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Abstract

We propose a weakly supervised temporal action local-

ization algorithm on untrimmed videos using convolutional

neural networks. Our algorithm learns from video-level

class labels and predicts temporal intervals of human ac-

tions with no requirement of temporal localization annota-

tions. We design our network to identify a sparse subset of

key segments associated with target actions in a video us-

ing an attention module and fuse the key segments through

adaptive temporal pooling. Our loss function is comprised

of two terms that minimize the video-level action classifica-

tion error and enforce the sparsity of the segment selection.

At inference time, we extract and score temporal proposals

using temporal class activations and class-agnostic atten-

tions to estimate the time intervals that correspond to tar-

get actions. The proposed algorithm attains state-of-the-art

results on the THUMOS14 dataset and outstanding perfor-

mance on ActivityNet1.3 even with its weak supervision.

1. Introduction

Action recognition and localization in videos are cru-

cial problems for high-level video understanding tasks in-

cluding, but not limited to, event detection, video summa-

rization, and visual question answering. Many researchers

have been investigating these problems extensively in the

last decades, but the main challenge remains the lack of

appropriate representation methods of videos. Contrary to

the almost immediate success of convolutional neural net-

works (CNNs) in many visual recognition tasks for images,

applying deep neural networks to videos is not straightfor-

ward due to the inherently complex structures of video data,

high computation demand, lack of knowledge for modeling

temporal information, and so on. Some attempts to using

the representations only from deep learning [18, 29, 35, 40]

were not significantly better than methods relying on hand-

crafted visual features [21, 36, 37]. As a result, many exist-
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Figure 1: Overview of the proposed algorithm. Our algorithm

takes a two-stream input—RGB frames and optical flow between

frames—from a video, and performs action classification and lo-

calization concurrently. For localization, Temporal Class Acti-

vation Maps (T-CAMs) are computed from the two streams and

employed to generate one dimensional temporal action proposals,

from which the target actions are localized in the temporal domain.

ing algorithms seek to achieve state-of-the-art performance

by combining hand-crafted and learned features.

Many existing video understanding techniques rely on

trimmed videos as their inputs. However, most videos in

the real world are untrimmed and contain large numbers of

irrelevant frames pertaining to target actions and these tech-

niques are prone to fail due to the challenges in extracting

salient information. While action localization algorithms

are designed to operate on untrimmed videos, they usually

require temporal annotations of action intervals, which is

prohibitively expensive and time-consuming at large scale.

Therefore, it is more practical to develop competitive lo-

calization algorithms that require minimal temporal annota-

tions for training.

Our goal is to temporally localize actions in untrimmed

videos. To this end, we propose a novel deep neural net-

work that learns to select a sparse subset of useful video
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segments for action recognition in each video by using a

loss function that measures the video-level classification er-

ror and the sparsity of selected segments. Temporal Class

Activation Maps (T-CAMs) are employed to generate one

dimensional temporal proposals used to localize target ac-

tions. Note that we do not exploit temporal annotations of

the actions in target datasets during training, and our models

are trained only with video-level class labels. An overview

of our algorithm is shown in Figure 1.

The contributions of this paper are summarized as below.

• We introduce a principled deep neural network archi-

tecture for weakly supervised action localization in

untrimmed videos, where actions are detected from a

sparse subset of segments identified by the network.

• We present a method for computing and combining

temporal class activation maps and class agnostic at-

tentions for temporal localization of target actions.

• The proposed weakly supervised action localization

technique achieves state-of-the-art results on THU-

MOS14 [17] and outstanding performance in the Ac-

tivityNet1.3 [14] action localization task.

The rest of this paper is organized as follows. We discuss

the related work in Section 2 and describe our action local-

ization algorithm in Section 3. Section 4 presents the details

of our experiment and Section 5 concludes this paper.

