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Abstract

Deep Neural Networks trained as image auto-encoders

have recently emerged as a promising direction for advanc-

ing the state-of-the-art in image compression. The key chal-

lenge in learning such networks is twofold: To deal with

quantization, and to control the trade-off between recon-

struction error (distortion) and entropy (rate) of the latent

image representation. In this paper, we focus on the latter

challenge and propose a new technique to navigate the rate-

distortion trade-off for an image compression auto-encoder.

The main idea is to directly model the entropy of the latent

representation by using a context model: A 3D-CNN which

learns a conditional probability model of the latent distribu-

tion of the auto-encoder. During training, the auto-encoder

makes use of the context model to estimate the entropy of its

representation, and the context model is concurrently up-

dated to learn the dependencies between the symbols in the

latent representation. Our experiments show that this ap-

proach, when measured in MS-SSIM, yields a state-of-the-

art image compression system based on a simple convolu-

tional auto-encoder.

1. Introduction

Image compression refers to the task of representing im-

ages using as little storage (i.e., bits) as possible. While in

lossless image compression the compression rate is limited

by the requirement that the original image should be per-

fectly reconstructible, in lossy image compression, a greater

reduction in storage is enabled by allowing for some distor-

tion in the reconstructed image. This results in a so-called

rate-distortion trade-off, where a balance is found between

the bitrate R and the distortion d by minimizing d + βR,

where β > 0 balances the two competing objectives. Re-

cently, deep neural networks (DNNs) trained as image auto-

encoders for this task led to promising results, achieving

better performance than many traditional techniques for im-

age compression [19, 20, 17, 4, 2, 9]. Another advantage of

∗The first two authors contributed equally.
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Figure 1: State-of-the-art performance achieved by our sim-

ple compression system composed of a standard convolu-

tional auto-encoder and a 3D-CNN-based context model.

DNN-based learned compression systems is their adaptabil-

ity to specific target domains such as areal images or stereo

images, enabling even higher compression rates on these

domains. A key challenge in training such systems is to op-

timize the bitrate R of the latent image representation in the

auto-encoder. To encode the latent representation using a

finite number of bits, it needs to be discretized into symbols

(i.e., mapped to a stream of elements from some finite set

of values). Since discretization is non-differentiable, this

presents challenges for gradient-based optimization meth-

ods and many techniques have been proposed to address

them. After discretization, information theory tells us that

the correct measure for bitrate R is the entropy H of the

resulting symbols. Thus the challenge, and the focus of this

paper, is how to model H such that we can navigate the

trade-off d+ βH during optimization of the auto-encoder.

Our proposed method is based on leveraging context

models, which were previously used as techniques to im-
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prove coding rates for already-trained models [4, 20, 9, 14],

directly as an entropy term in the optimization. We concur-

rently train the auto-encoder and the context model with re-

spect to each other, where the context model learns a convo-

lutional probabilistic model of the image representation in

the auto-encoder, while the auto-encoder uses it for entropy

estimation to navigate the rate-distortion trade-off. Further-

more, we generalize our formulation to spatially-aware net-

works, which use an importance map to spatially attend the

bitrate representation to the most important regions in the

compressed representation. The proposed techniques lead

to a simple image compression system1, which achieves

state-of-the-art performance when measured with the pop-

ular multi-scale structural similarity index (MS-SSIM) dis-

tortion metric [23], while being straightforward to imple-

ment with standard deep-learning toolboxes.

2. Related work

Full-resolution image compression using DNNs has at-

tracted considerable attention recently. DNN architectures

commonly used for image compression are auto-encoders

[17, 4, 2, 9] and recurrent neural networks (RNNs) [19, 20].

The networks are typically trained to minimize the mean-

squared error (MSE) between original and decompressed

image [17, 4, 2, 9], or using perceptual metrics such as

MS-SSIM [20, 14]. Other notable techniques involve pro-

gressive encoding/decoding strategies [19, 20], adversarial

training [14], multi-scale image decompositions [14], and

generalized divisive normalization (GDN) layers [4, 3].

