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Linköping, Sweden

{hannes.ovren,per-erik.forssen}@liu.se

Abstract

In this paper we derive and test a probability-based

weighting that can balance residuals of different types in

spline fitting. In contrast to previous formulations, the pro-

posed spline error weighting scheme also incorporates a

prediction of the approximation error of the spline fit. We

demonstrate the effectiveness of the prediction in a synthetic

experiment, and apply it to visual-inertial fusion on rolling

shutter cameras. This results in a method that can esti-

mate 3D structure with metric scale on generic first-person

videos. We also propose a quality measure for spline fitting,

that can be used to automatically select the knot spacing.

Experiments verify that the obtained trajectory quality cor-

responds well with the requested quality. Finally, by lin-

early scaling the weights, we show that the proposed spline

error weighting minimizes the estimation errors on real se-

quences, in terms of scale and end-point errors.

1. Introduction

In this paper we derive and test a probability-based

weighting that can balance residuals of different types in

spline fitting. We apply the weighting scheme to inertial-

aided structure from motion (SfM) on rolling shutter cam-

eras, and test it on first-person video from handheld and

body-mounted cameras. In such videos, parts of the se-

quences are often difficult to use due to excessive motion

blur, or due to temporary absence of scene structure.

It is well known that inertial measurement units (IMUs)

are a useful complement to visual input. Vision provides

bias-free bearings-only measurements with high accuracy,

while the IMU provides high-frequency linear acceleration,

and angular velocity measurements albeit with an unknown

bias [4]. Vision is thus useful to handle the IMU bias, while

the IMU can handle dropouts of visual tracking during rapid

motion, or absence of scene structure. In addition, the IMU

makes metric scale observable, also for monocular video.

Visual-inertial fusion using splines has traditionally bal-

anced the sensor modalities using inverse noise covariance

Figure 1. Rendered model estimated on the Handheld 1 dataset.

Top: model rendered using Meshlab. Bottom: Sample frames

from dataset.

weighting [17, 21]. As we will show, this neglects the spline

approximation error, and results in an inconsistent balanc-

ing of residuals from different modalities. In this paper,

we propose spline error weighting (SEW), a method that

incorporates the spline approximation error in the residual

weighting. SEW makes visual-inertial fusion robust on real

sequences, acquired with rolling shutter cameras. Figure 1

shows an example of 3D structure and continuous camera

trajectory estimated on such a sequence.

1.1. Related work

Visual-inertial fusion on rolling shutter cameras has clas-

sically been done using Extended Kalman-filters (EKF).

Hanning et al. [12] use an EKF to track cell-phone orien-

tation for the purpose of video stabilization. Li et al. [16]

extend this to full device motion tracking, and Jia et al. [14]

add tracking of changes in relative pose between the sensors

and changes in linear camera intrinsics.

Another line of work initiated in [9] is to define a

continuous-time estimation problem that is solved in batch,

by modelling the trajectory using temporal basis functions.
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This has been done using Gaussian process (GP) regression

[9, 1], and adapted to use hierarchical temporal basis func-

tions [2] and also a relative formulation [3] which general-

izes the global shutter formulation of Sibley et al. [23].

The use of temporal basis functions for visual-inertial fu-

sion can also be made in a spline fitting framework, as was

done in SplineFusion [17, 21] for visual-inertial synchro-

nization and calibration. SplineFusion can be seen as a di-

rect generalization of bundle adjustment [24] to continuous-

time camera paths. A special case of this is the rolling-

shutter bundle adjustment work of Hedborg et al. [13] which

linearly interpolates adjacent camera poses to handle rolling

shutter effects. Although the formulation in [17, 21] is

aesthetically appealing, we have observed that it lacks the

equivalent of the process noise model (that defines the state

trajectory smoothness) in filtering formulations. This makes

it brittle on rolling-shutter cameras, unless the camera mo-

tion can be well represented under the chosen knot spac-

ing (such as when the knot spacing is equal to the frame

distance, as in [13]). A hint in this direction is also pro-

vided in the rolling-shutter camera calibration work of Oth

et al. [19, 10], where successive re-parametrization of the

spline (by adding knots in intervals with large residuals)

was required to attain an accurate calibration. In this paper

we amend the SplineFusion approach [17, 21] by making

the trajectory approximation error explicit. This makes the

approach more generally applicable in situations where the

camera motion is not perfectly smooth, without requiring

successive re-parametrization.