2. Related Work

Action recognition aims to identify a single or multi-

ple actions per video and is often formulated as a simple

classification problem. Before the success of CNNs, the

algorithm based on improved dense trajectories [36] pre-

sented outstanding performance. When it comes to the era

of deep learning, convolutional neural networks have been

widely used. Afterwards, two-stream networks [29] and 3D

convolutional neural networks (C3D) [35] are popular so-

lutions to learn video representations and these techniques,

including their variations, are extensively used for action

recognition. Recently, a combination of two-stream net-

works and 3D convolutions, referred to as I3D [5], was pro-

posed as a generic video representation learning method.

On the other hand, many algorithms develop techniques to

recognize actions based on existing representation meth-

ods [40, 42, 8, 11, 9, 26].

Action localization is different from action recognition,

because it requires the detections of temporal or spatiotem-

poral volumes containing target actions. There are var-

ious existing methods based on deep learning including

structured segment network [49], contextual relation learn-

ing [33], multi-stage CNNs [28], temporal association of

frame-level action detections [12], and techniques using re-

current neural networks [46, 22]. Most of these approaches

rely on supervised learning and employ temporal or spatio-

temporal annotations to train the models. To facilitate ac-

tion detection and localization, many algorithms use action

proposals [4, 7, 38], which is an extension of object propos-

als for object detection in images.

There are only a few approaches based on weakly su-

pervised learning that rely solely on video-level class la-

bels to localize actions in temporal domain. Untrimmed-

Net [39] learns attention weights on precut video segments

using a temporal softmax function and thresholds the atten-

tion weights to generate action proposals. The algorithm

improves the video-level classification performance. How-

ever, generating action proposals solely from class-agnostic

attention weights is suboptimal and the use of the softmax

function across proposals may not be effective to detect

multiple instances. Hide-and-seek [32] proposes a tech-

nique that randomly hides regions to force residual atten-

tion learning and thresholds class activation maps at infer-

ence time for weakly supervised spatial object detection and

temporal action localization. While working well at spa-

tial localization tasks, this method fails to show satisfac-

tory performance in temporal action localization tasks in

videos. Both algorithms are motivated by the recent suc-

cess of weakly supervised object localization in images. In

particular, the formulation of UntrimmedNet for action lo-

calization heavily relies on the idea proposed in [2].

There are some other approaches [3, 16, 25] that learn

to localize or segment actions in a weakly supervised set-

ting by exploiting the temporal order of subactions during

training. The main objective of these studies is to find the

boundaries of sequentially presented subactions, while our

approach aims to extract temporal intervals of full actions

from input videos.

There are several publicly available datasets for ac-

tion recognition including UCF101 [34], Sports-1M [18],

HMDB51 [20], Kinetics [19] and AVA [13]. The videos in

these datasets are trimmed so that the target actions appear

throughout each clip. In contrast, THUMOS14 dataset [17]

and ActivityNet [14] provide untrimmed videos that contain

background frames and temporal annotations about which

frames are relevant to the target actions. Note that each

video in THUMOS14 and ActivityNet may have multiple

actions happening in a single frame.

3. Proposed Algorithm

We claim that an action can be recognized from a video

by identifying a set of key segments presenting important

action components. So we design a neural network that

learns to measure the importance of each segment in a

video and automatically selects a sparse subset of represen-

tative segments to predict the video-level class labels. Only

ground-truth video-level class labels are required for train-

ing the model. For action localization at inference time, we
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Figure 2: Network architecture for our weakly supervised temporal action localization model. We first extract feature representations for a

set of uniformly sampled video segments using a pretrained network. The attention module computes class-agnostic attention weights for

each segment, which are used to generate a video-level representation via weighted temporal average pooling. The representation is given

to the classification module that can be trained with regular cross entropy loss with video-level labels. An ℓ1 loss is placed on the attention

weights to enforce sparse attentions.

first identify relevant classes in each video and then generate

temporal action proposals from temporal class activations

and attentions to find the temporal location of each relevant

class. The network architecture for our weakly supervised

action recognition component is illustrated in Figure 2. We

describe each step of our algorithm in the rest of this sec-

tion.