Context models and entropy estimation—the focus of

the present paper—have a long history in the context of

engineered compression methods, both lossless and lossy

[24, 12, 25, 13, 10]. Most of the recent DNN-based lossy

image compression approaches have also employed such

techniques in some form. [4] uses a binary context model

for adaptive binary arithmetic coding [11]. The works of

[20, 9, 14] use learned context models for improved cod-

ing performance on their trained models when using adap-

tive arithmetic coding. [17, 2] use non-adaptive arithmetic

coding but estimate the entropy term with an independence

assumption on the symbols.

Also related is the work of van den Oord et al. [22, 21],

who proposed PixelRNN and PixelCNN, powerful RNN-

and CNN-based context models for modeling the distribu-

tion of natural images in a lossless setting, which can be

used for (learned) lossless image compression as well as

image generation.

3. Proposed method

Given a set of training images X , we wish to learn a

compression system which consists of an encoder, a quan-

1https://github.com/fab-jul/imgcomp-cvpr

tizer, and a decoder. The encoder E : Rd ! R
m maps an

image x to a latent representation z = E(x). The quantizer

Q : R! C discretizes the coordinates of z to L = |C| cen-

ters, obtaining ẑ with ẑi := Q(zi) 2 C, which can be loss-

lessly encoded into a bitstream. The decoder D then forms

the reconstructed image x̂ = D(ẑ) from the quantized la-

tent representation ẑ, which is in turn (losslessy) decoded

from the bitstream. We want the encoded representation ẑ

to be compact when measured in bits, while at the same time

we want the distortion d(x, x̂) to be small, where d is some

measure of reconstruction error, such as MSE or MS-SSIM.

This results in the so-called rate-distortion trade-off

d(x, x̂) + βH(ẑ), (1)

where H denotes the cost of encoding ẑ to bits, i.e., the en-

tropy of ẑ. Our system is realized by modeling E and D as

convolutional neural networks (CNNs) (more specifically,

as the encoder and decoder, respectively, of a convolutional

auto-encoder) and minimizing (1) over the training set X ,

where a large/small β draws the system towards low/high

average entropy H . In the next sections, we will discuss

how we quantize z and estimate the entropy H(ẑ). We note

that as E,D are CNNs, ẑ will be a 3D feature map, but for

simplicity of exposition we will denote it as a vector with

equally many elements. Thus, ẑi refers to the i-th element

of the feature map, in raster scan order (row by column by

channel).

3.1. Quantization

We adopt the scalar variant of the quantization approach

proposed in [2] to quantize z, but simplify it using ideas

from [17]. Specifically, given centers C = {c1, · · · , cL} ⇢
R, we use nearest neighbor assignments to compute

ẑi = Q(zi) := arg minjkzi − cjk, (2)

but rely on (differentiable) soft quantization

z̃i =

L
X

j=1

exp(−σkzi − cjk)
PL

l=1 exp(−σkzi − clk)
cj (3)

to compute gradients during the backward pass. This com-

bines the benefit of [2] where the quantization is restricted

to a finite set of learned centers C (instead of the fixed (non-

learned) integer grid as in [17]) and the simplicity of [17],

where a differentiable approximation of quantization is only

used in the backward pass, avoiding the need to choose

an annealing strategy (i.e., a schedule for σ) as in [2] to

drive the soft quantization (3) to hard assignments (2) dur-

ing training. In TensorFlow, this is implemented as

z̄i = tf.stopgradient(ẑi − z̃i) + z̃i. (4)

We note that for forward pass computations, z̄i = ẑi, and

thus we will continue writing ẑi for the latent representa-

tion.
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3.2. Entropy estimation

To model the entropy H(ẑ) we build on the approach

of PixelRNN [22] and factorize the distribution p(ẑ) as a

product of conditional distributions

p(ẑ) =

m
Y

i=1

p(ẑi|ẑi−1, . . . , ẑ1), (5)

where the 3D feature volume ẑ is indexed in raster

scan order. We then use a neural network P (ẑ), which

we refer to as a context model, to estimate each term

p(ẑi|ẑi−1, . . . , ẑ1):