Also related to bundle adjustment is the factor graph ap-

proach. Forster et al. [8] study visual-inertial fusion with

preintegration of IMU measurements between keyframes,

with a global shutter camera model.

The method we propose is generally applicable to many

spline-fitting problems, as it provides a statistically opti-

mal way to balance residuals of different types. We apply

the method to structure from motion on first-person videos.

This problem has previously been studied for the purpose

of geometry based video stabilization, which was intended

for high speed-up playback of the video [15]. In such situa-

tions, a proxy geometry is sufficient, as significant geomet-

ric artifacts tend not to be noticed during high speed play-

back. We instead aim for accuracy of the reconstructed 3D

models, and thus employ a continuous-time camera motion

model, that can accurately model the rolling shutter present

on most video cameras.

1.2. Contributions

• We derive expressions for spline error weighting

(SEW) and apply these to the continuous-time struc-

ture from motion (CT-SfM) problem. We verify exper-

imentally that the proposed weighting produces more

accurate and stable trajectories than the previously

used inverse noise covariance weighting.

• We propose a criterion to automatically set a suitable

knot spacing, based on allowed approximation error.

Previously knot spacing has been set heuristically, or

iteratively using re-optimization. We also verify ex-

perimentally that the obtained approximation error is

similar to the requested.

1.3. Notation

We denote signals by lower case letters indexed by a

time variable, e.g. x(t), and their corresponding Fourier

transforms in capitals indexed by a frequency variable, e.g.

X(f). Bold lower case letters, e.g. x, denote vectors of sig-

nal values, and the corresponding Discrete Fourier Trans-

form is denoted by bold capital letters, e.g. X. An estimate

of a value, q, is denoted by q̂.

2. Spline Error Weighting

Energy-based optimization is a popular tool in model fit-

ting. It involves defining an energy function J(Θ) of the

model parameters Θ, with terms for measurement resid-

uals. Measurements from several different modalities are

balanced by introducing modality weights γi :

J(Θ) = γx
∑

k

‖xk − x̂k(Θ)‖2

+ γy
∑

l

‖yl − ŷl(Θ)‖2

+ γz
∑

m

‖zm − ẑm(Θ)‖2 . (1)

Here x, y, and z are three measurement modalities, that are

balanced by the weights γx, γy, γz .

It is well known that the minimization of (1) can be ex-

pressed as the maximisation of a probability, by exponenti-

ating and changing the sign. This results in:

p(Θ) =
∏

k

pk(xk|Θ)
∏

l

pl(yl|Θ)
∏

m

pm(zm|Θ) . (2)

For the common case of normally distributed measurement

residuals, we have:

pk(xk|Θ) ∝ e−(xk − x̂k(Θ))2/2σ2

x , (3)

where σ2

x = 1/(2γx) is the variance of the residual distri-

bution.

In the context of splines, Θ is a coefficient vector, and

depending on the knot density, the predictions, x̂(t|Θ) will

cause an approximation error, e(t), if the spline is too

smooth to predict the measurements during rapid changes.

We thus have a residual model:

r(t) = x(t)− x̂(t|Θ) = n(t) + e(t) , (4)
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where n(t) is the measurement noise. In the SplineFusion

approach [21], the variances that balance the optimization

are set to the measurement noise variance, thereby neglect-

ing e(t). We will now derive a more accurate residual vari-

ance, based on signal frequency content.