3.1. Action Classification

To predict class labels in each video, we sample a set of

segments and extract feature representations from each seg-

ment using pretrained convolutional neural networks. Each

feature vector is then fed to an attention module that con-

sists of two fully connected (FC) layers and a ReLU layer

located between the two FC layers. The output of the sec-

ond FC layer is given to a sigmoid function that enforces the

generated attention weights to be between 0 and 1. These

class-agnostic attention weights are then used to modulate

the temporal average pooling—a weighted sum of the fea-

ture vectors—to create a video-level representation. We

pass this representation through an FC layer followed by

a sigmoid layer to obtain class scores.

Formally, let xt ∈ R
m be them dimensional feature rep-

resentation extracted from a video segment centered at time

t, and λt be the corresponding attention weight. The video

level representation, denoted by x̄, corresponds to an atten-

tion weighted temporal average pooling, which is given by

x̄ =

T∑

t=1

λtxt, (1)

where λ = (λ1, . . . , λT )
⊤ is a vector of scalar outputs from

the attention module and T is the total number of sampled

video segments. The attention weight vector λ is defined in

a class-agnostic way, which is useful to identify segments

relevant to all the actions of interest and estimate the tem-

poral intervals of the detected actions.

The loss function in the proposed network is composed

of two terms, the classification loss and the sparsity loss,

which is given by

L = Lclass + β · Lsparsity, (2)

where Lclass denotes the classification loss computed on the

video-level class labels, Lsparsity is the sparsity loss on the at-

tention weights, and β is a constant to control the trade-off

between the two terms. The classification loss is based on

the standard multi-label cross-entropy loss between ground-

truth and x̄ (after passing through a few layers as illustrated

in Figure 2), while the sparsity loss is given by the ℓ1 norm

on attention weights ||λ||1. Because of the use of the sig-

moid function and the ℓ1 loss, all the attention weights tend

to have values close to either 0 or 1. Note that integrat-

ing the sparsity loss is aligned with our claim that an action

can be recognized with a sparse subset of key segments in a

video.
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3.2. Temporal Class Activation Mapping

To identify the time intervals corresponding to target ac-

tions, we extract a number of action interval candidates.

Based on the idea in [50], we derive a one dimensional

class-specific activation map in the temporal domain, re-

ferred to as the Temporal Class Activation Map (T-CAM).

Let wc(k) denote the k-th element in the weight parameter

w
c of the final fully connected layer, where the superscript

c represents the index of a particular class. The input to the

final sigmoid layer for class c is

sc =

m∑

k=1

w
c(k)x̄(k)

=
m∑

k=1

w
c(k)

T∑

t=1

λtxt(k) (3)

=

T∑

t=1

λt

m∑

k=1

w
c(k)xt(k).

T-CAM, denoted by at = (a1t , a
2

t , . . . , a
C
t )

⊤, indicates

the relevance of the representations to each class at time

step t, where each element act for class c (c = 1, . . . , C) is

given by

act =

m∑

k=1

w
c(k)xt(k). (4)

Figure 3 illustrates an example of the attention weights

and the T-CAM outputs in a video given by the proposed

algorithm. We can observe that the discriminative temporal

regions are effectively highlighted by the attention weights

and the T-CAMs. Also, some temporal intervals with large

attention weights do not correspond to large T-CAM val-

ues because such intervals may represent other actions of

interest. The attention weights measure the generic action-

ness of temporal video segments while the T-CAMs present

class-specific information.

3.3. Two­stream CNN Models

We employ the recently proposed I3D model [5] to com-

pute feature representations for the sampled video seg-

ments. Using multiple streams of information such as RGB

and optical flow has become a standard practice in action

recognition and detection [5, 10, 29] as it often provides

a significant boost in performance. We also train two ac-

tion recognition networks separately with identical settings

as illustrated in Figure 2 for the RGB and the flow stream.