Pi,l(ẑ) ⇡ p(ẑi = cl|ẑi−1, . . . , ẑ1), (6)

where Pi,l specifies for every 3D location i in ẑ the prob-

abilites of each symbol in C with l = 1, . . . , L. We re-

fer to the resulting approximate distribution as q(ẑ) :=
Qm

i=1 Pi,I(ẑi)(ẑ), where I(ẑi) denotes the index of ẑi in C.

Since the conditional distributions p(ẑi|ẑi−1, . . . , ẑ1)
only depend on previous values ẑi−1, . . . , ẑ1, this imposes a

causality constraint on the network P : While P may com-

pute Pi,l in parallel for i = 1, . . . ,m, l = 1, . . . , L, it needs

to make sure that each such term only depends on previous

values ẑi−1, . . . , ẑ1.

The authors of PixelCNN [22, 21] study the use of 2D-

CNNs as causal conditional models over 2D images in a

lossless setting, i.e., treating the RGB pixels as symbols.

They show that the causality constraint can be efficiently en-

forced using masked filters in the convolution. Intuitively,

the idea is as follows: If for each layer the causality con-

dition is satisfied with respect to the spatial coordinates of

the layer before, then by induction the causality condition

will hold between the output layer and the input. Satisfying

the causality condition for each layer can be achieved with

proper masking of its weight tensor, and thus the entire net-

work can be made causal only through the masking of its

weights. Thus, the entire set of probabilities Pi,l for all (2D)

spatial locations i and symbol values l can be computed in

parallel with a fully convolutional network, as opposed to

modeling each term p(ẑi|ẑi−1, · · · , ẑ1) separately.

In our case, ẑ is a 3D symbol volume, with as much as

K = 64 channels. We therefore generalize the approach

of PixelCNN to 3D convolutions, using the same idea of

masking the filters properly in every layer of the network.

This enables us to model P efficiently, with a light-weight2

3D-CNN which slides over ẑ, while properly respecting the

causality constraint. We refer to the supplementary mate-

rial3 for more details.

As in [21], we learn P by training it for maximum like-

lihood, or equivalently (see [16]) by training Pi,: to classify

2We use a 4-layer network, compared to 15 layers in [22].
3Available at https://arxiv.org/abs/1801.04260

the index I(ẑi) of ẑi in C with a cross entropy loss:

CE := Eẑ⇠p(ẑ)[

m
X

i=1

− logPi,I(ẑi)]. (7)

Using the well-known property of cross entropy as the cod-

ing cost when using the wrong distribution q(ẑ) instead of

the true distribution p(ẑ), we can also view the CE loss as

an estimate of H(ẑ) since we learn P such that P = q ⇡ p.

That is, we can compute

H(ẑ) = Eẑ⇠p(ẑ)[− log(p(ẑ))] (8)

= Eẑ⇠p(ẑ)[
m
X

i=1

− log p(ẑi|ẑi−1, · · · , ẑ1)] (9)

⇡ Eẑ⇠p(ẑ)[

m
X

i=1

− log q(ẑi|ẑi−1, · · · , ẑ1)] (10)

= Eẑ⇠p(ẑ)[

m
X

i=1

− logPi,I(ẑi)] (11)

= CE (12)

Therefore, when training the auto-encoder we can indirectly

minimize H(ẑ) through the cross entropy CE. We refer to

argument in the expectation of (7),

C(ẑ) :=

m
X

i=1

− logPi,I(ẑi), (13)

as the coding cost of the latent image representation, since

this reflects the coding cost incurred when using P as a con-

text model with an adaptive arithmetic encoder [11]. From

the application perspective, minimizing the coding cost is

actually more important than the (unknown) true entropy,

since it reflects the bitrate obtained in practice.