2.1. Spline fitting in the frequency domain

Spline fitting can be characterized in terms of a fre-

quency response function, H(f), see [26, 18]. In this for-

mulation, a signal x(t) with the Discrete Fourier Transform

(DFT) X(f) will have the frequency content (H ·X)(f) af-

ter spline fitting. In [18], closed form expressions of H(f)
are provided for B-splines of varying orders. By denoting

the DFT of the frequency response function by the vector

H, and the DFT of the signal by X, we can express the

error introduced by the spline fit as:

E = (1−H) ·X . (5)

We now define the inverse DFT operator as an N × N
matrix M with elements Mkn = 1

√

N
ei2πkn/N , for which

MTM = I. Now we can compute the error signal e(t), as

e = ME, and its variance σ̂2

e as:

σ̂2

e = E{E}/N = E{(1−H) ·X}/N , (6)

where E{X} = ‖X‖2. The variance expression above fol-

lows directly from the Parseval theorem, as is easy to show:

Nσ̂2

e =

N
∑

t=1

e(t)2 = eT e = ETMTME = ETE (7)

Here we have used the fact that H(0) = 1 for all spline fits

(see [18]), and thus e(t) is a zero-mean signal.

To obtain the final residual error prediction, our estimate

of the approximation variance in (6), should be added to the

noise variance that was used in [21]. However, the spline

fit splits the noise in two parts N = (1−H) ·N+H ·N.

Now, as (6) is estimated using the actual, noisy input signal

X = X0+N it will already incorporate the part of the noise

N that the spline filters out:

E = (1−H) ·X = (1−H) ·X0 + (1−H) ·N . (8)

We should thus add only the part of the noise that was kept.

We denote this filtered noise term by F = H · N, and its

variance by σ̂2

f . We can now state the final expression of

the residual noise prediction:

σ̂2

r = σ̂2

e + σ̂2

f . (9)

For white noise, the filtered noise variance can be estimated

from the measurement noise σn and H as:

σ̂2

f = σ2

nE{H}/N . (10)
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Figure 2. Top: 50Hz test signal and noise (right subplot is a detail).

Bottom: standard deviations as functions of knot spacing. σr is

the empirical residual standard deviation, σn is the noise standard

deviation, which is used in [21] to predict σr , Predicted is the

proposed residual noise prediction. σr0 is the residual with respect

to the noise-free signal x0(t).

The final weight to use for each residual modality (see

(1)) is the inverse of its predicted residual error variance:

γ =
1

σ̂2
r

. (11)

2.2. A simple 1D illustration

In figure 2 we illustrate a simple experiment that demon-

strates the behaviour of our proposed residual error predic-

tion (9). In figure 2 top left, we show a test signal, x(t),
which is the sum of a true signal, x0(t), and white Gaus-

sian noise n(t) with variance σ2

n. The true signal has been

generated by filtering white noise to produce a range of dif-

ferent frequencies and amplitudes. In figure 2 top right, we

show a detail of the signal, where the added noise is visible.

We now apply a least-squares spline fit to the signal

x(t), to obtain the spline x̂(t), with control points Θ =
(θ1, . . . , θK)T and basis functions B(t):

x̂(t|Θ) =

K
∑

k=1

θkB(t− k∆t) . (12)

This is repeated for a range of knot spacings, ∆t, each re-

sulting in a different residual r(t) = x(t)− x̂(t). The resid-

ual standard deviation σr is plotted in figure 2, bottom. We

make the same plot for the residual r0(t) = x0(t) − x̂(t)
which measures the error compared to the true signal. The

resulting σr0 curve has a minimum at approximately ∆t =
0.15, which is thus the optimal knot spacing. The fact that

the actual residual σr decreases for knot spacings below this

value thus indicates overfitting. From the experiment, we

can also see that the implicit assumption made in [21] that

the noise standard deviation σn can predict σr is reasonable
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for knot spacings at or below the optimal value. However,

for larger knot spacings (at the right side of the plot) this

assumption becomes increasingly inaccurate.

2.3. Selecting the knot spacing

Instead of deciding on a knot spacing explicitly, a more

convenient design criterion is the amount of approximation

error introduced by the spline fit. To select a suitable knot

spacing, ∆t, we thus first decide on a quality value, q̂ ∈
(0, 1], that corresponds to the fraction of signal energy we

want the approximation to retain. For a given signal, x(t),
with the DFT, X, we define the quality value as the ratio

between the energy, before and after spline fitting:

q(∆t) =
E{H(∆t) ·X}

E{X}
(13)

Here H(∆t) is the scaled frequency response of the

spline approximation, see section 2.1. By constraining

H(f) to preserve the DC-component after a change of vari-

ables, i.e., H(0) = 1, the change of variables simplifies to

a scaling of the original frequency response, H(f,∆t) =
H(∆tf) .