Note that our I3D networks are pretrained on the Kinetics

dataset [19], and we only use it as feature extraction ma-

chines without any fine-tuning on our target datasets. Our

two-stream networks are then fused to localize actions in

an input video. The procedure is discussed in the following

subsection.

3.4. Temporal Action Localization

For an input video, we identify relevant class labels

based on video-level classification scores (Section 3.1).

For each relevant action, we generate temporal proposals,

i.e., one-dimensional time intervals, with their class-specific

confidence scores, corresponding to segments that poten-

tially enclose the target actions.

To generate temporal proposals, we compute the T-

CAMs for both the RGB and the flow streams, denoted by

act,RGB and act,FLOW respectively, based on (4) and use them

to derive the weighted T-CAMs, ψc
t, RGB and ψc

t, FLOW as

ψc
t,RGB = λt,RGB · sigmoid(act,RGB) (5)

ψc
t,FLOW = λt,FLOW · sigmoid(act,FLOW). (6)

Note that λt is an element of the sparse vector λ, and mul-

tiplying λt can be interpreted as a soft selection of the val-

ues from the following sigmoid function. Similar to [50],

we threshold the weighted T-CAMs, ψc
t,RGB and ψc

t,FLOW

to segment these signals. The temporal proposals are then

the one-dimensional connected components extracted from

each stream. It is intuitive to generate action proposals us-

ing the weighted T-CAMs, instead of directly from the at-

tention weights, because each proposal should contain a sin-

gle kind of action. Optionally, we linearly interpolate the

weighted T-CAM signals between sampled segments before

thresholding to improve the temporal resolution of the pro-

posals with minimal computation addition.

Unlike the original CAM-based bounding box propos-

als [50] where only the largest bounding box is retained,

we keep all the connected components that pass the pre-

defined threshold. Each proposal [tstart, tend] is assigned a

score for each class c, which is given by the weighted aver-

age T-CAM of all the frames within the proposal:

tend∑

t=tstart

λt,∗
α · act,RGB + (1− α) · act,FLOW

tend − tstart + 1
, (7)

where ∗ ∈ {RGB, FLOW} and α is a parameter to control

the magnitudes of the two modality signals. Finally, we per-

form non-maximum suppression among temporal proposals

of each class independently to remove highly overlapped

detections.

3.5. Discussion

Our algorithm attempts to localize actions in untrimmed

videos temporally by estimating sparse attention weights

and T-CAMs for generic and specific actions, respectively.

The proposed method is principled and novel when com-

pared to the existing UntrimmedNet [39] because of the fol-

lowing reasons.

• Our model has a unique deep neural network architec-

ture with classification and sparsity losses.
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Figure 3: Illustration of the ground-truth temporal intervals for the ThrowDiscus class, the temporal attentions, and the T-CAM for an

example video in the THUMOS14 dataset [17]. The horizontal axis in the plots denote the timestamps. In this example, the T-CAM values

for ThrowDiscus provide accurate action localization information. Note that the temporal attention weights are large at several locations

that do not correspond to the ground-truth annotations. This is because temporal attention weights are trained in a class-agnostic way.

• Our action localization procedure is based on a com-

pletely different pipeline that leverages class-specific

action proposals using T-CAMs.

Note that [39] follows a similar framework used in [2],

where softmax functions are employed across both action

classes and proposals; it has a critical limitation in handling

multiple action classes and instances in a single video.

Similar to pretraining on the ImageNet dataset [6] for

weakly supervised learning problems in images, we utilize

features from I3D models [5] pretrained on the Kinetics

dataset [19] for video representation. Although the Kinet-

ics dataset has considerable class overlap with our target

datasets, its video clips are mostly short and contain only

parts of actions, which makes their characteristics different

from the ones in our untrimmed target datasets. We also do

not fine-tune the I3D models and our network may not be

optimized for the classes in the target tasks and datasets.