To backpropagate through P (ẑ) we use the same ap-

proach as for the encoder (see (4)). Thus, like the decoder

D, P only sees the (discrete) ẑ in the forward pass, whereas

the gradient of the soft quantization z̃ is used for the back-

ward pass.

3.3. Concurrent optimization

Given an auto-encoder (E,D), we can train P to model

the dependencies of the entries of ẑ as described in the pre-

vious section by minimizing (7). On the other hand, us-

ing the model P , we can obtain an estimate of H(ẑ) as

in (12) and use this estimate to adjust (E,D) such that

d(x, D(Q(E(x))))+βH(ẑ) is reduced, thereby navigating

the rate distortion trade-off. Therefore, it is natural to con-

currently learn P (with respect to its own loss), and (E,D)
(with respect to the rate distortion trade-off) during train-

ing, such that all models which the losses depend on are

continuously updated.
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3.4. Importance map for spatial bit-allocation

Recall that since E and D are CNNs, ẑ is a 3D feature-

map. For example, if E has three stride-2 convolution layers

and the bottleneck has K channels, the dimensions of ẑ will

be W
8 ⇥

H
8 ⇥K. A consequence of this formulation is that

we are using equally many symbols in ẑ for each spatial

location of the input image x. It is known, however, that in

practice there is great variability in the information content

across spatial locations (e.g., the uniform area of blue sky

vs. the fine-grained structure of the leaves of a tree).

This can in principle be accounted for automatically in

the trade-off between the entropy and the distortion, where

the network would learn to output more predictable (i.e.,

low entropy) symbols for the low information regions, while

making room for the use of high entropy symbols for the

more complex regions. More precisely, the formulation in

(7) already allows for variable bit allocation for different

spatial regions through the context model P .

However, this arguably requires a quite sophisticated

(and hence computationally expensive) context model, and

we find it beneficial to follow Li et al. [9] instead by using

an importance map to help the CNN attend to different re-

gions of the image with different amounts of bits. While

[9] uses a separate network for this purpose, we consider a

simplified setting. We take the last layer of the encoder E,

and add a second single-channel output y 2 R
W

8
⇥

H

8
⇥1. We

expand this single channel y into a mask m 2 R
W

8
⇥

H

8
⇥K

of the same dimensionality as z as follows:

mi,j,k =

8

>

<

>

:

1 if k < yi,j

(yi,j − k) if k  yi,j  k + 1

0 if k + 1 > yi,j

, (14)

where yi,j denotes the value of y at spatial location (i, j).
The transition value for k  yi,j  k + 1 is such that the

mask smoothly transitions from 0 to 1 for non-integer val-

ues of y.

We then mask z by pointwise multiplication with the bi-

narization of m, i.e., z  z * dme. Since the ceiling op-

erator d·e is not differentiable, as done by [17, 9], we use

identity for the backward pass.

With this modification, we have simply changed the ar-

chitecture of E slightly such that it can easily “zero out”

portions of columns zi,j,: of z (the rest of the network stays

the same, so that (2) still holds for example). As suggested

by [9], the so-obtained structure in z presents an alterna-

tive coding strategy: Instead of losslessly encoding the en-

tire symbol volume ẑ, we could first (separately) encode the

mask dme, and then for each column ẑi,j,: only encode the

first dmi,je + 1 symbols, since the remaining ones are the

constant Q(0), which we refer to as the zero symbol.

Work [9] uses binary symbols (i.e., C = {0, 1}) and as-

sumes independence between the symbols and a uniform

prior during training, i.e., costing each 1 bit to encode. The

importance map is thus their principal tool for controlling

the bitrate, since they thereby avoid encoding all the bits

in the representation. In contrast, we stick to the formula-

tion in (5) where the dependencies between the symbols are

modeled during training. We then use the importance map

as an architectural constraint and use their suggested cod-

ing strategy to obtain an alternative estimate for the entropy

H(ẑ), as follows.