To find a suitable knot spacing for the signal, we search

for the largest knot spacing ∆t for which q(∆t) ≥ q̂. We do

this by starting at the maximum allowed knot spacing, and

then decrease ∆t until q(∆t) ≥ q̂. At this point we use the

bounded root search method by Brent [6] to find the exact

point, ∆t, where q(∆t) = q̂.

3. Visual-inertial fusion

We will use the residual error prediction introduced in

section 2 to balance visual-inertial fusion on rolling shut-

ter cameras. Our formulation is largely the same as in the

SplineFusion method [21]. In addition to the improved bal-

ancing, we modify the SplineFusion method, as follows: (1)

we interpolate in SO(3) and R
3 instead of in SE(3), (2) we

use a rolling shutter reprojection method based on observa-

tion time1 instead of performing Newton-optimization, and

(3) we add a robust error norm for image residuals.

Given IMU measurements {ωn}
N
1
, {al}

L
1

, and tracked

image points, the objective is to estimate the trajectory

T(t), and the 3D landmarks that best explain the data. This

is done by minimizing a cost function J(θ,ρ) where θ and

ρ are trajectory and landmark parameters, respectively. We

parameterize landmarks using the inverse depth relative to

a reference observation, while the trajectory parameters are

simply the spline control points for the cubic B-splines. We

1In (14) we set tk,m = tm + (r · vk,m)/Nv , where vk,m is the

observation row coordinate, r is the readout time, Nv is number of rows,

and tm is the start time of frame m.

define our cost function as

J(θ,ρ) =
∑

k,m

φ(xk,m − π(xk,0,T(tk,m)T(tk,0)
−1, ρk))

+
∑

n

||ωn −∇ωT(tn)||
2

Wg
(14)

+
∑

l

||al −∇2

aT(tl)||
2

Wa
.

Here, φ is a robust error norm. Each landmark observation

xk,m belongs to a track {xk,m}
M
m=0

, and has an associated

inverse depth ρk. The function π(·) reprojects the first land-

mark observation into subsequent frames using the trajec-

tory and the inverse depth. The norm weight matrices Wg

and Wa are in general matrices, but in our experiments they

are assumed to be isotropic, which results in

Wg = I
1

σ̂2
r,g

, and Wa = I
1

σ̂2
r,a

, (15)

where σ̂2

r,g and σ̂2

r,a are the predicted residual variances for

the two modalities, see (11).

The operators ∇ω and ∇2

a in (14) represent inertial

sensor models which predict gyroscope and accelerometer

readings given the trajectory model T(t), using analytic dif-

ferentiation. The inertial sensor models should account for

at least biases in the accelerometer and gyroscope, but could

also involve e.g. axis misalignment.

The robust error norm φ is required for the image resid-

uals since we expect the image measurements to contain

outliers that, unless handled, will result in a biased re-

sult. We use the Huber error norm with a cut-off parameter

c = 2. The gyroscope and accelerometer measurements do

not contain outliers, and thus no robust error norm is re-

quired here.

3.1. Quality measurement domains

In order to apply the method in section 2 on a spline

defining a camera trajectory, we need to generalize esti-

mation to vector-valued signals, and also to apply it in

measurement domains that correspond to derivatives of the

sought trajectory.

The gyroscope senses angular velocity, which is the

derivative of the SO(3) part of the sought trajectory. From

the derivative theorem of B-splines [25], we know that the

derivative of a spline is a spline of degree one less, with

knots shifted by half the knot spacing. Thus, as the knot

spacing in the derivative domain is the same, we can im-

pose a quality value q̂g on the gyro signal to obtain a knot

spacing ∆tg for the SO(3) spline.

In order to apply (13) to the gyroscope signal, ω(t), we

need to convert it to a 1D spectrum Xg(f). This is done

by first applying the DFT along the temporal axis. We then
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compute a single scalar for each frequency component us-

ing the scaled L2-norm:

Xg(f) =

√

1

3
‖Ω(f)‖ where Ω(f) =





Ωx(f)
Ωy(f)
Ωz(f)



 . (16)

We also set Xg(0) = 0 to avoid that a large DC com-

ponent dominates (13). Conceptually this also makes sense

as a spline depends only on the shape of the measurements,

and not the choice of origin.