4. Experiments

This section first describes the details of the benchmark

datasets and the evaluation setup. Our algorithm, referred

to as Sparse Temporal Pooling Network (STPN), is com-

pared with other state-of-the-art techniques based on fully

and weakly supervised learning. Finally, we analyze the

contribution of individual components in our algorithm.

4.1. Datasets and Evaluation Method

We evaluate STPN on two popular action localiza-

tion benchmark datasets, THUMOS14 [17] and Activi-

tyNet1.3 [14]. Both datasets are untrimmed, meaning the

videos include frames that contain no target actions and we

do not exploit the temporal annotations for training. Note

that there may exist multiple actions in a single video and

even in a single frame in these datasets.

The THUMOS14 dataset has video-level annotations of

101 action classes in its training, validation, and testing sets,

and temporal annotations for a subset of videos in the val-

idation and testing sets for 20 classes. We train our model

with the 20-class validation subset, which consists of 200

untrimmed videos, without using the temporal annotations.

We evaluate our algorithm using the 212 videos in the 20-

class testing subset with temporal annotations. This dataset

is challenging as some videos are relatively long (up to 26

minutes) and contain multiple action instances. The length

of an action varies significantly, from less than a second to

minutes.

The ActivityNet dataset is a recently introduced bench-

mark for action recognition and localization in untrimmed

videos. We use ActivityNet1.3, which originally consisted

of 10,024 videos for training, 4,926 for validation, and

5,044 for testing1, with 200 activity classes. This dataset

contains a large number of natural videos that involve vari-

ous human activities under a semantic taxonomy.

We follow the standard evaluation protocol based on

mean average precision (mAP) values at several different

levels of intersection over union (IoU) thresholds. The eval-

uation of both the datasets is conducted using the bench-

marking code for the temporal action localization task pro-

vided by ActivityNet2. The result on the ActivityNet1.3

testing set is obtained by submitting results to the evalua-

tion server.

4.2. Implementation Details

We use two-stream I3D networks [5] trained on the Ki-

netics dataset [19] to extract features for video segments.

For the RGB stream, we rescale the smallest dimension of a

frame to 256 and perform the center crop of size 224×224.

For the flow stream, we apply the TV-L1 optical flow algo-

rithm [43]. The inputs to the I3D models are stacks of 16
(RGB or flow) frames sampled at 10 frames per second.

We sample 400 segments at uniform interval from each

video in both training and testing. During training, we per-

form stratified random perturbation on the segments sam-

1In our experiments, there were 9740, 4791, and 4911 videos accessible

from YouTube in the training, validation, and testing set respectively.
2https://github.com/activitynet/ActivityNet/

blob/master/Evaluation/
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Table 1: Comparison of our algorithm with other recent techniques on the THUMOS14 testing set. We divide the algorithms into two groups

depending on their levels of supervision. Each group is sorted chronologically, from older to newer ones. STPN, including the version

using UntrimmedNet features, clearly presents state-of-the-art performance in the weakly supervised setting and is even competitive with

many fully supervised approaches.

Supervision Method
AP@IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fully