We observe that we can recover dme from ẑ by count-

ing the number of consecutive zero symbols at the end of

each column ẑi,j,:.
4 dme is therefore a function of the

masked ẑ, i.e., dme = g(ẑ) for g recovering dme as de-

scribed, which means that we have for the conditional en-

tropy H(dme|ẑ) = 0. Now, we have

H(ẑ) = H(dme|ẑ) +H(ẑ) (15)

= H(ẑ, dme) (16)

= H(ẑ|dme) +H(dme). (17)

If we treat the entropy of the mask, H(dme), as constant

during optimization of the auto-encoder, we can then indi-

rectly minimize H(ẑ) through H(ẑ|m).
To estimate H(ẑ|m), we use the same factorization of p

as in (5), but since the mask dme is known we have p(ẑi =
c0) = 1 deterministic for the 3D locations i in ẑ where

the mask is zero. The logs of the corresponding terms in (9)

then evaluate to 0. The remaining terms, we can model with

the same context model Pi,l(ẑ), which results in

H(ẑ|dme) ⇡ Eẑ⇠p(ẑ)[

m
X

i=1

−dmie logPi,I(ẑi)], (18)

where mi denotes the i-th element of m (in the same raster

scan order as ẑ).

Similar to the coding cost (13), we refer to the argument

in the expectation in (18),

MC(ẑ) :=

m
X

i=1

−dmie logPi,I(ẑi) (19)

as the masked coding cost of ẑ.

While the entropy estimate (18) is almost estimating the

same quantity as (7) (only differing by H(dme)), it has the

benefit of being weighted by mi. Therefore, the encoder E

has an obvious path to control the entropy of ẑ, by simply

increasing/decreasing the value of y for some spatial loca-

tion of x and thus obtaining fewer/more zero entries in m.

When the context model P (ẑ) is trained, however, we

still train it with respect to the formulation in (8), so it does

4If z contained zeros before it was masked, we might overestimate the

number of 0 entries in dme. However, we can redefine those entries of m

as 0 and this will give the same result after masking.
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not have direct access to the mask m and needs to learn the

dependencies on the entire masked symbol volume ẑ. This

means that when encoding an image, we can stick to stan-

dard adaptive arithmetic coding over the entire bottleneck,

without needing to resort to a two-step coding process as in

[9], where the mask is first encoded and then the remaining

symbols. We emphasize that this approach hinges critically

on the context model P and the encoder E being trained

concurrently as this allows the encoder to learn a meaning-

ful (in terms of coding cost) mask with respect to P (see the

next section).

In our experiments we observe that during training, the

two entropy losses (7) and (18) converge to almost the same

value, with the latter being around ⇡ 3.5% smaller due to

H(dme) being ignored.

While the importance map is not crucial for optimal rate-

distortion performance, if the channel depth K is adjusted

carefully, we found that we could more easily control the

entropy of ẑ through β when using a fixed K, since the net-

work can easily learn to ignore some of the channels via the

importance map. Furthermore, in the supplementary mate-

rial we show that by using multiple importance maps for a

single network, one can obtain a single model that supports

multiple compression rates.

3.5. Putting the pieces together

We made an effort to carefully describe our formulation

and its motivation in detail. While the description is lengthy,

when putting the resulting pieces together we get a quite

straightforward pipeline for learned image compression, as

follows.

Given the set of training images X , we initialize (fully

convolutional) CNNs E, D, and P , as well as the centers C
of the quantizer Q. Then, we train over minibatches XB =
{x(1), · · · ,x(B)} of crops from X . At each iteration, we

take one gradient step for the auto-encoder (E,D) and the

quantizer Q, with respect to the rate-distortion trade-off

LE,D,Q =
1

B

B
X

j=1

d(x(j), x̂(j)) + βMC(ẑ(j)), (20)

which is obtained by combining (1) with the estimate (18)

& (19) and taking the batch sample average. Furthermore,

we take a gradient step for the context model P with respect

to its objective (see (7) & (13))

LP :=
1

B

B
X

j=1

d(x(j), x̂(j)) + βC(ẑ(j)). (21)

To compute these two batch losses, we need to perform

the following computation for each x 2 XB :

1. Obtain compressed (latent) representation z and im-

portance map y from the encoder: (z,y) = E(x)

2. Expand importance map y to mask m via (14)

3. Mask z, i.e., z z* dme

4. Quantize ẑ = Q(z)

5. Compute the context P (ẑ)

6. Decode x̂ = D(ẑ),

which can be computed in parallel over the minibatch on a

GPU since all the models are fully convolutional.