To find a knot spacing for the R
3-spline, the connection

is not as straightforward as for the SO(3) part of the trajec-

tory. Here we employ the IMU data from the accelerometer,

and use the same formulation as in (16) to compute a 1D

spectrum Xa(f), again with zero DC, Xa(0) = 0.

In contrast to the gyroscope, however, the accelerome-

ter measurements are induced by changes in both R
3 and

SO(3): the linear acceleration, and the current orientation

of the gravity vector. Because of the gravitational part, the

measurements are always in the order of 1g, the standard

gravity, which is very large compared to most linear ac-

celerations. For a camera with small rotation in pitch and

roll, most of the gravity component will end up in the DC

component, and thus not influence the result. For large ro-

tations, however, the accelerometer will have an energy dis-

tribution that is different from the position sequence of the

final spline.

In the experiment section, we evaluate the effectiveness

of the quality estimates for both gyroscope and accelerom-

eter.

4. Experiments

Our experiments are mainly designed to verify the spline

error weighting method (SEW), presented in sections 2 and

3. However, they also hint at some of the benefits of incor-

porating inertial measurements in SfM: metric scale, han-

dling of visual dropout, and reduced need for initialization.

The experiments are all based on real data, complementing

the synthetic example already presented in section 2.2.

4.1. Datasets

We recorded datasets for two use-cases: Bodycam and

Handheld. All sets were recorded outdoors using a GoPro

Hero 3+ Black camera with the video mode set to 1080p at

30Hz. For the bodycam datasets the camera was strapped

securely to the wearer’s chest using a harness, pointing

straight forward. For the handheld datasets, the camera mo-

tion was less constrained but was mostly pointed forwards

and slightly sideways.

To log IMU data we used a custom-made IMU logger

based on the InvenSense MPU-9250 9-axis IMU. Data was

captured at 1000 Hz, but was downsampled to 300 Hz for

the experiments.

Figure 3. Render of model estimated on Bodycam 1 dataset. Top:

model rendered using Meshlab. Bottom: Sample frames from

dataset.

The camera was calibrated using the FOV model in [7].

An initial estimate of the time offset between the camera

and IMU, as well as their relative orientation, was found

using the software package Crisp [20]. Since Crisp does

not handle accelerometer biases we refined the calibration

using the same spline-based SfM pipeline as used in the ex-

periments. Calibration was refined on a short time interval

with IMU biases, time offset, and relative orientation as ad-

ditional parameters to estimate.

When recording each dataset, we used a tripod with an

indicator bar to ensure that each dataset ended with the cam-

era returned to its starting position (±2 cm). This enables

us to use endpoint error (EPE) as a metric in the experi-

ments, EPE = ‖p(t0) − p(tend)‖, where p(t) is the posi-

tional spline. To gauge the scale error after reconstruction,

we measured a few distances in each scene using a measur-

ing tape.

Example frames and final reconstructions of the datasets

can be seen in figures 1, 3, 4, and 5. To improve visualiza-

tion the example figures have been densified by triangulat-

ing additional landmarks using the estimated trajectory.

4.2. Structure from motion pipeline

To not distract from the presented theory, we opted for a

very simple structure from motion pipeline that can serve as

a baseline to build on.

We generate visual observations by detecting FAST key-

points [22] with a regular spatial distribution enforced using

ANMS [11]. These are then tracked in subsequent frames

using the OpenCV KLT-tracker [5]. For added robustness,

we performed backtracking and discarded tracks which did

not return to within 0.5 pixels of its starting point. Using

tracking instead of feature matching means that landmarks

that are detected more than once will be tracked multiple

325



Figure 4. Render of model estimated on Bodycam 2 dataset. Top:

model rendered using Meshlab. Bottom: Sample frames from

dataset.

times by the system. In addition, the visual data does not

contain any explicit loop closures, which in turn means that

correct weighting of the IMU residuals become more im-

portant to successfully reconstruct the trajectory.

