (b) Tsem (c) Image Analogy (d) Text Transfer (e) Neural Doodle (f) Deep Analogy (g) Our method

Figure 11: Comparison with state-of-the-art texture transfer methods. Image courtesy of Van Gogh and Zcool [1]

high correlation between patch patterns and their distances

to text skeleton. The method performs better than other pre-

vious approaches in our experiments of special effect text

generation, but it still fails to preserve the vine’s structure

(vine effect in the third row) whose effect patterns do not

distribute according to the distances. It also suffers from

dislocation for inner textures in other scenarios.

Neural doodle [8] based on the combination of CNN and

MRF methods [29] does not guarantee a high-quality image

with low-level details (the first row). It produces color noise

for photorealism images and messy background with leaves

appearing randomly (the second and third row).

Deep image analogy [31] achieves attractive results with

two stylized images as input. However, in our scenarios

one stylized image must be replaced with a semantic map

and the other stylized image needs to be automatically syn-

thesized. With low neural activation in the semantic map, it

is difficult to find correct correspondence in textureless re-

gions using the VGG network. As we can see from the first

row in Figure 11 (f), although fine-grained controls have

been performed to the face, synthesized facial features are

still more similar as the source stylized image with little

characteristic of the target content. If we increase the con-

tent weight, it will fill regions with pure color patches re-

peatedly (such as the body part). No internal structure is

preserved due to the simplicity of semantic guidance.

From the last column of Figure 11, we can see that the

proposed framework is effective for multiple tasks, synthe-

sizing higher-quality content-specific stylization with well-

preserved structures. Furthermore, under the same experi-

mental settings, our method runs much faster (≈2 mins per

image) than other existing approaches such as image analo-

gy (≈15 mins) and neural doodle (≈40 mins).

6. Conclusion

This paper presented a general framework to interactive

texture transfer with structure guidance. Our method can

automatically migrate style from a given source image to a

user-controlled target image while preserving the structure

completeness and visual richness. More specifically, we in-

troduced a structure guidance acquired by automatically ex-

tracting salient regions and propagating structure informa-

tion. By incorporating the structure channels with seman-

tic and textural coherence, guided texture transfer can be

achieved. Experimental results showed that the proposed

framework is widely applicable for many texture transfer

challenges. Despite the current tendency to use neural-

based methods to style transfer, our results demonstrated

that a simple conventional texture synthesis framework can

still achieve state-of-the-art performance.
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