3.6. Relationship to previous methods

We are not the first to use context models for adaptive

arithmetic coding to improve the performance in learned

deep image compression. Work [20] uses a PixelRNN-like

architecture [22] to train a recurrent network as a context

model for an RNN-based compression auto-encoder. Li et

al. [9] extract cuboid patches around each symbol in a bi-

nary feature map, and feed them to a convolutional context

model. Both these methods, however, only learn the context

model after training their system, as a post-processing step

to boost coding performance.

In contrast, our method directly incorporates the context

model as the entropy term for the rate-distortion term (1)

of the auto-encoder, and trains the two concurrently. This

is done at little overhead during training, since we adopt a

3D-CNN for the context model, using PixelCNN-inspired

[21] masking of the weights of each layer to ensure causal-

ity in the context model. Adopting the same approach to the

context models deployed by [20] or [9] would be non-trivial

since they are not designed for fast feed-forward computa-

tion. In particular, while the context model of [9] is also

convolutional, its causality is enforced through masking the

inputs to the network, as opposed to our masking of the

weights of the networks. This means their context model

needs to be run separately with a proper input cuboid for

each symbol in the volume (i.e., not fully convolutionally).

4. Experiments

Architecture Our auto-encoder has a similar architecture

as [17] but with more layers, and is described in Fig. 2. We

adapt the number of channels K in the latent representation

for different models. For the context model P , we use a

simple 4-layer 3D-CNN as described in Fig. 3.

Distortion measure Following [7, 14], we use the multi-

scale structural similarity index (MS-SSIM) [23] as mea-

sure of distortion d(x, x̂) = 100 · (1 − MS-SSIM(x, x̂))
for our models. MS-SSIM reportedly correlates better with

human perception of distortion than mean squared error

(MSE). We train and test all our models using MS-SSIM.
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Figure 2: The architecture of our auto-encoder. Dark gray

blocks represent residual units. The upper part represents

the encoder E, the lower part the decoder D. For the en-

coder, “k5 n64-2” represents a convolution layer with ker-

nel size 5, 64 output channels and a stride of 2. For the de-

coder it represents the equivalent deconvolution layer. All

convolution layers are normalized using batch norm [6], and

use SAME padding. Masked quantization is the quantiza-

tion described in Section 3.4. Normalize normalizes the in-

put to [0, 1] using a mean and variance obtained from a sub-

set of the training set. Denormalize is the inverse operation.
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Figure 3: The architecture of our context model.

“3D k3 n24” refers to a 3D masked convolution with fil-

ter size 3 and 24 output channels. The last layer outputs L

values for each voxel in ẑ.

Training We use the Adam optimizer [8] with a mini-

batch size of 30 to train seven models. Each model is trained

to maximize MS-SSIM directly. As a baseline, we used a

learning rate (LR) of 4 · 10−3 for each model, but found it

beneficial to vary it slightly for different models. We set

σ = 1 in the smooth approximation (3) used for gradient

backpropagation through Q. To make the model more pre-

dictably land at a certain bitrate t when optimizing (1), we

found it helpful to clip the rate term (i.e., replace the entropy

term βH with max(t, βH)), such that the entropy term is

“switched off” when it is below t. We found this did not

hurt performance. We decay the learning rate by a factor 10

every two epochs. To obtain models for different bitrates,

we adapt the target bitrate t and the number of channels K,

while using a moderately large β = 10. We use a small

regularization on the weights and note that we achieve very

stable training. We trained our models for 6 epochs, which

took around 24h per model on a single GPU. For P , we use

a LR of 10−4 and the same decay schedule.