The trajectory splines are initialized with their respective

chosen knot spacing, such that they cover all frames in the

data. The spline control points are initialized to 0 ∈ R
3

and I ∈ SO(3) respectively. All landmarks are placed at

infinity, with inverse depths ρ = 0. Note that we are not

using any initialization scheme like essential matrix estima-

tion and triangulation to give the system a reasonable start-

ing point.

The pipeline consists of four phases:

Initial Rough reconstruction using keyframes.

Cleanup (×2) Reoptimize using only landmarks with a

mean reprojection error below a threshold.

Final Optimize over all frames.

We now describe the phases in more detail. To start

the reconstruction we first select a set of keyframes. Start-

ing with the first frame we insert a new keyframe when-

ever the number of tracked landmarks from the previous

keyframe drops below 75%. To avoid generating too many

keyframes we add the constraint that the distance between

two keyframes must be at least 6 frames.

The starting set of observations are then chosen from the

keyframes using ANMS [11], weighted by track lengths,

such that each keyframe provides at most n = 100 obser-

vations. After the initial phase is completed, we do two

cleanup phases. During a cleanup phase we first determine

the mean reprojection error for all landmarks that are visible

in the keyframes. We then pick a new set of observations (at

most n per frame) from landmarks with mean reprojection

Figure 5. Render of model estimated on Handheld 2 dataset. Top:

model rendered using Meshlab. Bottom: Sample frames from

dataset.
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Figure 6. Actual quality (qout) as a function of requested quality (q̂)

for both accelerometer and gyroscope. The blue markers are the

individual data points, and the solid line their mean. The dashed

line shows the ideal qout = q̂.

errors below a threshold. These thresholds are set to 8 and

5 pixels, respectively.

For the final phase we select the landmarks with a mean

reprojection error below 3 pixels, and add observations for

all frames.

4.3. Prediction of quality

We now test how well the requested quality q̂ corre-

sponds to the obtained quality after spline fit. For each

dataset we performed reconstructions with a range of dif-

ferent quality values for the accelerometer and gyroscope.
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The requested quality value then determines the knot spac-

ing, and IMU weights used by the optimizer according to

the theory presented in sections 2 and 3. All reconstructions

for a dataset were initialized with the same set of keyframes

and initial observations.

As we can see in figure 6 the obtained quality for the gy-

roscope corresponds well with the requested value. For the

accelerometer however, the obtained quality is consistently

slightly lower. The outliers in the accelerometer plot cor-

respond to the lowest gyroscope quality values. Since the

accelerometer measurements depend also on the orientation

estimate, it is expected that a reduction in gyroscope qual-

ity would influence the accelerometer quality as well, see

section 3.1.

4.4. Importance of correct weighting

To investigate how well our method sets the IMU resid-

ual weights, we made several reconstructions using the

same knot spacing but different weights. The knot spacing

and base weights for the IMU residuals were first selected

using the theory described in sections 2 and 3. We then

performed multiple reconstructions with the IMU weights

scaled by a common factor. All reconstructions for a given

dataset used the same initial set of keyframes and observa-

tions. In figure 7 we plot the endpoint error and scale er-

ror as functions of this factor. The scale error is defined as

escale = |ltrue − l̂|/ltrue, where ltrue is the true length as mea-

sured in the real world, and l̂ is a length that is triangulated,

from manually selected points, using the reconstructed tra-

jectory.

Figure 7 shows that SEW produces weights which are in

the optimal band where both errors are low. In contrast, the

inverse noise covariance weights used by SplineFusion (the

right-most data points) are consistently a bad choice.
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Figure 8. Endpoint error and endpoint distortion as functions of

dropout time. The dropout is the number of seconds for which no

visual observations were available.

4.5. Visual dropout

One of the benefits of including IMU data in structure

from motion is that we can handle short intervals of miss-

ing visual observations. These could be due to changes in

lighting, or because the observed scenery has no visual fea-

tures (white wall, clear sky, etc.).