supervised

Heilbron et al. [15] – – – – 13.5 – – – –

Richard et al. [24] 39.7 35.7 30.0 23.2 15.2 – – – –

Shou et al. [28] 47.7 43.5 36.3 28.7 19.0 10.3 05.3 – –

Yeung et al. [46] 48.9 44.0 36.0 26.4 17.1 – – – –

Yuan et al. [47] 51.4 42.6 33.6 26.1 18.8 – – – –

Escorcia et al. [7] – – – – 13.9 – – – –

Shou et al. [27] – – 40.1 29.4 23.3 13.1 07.9 – –

Yuan et al. [48] 51.0 45.2 36.5 27.8 17.8 – – – –

Xu et al. [45] 54.5 51.5 44.8 35.6 28.9 – – – –

Zhao et al. [49] 66.0 59.4 51.9 41.0 29.8 – – – –

Alwasssel et al. [1] 49.6 44.3 38.1 28.4 19.8 – – – –

Weakly

supervised

Wang et al. [39] 44.4 37.7 28.2 21.1 13.7 – – – –

Singh & Lee [32] 36.4 27.8 19.5 12.7 06.8 – – – –

STPN 52.0 44.7 35.5 25.8 16.9 09.9 04.3 01.2 00.1

STPN with UntrimmedNet features 45.3 38.8 31.1 23.5 16.2 09.8 05.1 02.0 00.3

pled for data augmentation. The network is trained using

Adam optimizer with learning rate 10−4. At testing time,

we first reject classes whose video-level probabilities are

below 0.1, and then retrieve one-dimensional temporal pro-

posals for the remaining classes. We set the modality bal-

ance parameter α in (7) to 0.5. Our algorithm is imple-

mented in TensorFlow.

4.3. Results

Table 1 summarizes the test results on THUMOS14 for

action localization methods in the past two years. We in-

cluded both fully and weakly supervised approaches in the

table. Our algorithm outperforms the other two existing

approaches based on weakly supervised learning [39, 32].

Even with significant difference in the level of supervision,

our algorithm presents competitive performance to several

recent fully supervised approaches. We also present perfor-

mance of our model using the features extracted from the

pretrained UntrimmedNet [39] two-stream models to eval-

uate the performance of our algorithm based on weakly su-

pervised representation learning. For this experiment, we

adjust α to 0.1 to handle the heterogeneous signal mag-

nitudes of the two modalities. From Table 1, we can see

that STPN also outperforms the UntrimmedNet [39] and the

Hide-and-Seek algorithm [32] in this setting.

We also present performance of our algorithm on the val-

idation and the testing set of ActivityNet1.3 dataset in Ta-

ble 2 and 3, respectively. We can see that our algorithm

outperforms some fully supervised approaches on both the

validation and the testing set. Note that most of the action

localization results available on the leaderboard are specifi-

cally tuned for the ActivityNet Challenge, which may not be

directly comparable with our algorithm. To our knowledge,

this is the first attempt to evaluate weakly supervised action

localization performance on this dataset, and we report the

results as a baseline for future reference.

Figure 4 demonstrates qualitative results on the THU-

MOS14 dataset. As mentioned in Section 4.1, videos in

this dataset are often long and contain many action in-

stances, which may be composed of multiple categories.

Figure 4a presents an example with a number of action in-

stances along with our predictions and the corresponding T-

CAM signals. Our algorithm effectively pinpoints the tem-

poral boundaries of many action instances. In Figure 4b,

the appearance of all the frames are similar, and there is lit-

tle motion between frames. Despite these challenges, our

model still localizes the target action fairly well. Figure 4c

illustrates an example of a video containing action instances

from two different classes. Visually, the two involved action

classes—Shotput and ThrowDiscus—are similar in their ap-

pearance (green grass, person with blue shirt, on a gray

platform) and motion patterns (circular throwing). STPN

is able to not only localize the target actions but also clas-

sify the action categories successfully, despite several short-

term false positives. Figure 4d shows a instructional video

for JavelinThrow, where our algorithm detects most of the

ground-truth action instances while it also generates many

false positives. There are two causes for the false alarms.

First, the ground-truth annotations for JavelinThrow are of-

ten missing, making true detections counted as false posi-

tives. The second source is related to the segments, where

the instructors demonstrate javelin throwing but only parts

of such actions are visible. These segments resemble a real

JavelinThrow action in both appearance and motion.
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(a) An example of the HammerThrow action.
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(b) An example of the VolleyballSpiking action.

Ground-truths

Detections

Weighted T-CAM
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(c) An example of the ThrowDiscus (blue) and Shotput (red) actions.

Ground-truths
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Weighted T-CAM

0 50 100 150 250 300200

(d) An example of the JavelinThrow action.