Datasets We train on the the ImageNet dataset from

the Large Scale Visual Recognition Challenge 2012

(ILSVRC2012) [15]. As a preprocessing step, we take ran-

dom 160⇥160 crops, and randomly flip them. We set aside

100 images from ImageNet as a testing set, ImageNetTest.

Furthermore, we test our method on the widely used Ko-

dak [1] dataset. To asses performance on high-quality full-

resolution images, we also test on the datasets B100 [18]

and Urban100 [5], commonly used in super-resolution.

Other codecs We compare to JPEG, using libjpeg5, and

JPEG2000, using the Kakadu implementation6. We also

compare to the lesser known BPG7, which is based on

HEVC, the state-of-the-art in video compression, and which

outperforms JPEG and JPEG2000. We use BPG in the non-

default 4:4:4 chroma format, following [14].

Comparison Like [14], we proceed as follows to com-

pare to other methods. For each dataset, we compress each

image using all our models. This yields a set of (bpp, MS-

SSIM) points for each image, which we interpolate to get

a curve for each image. We fix a grid of bpp values, and

average the curves for each image at each bpp grid value

(ignoring those images whose bpp range does not include

the grid value, i.e., we do not extrapolate). We do this for

our method, BPG, JPEG, and JPEG2000. Due to code being

unavailable for the related works in general, we digitize the

Kodak curve from Rippel & Bourdev [14], who have care-

fully collected the curves from the respective works. With

this, we also show the results of Rippel & Bourdev [14],

Johnston et al. [7], Ballé et al. [4], and Theis et al. [17].

To validate that our estimated MS-SSIM is correctly im-

plemented, we independently generated the BPG curves for

Kodak and verified that they matched the one from [14].

Results Fig. 1 shows a comparison of the aforementioned

methods for Kodak. Our method outperforms BPG, JPEG,

and JPEG2000, as well as the neural network based ap-

proaches of Johnston et al. [7], Ballé et al. [4], and Theis

et al. [17]. Furthermore, we achieve performance compara-

ble to that of Rippel & Bourdev [14]. This holds for all bpps

we tested, from 0.3 bpp to 0.9 bpp. We note that while Rip-

pel & Bourdev and Johnston et al. also train to maximize

(MS-)SSIM, the other methods minimize MSE.

5http://libjpeg.sourceforge.net/
6http://kakadusoftware.com/
7https://bellard.org/bpg/
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Figure 4: Performance of our approach on ImageNetTest, B100, Urban100, where we out-

perform BPG, JPEG and JPEG2000 in MS-SSIM.

Ours 0.124bpp 0.147 bpp BPG

JPEG2000 0.134bpp 0.150bpp JPEG

Figure 5: Example image (kodim21) from the Kodak testing set, compressed with different methods.

In each of the other testing sets, we also outperform

BPG, JPEG, and JPEG2000 over the reported bitrates, as

shown in Fig. 4.

In Fig. 5, we compare our approach to BPG, JPEG,

and JPEG2000 visually, using very strong compression on

kodim21 from Kodak. It can be seen that the output of our

network is pleasant to look at. Soft structures like the clouds

are very well preserved. BPG appears to handle high fre-

quencies better (see, e.g., the fence) but loses structure in

the clouds and in the sea. Like JPEG2000, it produces block

artifacts. JPEG breaks down at this rate. We refer to the

supplementary material for further visual examples.