To investigate visual dropout in a controlled manner we

simulate dropouts by removing the last n frames in each

dataset. The trajectory estimate in this part will then de-

pend on IMU measurements only. In figure 8 we show the

endpoint error and endpoint distortion (EPD) for different

lengths of dropout. The endpoint distortion is the distance

from the estimated endpoint under dropout to the endpoint

without dropout. It thus directly measures the drift caused

by the dropout.

As expected the errors increase with the dropout time,

but are quite small for dropout times below a second. The

dropout error is sensitive to the IMU/camera calibration,

and especially to correct modeling of the IMU biases. Given

that these are accurately estimated, the IMU provides excel-

lent support in case of brief visual dropout.

4.6. Comparison to SplineFusion

Finally we make an explicit comparison with SplineFu-

sion as described in [21], but with the three modifications

stated in section 3. The only difference between SEW and

SplineFusion in the following comparison is with regards

to knot spacing and IMU residual weights: For SplineFu-

sion we set both spline knot spacings to ∆t = 0.1 seconds,

and IMU residual weights to the inverse of the measurement

noise covariances, as was done in [21]. For SEW (the pro-

posed method) the knot spacings and residual weights were

chosen using quality values qacc = 0.97 and qgyro = 0.99.

This resulted in knot spacings averaging around 0.04 sec-

onds.
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EPE [m] escale [%]

SEW SplineFusion SEW SplineFusion

Bodycam 1 0.22 37.95 3.4% 124.2%

Bodycam 2 0.40 27.86 8.7% 423.1%

Handheld 1 0.30 0.52 1.4% 19.0%

Handheld 2 0.56 0.94 2.0% 1.7%

Table 1. Comparison of SEW and SplineFusion

In figure 9 we show the reconstructed trajectories pro-

jected onto the XY-plane, and table 1 shows the correspond-

ing endpoint and scale errors. A perfect reconstruction

should have the trajectories start and end at exactly the same

point, with zero endpoint error. It is clear that the Spline-

Fusion settings work reasonably well in the handheld case,

but completely fails for bodycams. However, even in one of

the handheld sequences the scale error for SplineFusion is

a magnitude larger than that of SEW. It is unsurprising that

the SplineFusion settings work on the Handheld 2 dataset,

as the motions in this dataset are relatively smooth com-

pared to the others.

In figure 10 we plot the residual distributions after con-

vergence on the Handheld 2 dataset. Ideally the IMU resid-

uals should be normally distributed with mean µ = 0 and

standard deviation σ = 1. The image residuals could con-

tain outliers, and are also mapped through the robust error

norm φ, and are thus not necessarily normally distributed.

It is clear that SEW produces residuals which are close to

standardized, while the inverse noise covariance weighting

of SplineFusion does not.

5. Conclusions and future work

We have introduced a method that balances residuals

from different modalities. In the experiments we applied

the method to continuous-time structure from motion, using

measurements from KLT-tracking and an IMU. This simple

setup was used to highlight the advantages with the pro-

posed error weighting scheme. In order to further improve

the robustness in this particular application, one could in-

corporate, by now classical ideas from SfM, such as invari-

ant features, and loop-closure detection.

The proposed spline error weighting uses empirical spec-

tra in the different measurement modalities. Such spectra

are however often characteristic of specific types of motion,

e.g. handheld and bodycam sequences have characteristic

within group spectra, and these could be learned and applied

directly to new sequences of the same type. Such learned

characteristic spectra could be useful as a priori information

when adapting spline error weighting to do on-line visual-

inertial fusion.

Another potential improvement is to derive a better resid-

ual error prediction for the accelerometer, that properly
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Figure 9. Comparison of obtained trajectories for SplineFusion

and SEW. Trajectories have been aligned to share the starting point

(black dot). All trajectories should ideally start and end at the same

point.
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Figure 10. Blue: Residual distribution after convergence for the

Handheld 2 dataset. Black: PDF of the standard normal distribu-

tion N (0, 1) that is expected for the IMU residuals.

accounts for the interaction with the sensor orientation

changes. The quality experiment in figure 6 revealed a con-

sistent underestimation of the approximation quality, and a

better prediction should remedy this.

We plan to release our spline error weighting framework

for visual-inertial fusion under an open source license.
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