Figure 4: Qualitative results on THUMOS14. The horizontal axis in the plots denote the timestamps (in seconds). (a) There are many

action instances in the input videos and our algorithm shows good action localization performance. (b) The appearance of the video remains

similar from the beginning to the end. There is little motion between frames. Our model is still able to localize the time window where the

action actually happens. (c) Two different actions appear in a single video and their appearance and the motion patterns are similar. Even

in the case, the proposed algorithm successfully identifies two actions accurately despite some false positives. (d) Our results have several

false positives, but they are often from missing ground-truth annotations. Another source of false alarms is the similarity of the observed

actions to the target action.
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Table 2: Results on the ActivityNet1.3 validation set. The entries

with an asterisk (*) are from the ActivityNet Challenge submis-

sions. Note that [27] is the result of post-processing based on [41],

making the comparison difficult.

Method
AP@IoU

0.5 0.75 0.95

Fully

supervised

Singh & Cuzzolin [31]* 34.5 – –

Wang & Tao [41]* 45.1 04.1 00.0

Shou et al. [27]* 45.3 26.0 00.2

Xiong et al. [44]* 39.1 23.5 05.5

Montes et al. [23] 22.5 – –

Xu et al. [45] 26.8 – –

Weakly

supervised
STPN 29.3 16.9 02.6

Table 3: Results on the ActivityNet1.3 testing set. The entries with

an asterisk (*) are from the ActivityNet Challenge submissions.

Method mAP

Fully

supervised

Singh & Cuzzolin [31]* 17.83

Wang & Tao [41]* 14.62

Xiong et al. [44]* 26.05

Singh et al. [30] 17.68

Zhao et al. [49] 28.28

Weakly

supervised
STPN 20.07

4.4. Ablation Study

We investigate the contribution of several components

proposed in our weakly supervised architecture and imple-

mentation variations. All the experiments in our ablation

study are performed on the THUMOS14 dataset.

Choice of architectures Our premise is that an action

can be recognized with a sparse subset of segments in a

video. When we learn our action classification network,

two loss terms—classification and sparsity losses—are em-

ployed. Our baseline is the architecture without the atten-

tion module and the sparsity loss, which share the motiva-

tion with the architecture in [50]. We also test another base-

line with the attention module but without the sparsity loss.

Figure 5 shows the comparisons between our baselines and

the full model. We observe that both the sparsity loss and

the attention weighted pooling make substantial contribu-

tions to the performance improvement.

Choice of modalities As mentioned in Section 3.3, we

use two-stream I3D networks for generating temporal ac-

tion proposals and computing the attention weights. We

also combine the two modalities for scoring the propos-

als. Figure 6 illustrates the effectiveness of each modality

and their combination. When comparing the individual per-

formance of each modality, the flow stream offers stronger

performance than the RGB steam. Similar to action recog-

nition, the combination of these modalities provides signif-

Figure 5: Performance with respect to architectural variations. The

attention module is useful as it allows the model to explicitly focus

on important parts of input videos. Enforcing sparsity in action

recognition via ℓ1 loss gives significant boost to the performance.

Figure 6: Performance with respect to modality choices. Optical

flow offers stronger cues than the RGB frames for action localiza-

tion and the combination of the two features leads to significant

performance improvement.

icant performance improvement.

5. Conclusion

We presented a novel weakly supervised temporal action

localization algorithm based on deep neural networks. The

classification is performed by evaluating a video-level rep-

resentation given by a sparsely weighted mean of segment-

level features where the sparse coefficients are learned with

a sparsity loss in our deep neural network. For weakly su-

pervised temporal action localization, one-dimensional ac-

tion proposals are extracted from which proposals relevant

to target classes are selected to identify the time intervals

of actions. Our proposed approach achieved state-of-the-art

performance on the THUMOS14 dataset, and we reported

weakly supervised temporal action localization results on

the ActivityNet1.3 dataset for the first time.
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