Ablation study: Context model In order to show the ef-

fectiveness of the context model, we performed the follow-

ing ablation study. We trained the auto-encoder without en-

tropy loss, i.e., β = 0 in (20), using L = 6 centers and

K = 16 channels. On Kodak, this model yields an av-

erage MS-SSIM of 0.982, at an average rate of 0.646 bpp

(calculated assuming that we need log2(L) = 2.59 bits per

symbol). We then trained three different context models for

this auto-encoder, while keeping the auto-encoder fixed: A

zeroth order context model which uses a histogram to esti-

mate the probability of each of the L symbols; a first order

(one-step prediction) context model, which uses a condi-

tional histogram to estimate the probability of each of the

L symbols given the previous symbol (scanning ẑ in raster

order); and P , i.e., our proposed context model. The result-

ing average rates are shown in Table 1. Our context model
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reduces the rate by 10 %, even though the auto-encoder was

optimized using a uniform prior (see supplementary mate-

rial for a detailed comparison of Table 1 and Fig. 1).

Model rate

Baseline (Uniform) 0.646 bpp

Zeroth order 0.642 bpp

First order 0.627 bpp

Our context model P 0.579 bpp

Table 1: Rates for different context models, for the same

architecture (E,D).

Importance map As described in detail in Section 3.4,

we use an importance map to dynamically alter the number

of channels used at different spatial locations to encode an

image. To visualize how this helps, we trained two auto-

encoders M and M 0, where M uses an importance map

and at most K = 32 channels to compress an image, and

M 0 compresses without importance map and with K = 16
channels (this yields a rate for M 0 similar to that of M ). In

Fig. 6, we show an image from ImageNetTest along with

the same image compressed to 0.463 bpp by M and com-

pressed to 0.504 bpp by M 0. Furthermore, Fig. 6 shows the

importance map produced by M , as well as ordered visual-

izations of all channels of the latent representation for both

M and M 0. Note how for M , channels with larger index

are sparser, showing how the model can spatially adapt the

number of channels. M 0 uses all channels similarly.

Input Importance map of M

Output of M Latent representation of M

Output of M 0 Latent representation of M 0

Figure 6: Visualization of the latent representation of the

auto-encoder for a high-bpp operating point, with (M ) and

without (M 0) incorporating an importance map.

5. Discussion

Our experiments showed that combining a convolutional

auto-encoder with a lightweight 3D-CNN as context model

and training the two networks concurrently leads to a highly

effective image compression system. Not only were we

able to clearly outperform state-of-the-art engineered com-

pression methods including BPG and JPEG2000 in terms

of MS-SSIM, but we also obtained performance compet-

itive with the current state-of-the-art learned compression

method from [14]. In particular, our method outperforms

BPG and JPEG2000 in MS-SSIM across four different

testing sets (ImageNetTest, Kodak, B100, Urban100), and

does so significantly, i.e., the proposed method generalizes

well. We emphasize that our method relies on elemen-

tary techniques both in terms of the architecture (standard

convolutional auto-encoder with importance map, convo-

lutional context model) and training procedure (minimize

the rate-distortion trade-off and the negative log-likelihood

for the context model), while [14] uses highly specialized

techniques such as a pyramidal decomposition architecture,

adaptive codelength regularization, and multiscale adver-

sarial training.

The ablation study for the context model showed that our

3D-CNN-based context model is significantly more power-

ful than the first order (histogram) and second order (one-

step prediction) baseline context models. Further, our ex-

periments suggest that the importance map learns to con-

densate the image information in a reduced number of chan-

nels of the latent representation without relying on explicit

supervision. Notably, the importance map is learned as a

part of the image compression auto-encoder concurrently

with the auto-encoder and the context model, without in-

troducing any optimization difficulties. In contrast, in [9]

the importance map is computed using a separate network,

learned together with the auto-encoder, while the context

model is learned separately.

6. Conclusions

In this paper, we proposed the first method for learning

a lossy image compression auto-encoder concurrently with

a lightweight context model by incorporating it into an en-

tropy loss for the optimization of the auto-encoder, leading

to performance competitive with the current state-of-the-art

in deep image compression [14].

Future works could explore heavier and more power-

ful context models, as those employed in [22, 21]. This

could further improve compression performance and allow

for sampling of natural images in a “lossy” manner, by sam-

pling ẑ according to the context model and then decoding.
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